«LE MATEMATICHE»
Vol. XLIIT (1988) - Fasc. I, pp. 7-28

MODERN TRENDS IN KNOWLEDGE REPRESENTATION
AND EXPERT SYSTEM TECHNOLOGY

KLAUS NOKEL - MICHAEL M. RICHTER (Kaiserslautern)

1. Introduction.

Recent years have seen a rapid progréss in expert system
technology. This is due to several reasons: Development of much
more powerful hardware, increased efficiency of artificial intelligence
programming languages and last not least, new. techniques in
knowledge representation and knowledge acquisition. Besides research
projects at universities and research institutions, this has led to
" a large variety of commercial products on the market, as well as
to an increasing number of applications. We will not be concerned
here with hardware aspects but we will discuss the present
state of methodological concepts and software tools. Our main
examples stem from the research activities as the Computer Science
Department of the University of Kaiserslautern. These activities
are now enlarged and complemented by the research in the



8 KLAUS NOKEL - MICHAEL M. RICHTER

DFKI (Deutsches Forschungszentrum fiir Kiinstliche Intelligenz) in
Kaiserslautern. This is the federal institute of the FRG for artificial

intelligence.

2. How to discuss expert systems and what happened in the
past.

Expert systems are ultimately a program and hence a piece
of software. Very often they run under the term knowledge based
systems and it is not clear what the difference is. All the terms might
- also be somewhat misleading, because they suggest that one is now
dealing with expert knowledge and that this was not the case in
classical conventional programming. Clearly classical programs have
also contained knowledge (and sometimes very sophisticated ones).
Also, when an expert system is translated to machine language there
is almost no way to distinguish it from a conventional program. The
principle difference in this new development is a new programming
style. It is the declarative programming which characterizes A[
programming. Declarative programming means that the programmer
has not to fix himself all the details of the execution of the program.
Instead he puts down explicitly those facts and laws which in his
opinion are necessary and useful for the solution of his problem.
In order to execute the program the missing details are generated
by the control structure and the inference engine. The inference
engine deduces logical conclusions from the input knowledge as
well as plausible hypothesis and related pieces of information. The
control structure organizes this process. In the development of this
programming style one can observe essentially three stages.

The first style runs under the keyword rule bascd programming.
A rule is of the form

A,...,A, —» B

Here the A; and the B are formulae of the first order predicate



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,... 9

calculus. Such a rule can be used in two ways:

— forward chaining: if the system knows that Ai,..., A, are true,
then the truth of B can be inferred.

— backward chaining: in order to confirm the truth of B, one needs
only to establish the truth of A;,..., A,.

In addition to such rules one has also facts A which are
considered to be unconditionally true. In the latter case variables
may be involved which necessitate substitutions in order to unify
the formulae in such a way that the rules can be applied as in the
propositional case. |

The first generation of Al programming languages was based on
such rules. Backward chaining was realized in PROLOG and forward
chaining has led to the development of OPS 5. Both languages
(and their extensions) have been used to successfully implement
expert systems. Although a rule is nothing but a classical IF-THEN-
statement, rule-based programming may have serious advances to
our traditional procedural programming. First, the development of
the program may be much faster because one has to do with less
implementation details. Secondly, a small change in the knowledge
leads only to the replacement of a few rules and not to the rewriting
of the whole program. A third aspect is that an explanation of the
result is much easier than in a conventional algorithm: To know
which rules have been applied very often gives sufficient information
of how the result was obtained.

Rule-based programming, however, may also have serious
~ drawbacks. If it was just considered as an advantage not to be
bothered with procedural details, one might also in certain situations
regret the lack of such a possibility. This is a case, for instance, if
one knows an optimal algorithm and does not want to depend on the
algorithm given by the inference engine. This leads to the desire to
incorporate procedural elements into a declarative program. Another
missing element from rule systems is the principle of modularisation
and data abstraction. A third and important weakness is that there is



10 KLAUS NOKEL - MICHAEL M. RICHTER

no structure on the predicates. One cannot express that one predicate
is more general than another or that some object is an instance of a
general concept.

As a second style of declarative programming we mention
functional programming. In functional programming each object is
a function, and hence the distinction between a function and an
argument disappears. In particular, a function can be applied to
itself. A functional expression, usually consisting of a function and
given arguments is converted into a certain value and the only aspect
one is interested in is the relation between a functional expression
and its value. This corresponds very much to the pure mathematical
treatment of functions and functional programming can always be
regarded as a certain kind of recursion theory or, equivalently, an
implementation of the \-calculus. |

‘The third style is the so-called object-oriented programming.
Objects are data capsules which have an inner life invisible to the
other objects. An object has data and methods and the data belong
to the inner life, i.e. they are invisible. The programming paradigm
consists of a communication model; this means that objects have
to send messages to each other in order to apply certain methods
to certain arguments. If one has several objects with the same
operations and a data space of the same structure then it is natural
to form the class of such objects. It is then possible to define the
common properties of those objects once and for all only for the class.
Individual objects can then be considered as instances of that class.
In the sense of that theory this realizes the membership relation.

The second natural step is to realize the subset relation. This
leads to a hierarchy of classes which can be represented by a directed
graph. An edge leads from one class to another where the edge
points to a more special class 80. In fact, the above figure reflects
the division of smalltalk objects into data and methods.

These programming styles were the basis for more advanced
methods of knowledge representation. The most important concept in
this context is that of a frame. A frame is a structured object which



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,... 11

Ay

| Cognitive layer

ﬂ A

Representation layer R
4

C

Implementation layer

fig. 1 - Between the knowledge utterance and its machine utilization several
transformations must be performed (= - arrows). They map into the
direction of increased structuring within the layers and proceed from the
cognitive form to the formal, and from here to the efficiently processed
form. Each syntactic result obtained in the range of a transformation must
be associated with its meaning in the domain of the transformation. This
is indicated by —-arrows between the layers. The most interesting and
difficult one is the inverse mapping into the cognitive layer, which is usually
called explanation.

has some similarity with the Record of Pascal. It can be considered
as a complex structured variable which has various slots that can be
filled with values. The values may again be structured, in particular
there may themselves be frames. Other possibilities are that slots are
filled with functions, rules or simply unstructured variables. In the
same way as objects are arranged by an inheritance hierarchy, this
can be done with frames too. There can be however various other
edges defined between frames. An example is the connected-td-edge
if the frames are considered to represent components of a technical
system.

It is, of course, desirable to define frames as expressive
and comfortable as possible. This may however lead to serious
implementation problems. Modern knowledge representation tool kits
contain besides rules and functions almost always a certain concept
of a frame. In most cases these systems are hybrid which means that



.12 KLAUS NOKEL - MICHAEL M. RICHTER

rules, functions and frames are in different packages which are only
integrated to a certain degree.

With the help of such elements of Al programming languages
one has then built more advanced knowledge représentation concepts.
They aim at modelling more complex systems like complex machines.
Such a machine can be considered in two ways. First, it is a static
object which has parts, subparts, and so on. Secondly, the machine
has a dynamic behavior which means that it can move from one
admissible state to another. In order to describe such processes one
needs among others an axiomatic description of time.

Using a programming language as a knowledge representation
methodology one can design an expert system for a certain category
in a certain domain of application. Possible categories are fault
diagnosis, configuration or construction. |

Such an expert system can now be considered on three levels which
should be clearly separated, the cognitive level, the representation
level or the implementation level.

fig. 2 - Such a hierarchy allows one to store each method or operation only
once in the more general object. The concept of inheritance means that each
piece on information is transferred automatically from the superclass to a
subclass if it is needed there. A programming language entirely based on
the object and class principle is SMALLTALK



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,... . 13

On the cognitive level the user wishes can be expressed. The
formal representation on the second level corresponds to a specification
in a conventional program. The user wishes also to describe the
functional behavior, i.e. the input-output relation of the system. The
functional view is realized and complemented by the architectural
view which describes how the functional behavior is realized. The
architectural view is realized on the implementation and partly on the
representation level. In discussing an expert system it is important
to point out which functional aspects lead to which architectural
problems and how these problems are solved.

3. The Amalgamation Problem of Programming Languages.

Logic, functional and object-oriented programming is appropriate
for the representation of different kinds of information. In reality
these types of information cannot be separated well. That means,
after having chosen a specific programmming language, this turns
out to be suitable for some parts of intended program and less
appropriate for others. This has led to the desire to integrate two or
more such languages into a single one. We will discuss some of such
attempts.

a) Functional and Logic Programming.

At the University of Kaiserslautern we have investigated several
different approaches to the integration of functional and logic
programming. In this section we describe one of these approaches,
SASLOG, in greater detail.

The first decisions that have to be made in any amalgamation
project concern the intensity of the integration, the functional and logic
language used and the implementation technique used. Inventing a
totally new language (as e.g. EQLOG [Goguen, Meseguer 86}, FRESH



14 KLAUS NOKEL - MICHAEL M. RICHTER

[Smolka 86]) forces the programmer to learn another new language
and is often done to demonstrate certain abstract features clearly
rather than to present an efficient implementation. For SASLOG, we
instead decided to integrate two (reasonably efficiently implemented)
existing languages: SASL (St. Andrews Static Language, [Turner
83]), since it features lazy evaluation and higher-order functions,
and pure Prolog. Unlike many known integrations (e.g. FUNLOG
[Subrahmanyam, You 86]1) we really interlink these two languages in
both directions, i.e. Prolog goals can be proven from SASL as well as
SASL functions can be called from Prolog.

A full discussion of the two component languages is béyond the
scope of this paper and can be found elsewhere. The SASL part is
based on the standard set in [Turner 83] and the Prolog part is
a subset of standard Prolog which leaves out all predicates with
side-effects, such as e.g. assert and retract. For convenience in linking
SASL to Prolog we added the object type constant to SASL. Constants
are identifiers marked by «» (like the abbreviation for QUOTE in
Lisp); they are atomic and do not correspond to strings.

EXAMPLES:
constants: ’ john
def

/ /

mary sam

lover ’‘mary ='john
lover =z =/ sam

The link from SASL to Prolog is possible through two constructs:
prove — and Z F' — expressions.
1. Instead of any boolean expression in a SASL term there can
be an expression ‘
prove (prolog-goal)

where prolog-goal can contain SASL variables and expressions. If the
value of the prove-expression is needed (remember: SASL evaluation
is lazy!) the Prolog interpreter is called with the given prolog-goal.
If the goal can be proven, the expression yields TRUE; if the Prolog
interpreter fails the result is FALSE.



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,... 15

Regard the following SASL function which tests whether we
know the mother of a given person (returning ' ok) or not (unknown):

def test z =prove(mother( M, z)) — ' ok; ' unknown

Note that the Prolog goal contains (local) Prolog variables ( M)
and parameters from the SASL function (z).

2. The more interesting link to Prolog (of which 1. is just a
syntactically sugared special case) is through an extension of the
Z F-expression (named after the underlying Zermelo-Fraenkel set
abstraction). The syntax of a SASLOG Z F'-expression is as follows:

[E;Q1s- -3 Qnl

where the result term F is an expression and the qualifiers Q) take
the form

Qx = Vi «— Ey («<normal» generator) or
Qk = [Vik=1,..., Vkm] « prolog-goal (Prolog generator) or

Qr = Ef, Ex a boolean-valued expression (filter)

The meaning of this Z F-expression is very much the same as the
one of {E|Q1;...;Qx} in mathematical notation (reading « « » for
« € »), except that the Z F-expression denotes a list instead of a real
set (i.e. doubles can occur and the order of members is significant).

While V, « FE; binds V), successively to the members of
the list produced by FEx, [Vii,..., Vim] <prolog-goal binds the Vj,
simultaneously to the values these Prolog variables take in the Prolog
proof of prolog-goal. If the next set of values is needed, backtracking
on prolog-goal is started.

Consider the following example, where the function f yields the
list of all grandchilds of a given list of persons. Supposing the Prolog
database contains several facts of the form parent (' john, ' sue) we
can define f as follows:

def fL =[gc; old « L; [gc] «— parent (old, _X), parent (_X, gc)]



16 KLAUS NOKEL - MICHAEL M. RICHTER

If we want to filter out only those grandchilds whose parent
belongs to a certain set of people we could change the definition to

def gL = [gc; old « L;
[gc, X1 — parent (old, _X), parent (X, gc);
member [’ sue, ’ joe, ' john, ' mary] X]()
While X and gc are lbgic variables inside the goal, they become
SASL parameters outside the generator.

Let us take a closer look at this example. Given the following
database definitions:

parent (' john, ' sue).
parent (' john, ' sam).
parent (' sam, ' mary).
parent ( joe, ' linus).
parent (' sue, ' charly).
parent (' mary, ' lucy).
parent ( jeff, ' joe).
and the definition of g as above, then the expression E =g [/ john, '
jeff] is evaluated as follows:
a. The first element of [ john, ’ jeff] (= john) is assigned to old.

b. The Prolog interpreter is started to prove parent (' john, X),
parent (_X, gc).

c. The interpreter returns with X bound to / sue and gc bound to
'charly.

d. member [' sue, ' joe, ’ john, ’ mary] ’ sue is evaluated to TRUE.

e. Since no more qualifiers exist this is a acceptable solution and
the value bound to gc (i.e. ' charlie) is delivered as the first
element of the global expression E.

(1) Note that in SASL the order of the arguments to member is changed to make
currying easier. _



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,.. 17

f. If the next member of F is needed, the next element from the
last satisfied generator must be generated; since in this case this
is the Prolog interpreter, backtracking is started.

g. Prolog finds another solution binding X to ' sam and gc to ‘mary.

h. member [ sue, ’ joe, ' john, ' mary] ' sam is FALSE so another
backtracking is started.

i. Since there are no more solutions for parent (' john, X), parent
(X, _gc), the Prolog interpreter fails, thus the next element from
the generator of old must be examined (that is / jeff).

J. A «new» Prolog interpreter is started to prove parent (' jeff, X),
parent (_X, _gc).

k. It finds a solution (X = joe, gc = linus) which satisfies the
«member»-filter so that / linus is the next member of E.

1. No more solutions for ’ jeff can be found so the next element of
L has to be used. Since there is no such element, the result list

is terminated.

Thus: g['john,jeffl=['charly, ' linus].

Calling SASL from Prolog is a little easier: any term in the
goals on the right hand side of a Prolog clause may be an arbitrary
SASL expression. These SASL terms may contain Prolog variables,
which must be bound to a value when being evaluated (we do
not perform residuation). Naturally SASL terms in Prolog goals can
contain Prolog goals themselves (via prove- or Z F-expressions) etc.
and vice versa. Note that there is no need for an operator like «is»,
since «=» serves the purpose equally well.

Suppose we want a predicate P(X,Y") which is true, if a person
X has grandchilds who are older than 20 (assuming the presence of
a function age) and whose parent is either Sue, John, Joe or Mary..
It should allow to be called with any combination of bound/unbound



18 KLAUS NOKEL - MICHAEL M. RICHTER
variables. Of course we want to use our previously defined function g.

P(X),Y): —person(_X),
Y =gl X],
some(< 20)(map age Y') = TRUE.

def some f[] = FALSE
- some flalz] = (fa)or (somefz)
def map f[] =]

map fla|z] =[fa|mapfz]

Note that in a call of the Prolog predicate P the SASL function
g is called which itself calls Prolog again.

- One reason to integrate two existing languages instead of creating
a completely new one is to give the programmer a familiar basis to
work on so that programs written in either of the two languages can
still be used. This puts fairly strong restrictions on the semantics of
the combined language: the separate semantics have to be retained
as special cases and the new elements concerning the link between
the languages must be injected into their union as unobtrusively
as possible. In the case of SASLOG we have chosen an operational
semantics based on a version of semantic unification that is similar
to the one in [Subrahmanyam, You 86].

The language was implemented in Common-Lisp on a Symbolics
by Knut Hinkelmann [Hinkelmann 88] and uses the SASL interpreter
written by Klaus Nokel and Robert Rehbold [Nékel, Rehbold 86]
and the LISPLOG interpreter developed by Harold Boley and his
collaborators [Boley 85] as essential parts.

b) Object-oriented Extension of Prolog.

Originally logic-oriented and object-oriented languages have only
been loosely coupled. In the past five years several proposals for
a more intensive integration of both formalism have been made
(cf. [AN 86]). In principle one starts with a predicate calculus with



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,... 19

several sorts such that these sorts are ordered by inclusion. The sorts
correspond to (and are identified with) the classes in object-oriented
programming. In the realization of extensions of Prolog one can
basically observe three levels in the density of the integration:

— coupling of Prolog with an object-oriented language
— implementation of an object system in Prolog

— extension of Prolog by sorts.

The first approach consists mainly of the definition of a suitable
interface with Prolog with e.g. Smalltalk. Using this interface Prolog
programs have access to objects and their methods can again
call Prolog evaluations. In principle we still have two ind:ependent
processes which can call each other. A disadvantage is that these two
processes both have to be active in the system. In addition, the time
needed for communication is not negligible. It should be added that
such a coupling exists also between the three languages Sepia Prolog,
Smalltalk 80 and Common Lisp (cf. [ALT 89]); also in Babylon one
finds all these three processes (cf. [PB 85]). Here the communication
is organized by some kind of metaprocessor.

In order to implement an object system in Prolog one defines
additional Prolog predicates, which enable the system to generate
objects and to activate methods by messages. This is very similar to
the flavor system in Lisp. An implementation of such a small flavor
system in Prolog is described [HKPS 86].

For an object-oriented extension of Prolog the most plausible
approach is to use sorts. Sorted logic can easily be implemented in
Prolog. Sorts are represented by unitary predicates and inheritance
corresponds to certain implications. An improvement over this simple
approach uses mainly two techniques:

— Inference steps which correspond to a search in the class
hierarchy are built in to the unification algorithm.

— In answer substitutions sorted variables may occur. This avoids
an enumeration of all individuals via backtracking.



20 KLAUS NOKEL - MICHAEL M. RICHTER

Such an extension of Prolog is realized on top of Prolog-XT. For
more details see [ENB 89] and [MEY 89].

4. From Programming Languages to Shells.

Despite the advances in Al programming languages there is still
a gap to represent knowledge in the form as an expert uses it. Data
structures and interpreters for higher concepts had been developed
in order to present explicitly the problem domain and the problem
solving methods. This has led to the idea of a shell. Unfortunately
the meaning of the term shell has changed over the years.

The first notion of a shell denotes the system which was
extracted from a concrete expert system by removing all domain
speciﬁc knowledge. Such a «shell» could then be used for similar
problems in another domain by filling in new specific knowledge.
A classical example of this type is the shell Emycin which was
constructed from the medical experts with the Mycin in the way
described above. Experience shows however that the domains for
which such a shell could be used have to be very similar to the

original domain.

Today' shells denote tool kits which offer different methods like
rules, functions or frames for the representation of expert knowledge.
In addition shells usually contain prefabricated components, e.g.
for explanation or knowledge acquisition; also help functions for a
graphical user interface exist in general.

As an example we describe the L L-shell which was developed at
the University of Kaiseslautern, see [BeSp 89].

Basic objects of the L L -shell are the «<working memory elements» as
they occur in OPS 5. Object classes describe the principle structure
of all instances of such a class and their general and typical
properties. Instances of a class may however very well not share
these typical properties. Classes are organized in hierarchy with



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,.. . 21

multiple inheritance. In this way conflicts may arise because some
slot can be defined differently in several superclasses. The conflict
solution consists of choosing the definition in the least abstract object
which is found using the «depth-first-up-to-join-strategy».

Besides the representation of concepts as passive data elements
also ideas of object-oriented programming are realized using object
classes and object instances. Certain slots then correspond to sets of
rules as well as goals for the backward chaining interpreter. Via the
slots one has access to these active elements. '

One distinguishes between methods and demons. Methods are
values or slots of an instance; hence different instances of some class
can have different methods. A uniform method for all instances of
some class can be realized as a default value.

Demons can be associated with slots of object classes by filling
the slot with the name of a rule set. If in an instance of the class the
slot is accessed the forward chaining interpreter applies the rule set.

The forward chaining interpreter is organized in the classical
recognize-act cycle. The partitioning into packages of rule sets acts
as an modularisation -technique. The backward chaining interpreter
in L[L-shell is a special implementation of Prolog. L L-shell has also
the cut operator which however can only appear in leftmost position;
" this runs under the name initial cut.

A special feature of L L-shell is the great variety of possibilities
to integrate procedural knowledge in the form of Lisp functions. One
can e.g. use Lisp functions on the right side of the is-primitive in the
backward chaining interpreter; hence the user can enlarge the set of
standard functions by his own functions. Lisp functions can also be
used in forward rules.

The acceptance of a program by potential users is essentially
dominated by a good user interface. This is particularly important
when one is working in expert systems. In I L-shell the design of
specialized user interfaces is supported by basic functions. These
include simple as well as complex routines and make an easy



22 KLAUS NOKEL - MICHAEL M. RICHTER

programming of windows and menus possible. [ L-shell has e.g.
separate functions to generate the different kinds of windows. Menus
are realized as special windows. Testing and error correcting is
supported by a comfortable interaction environment. This integrates
different tools into a compact and easy to handle debugging component.

Moltke - an Example of a Complex Diagnostic Expert System.

There are several versions of the system Moltke (Models, Learning
and Temporal Knowledge in an Expert system for technical diagnosis,
[K.D. Althoff et al. 88]) and they have now been integrated in
an overall system. The domain of application is a diagnosis of
‘CNC-machining centers. ‘

 The first version (Fomex) is rule-based. This approach is a fault
oriented one and tries to answer the following basic question: Which
test must be carried out next to come to a situation in which a
diagnosis can be made? In Moltke, «contexts» are the fundamental
elements for enlarging the rule mechanism. They are knowledge units
and facilitate combining rules in modules. The call hierarchy of the
context follows the physical component hierarchy of the CNC machine.
This makes possible a hierarchy of rough and intermediate diagnoses
which result in the representation of faults on differnet levels of
abstraction. Inside each context, the knowledge is differentiated into
context and diagnosis rules. While the latter are in charge of making
the diagnosis, the context rules represent explicit control information
(this means they Correspond to meta-rules .in the usual meaning).
The modular construction of the system is very clear and allows an
incremental extension. Enlarging the machine with a new component
requires only the creation of a new component context (and some
subcontexts if necessary) and the definition of the interfaces to the
other contexts via rules.

Another version (Pex) is written in a classical procedural style
and can be regarded as a manually compiled form of Fomex. As



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,... 23

expected, this version is more efficient and one could ask wether the
rule-based system has been written at all. The answer is twofold
and of general interest. On the one hand it would have been rather
difficult and time consuming to develop Pex without having the
rule-based system available and one the other hand already small
changes in the knowledge base result in rather complex updates of
Pex.

As a third version we mention Patdex, a pattern directed
learning system. The idea is that the expert does not give a structural
description of e.g. the machine but instead tells many cases from his
expierence. The cases are recorded and the system compares an actual
case with the case base. It selects according to a similarity measure
the most similar case and uses its solution, suitably transformed, as
a heuristic for a solution of the actual problem. |

Finally we will comment on a special difficulty of this type of
diagnostic problems and how we provided a solution.

CNC machining centers differ from many other artifacts treated
in diagnostic systems (such as combinatoric electronic circuits) in
that they display a complex dynamic behavior. Not surprisingly,
there are also certain faults which manifest themselves in symptoms
that evolve over time in a characteristic way. Often these symptoms
cannot be observed by making a single measurement, instead several
measurements have to be carried out in a specific order. We have
studied these symptoms extensively, because they contradict several
basic assumptions made in almost every diagnostic system. Most
central is the broad consensus in model-based diagnosis(®>) that
stepwise discrimination between diagnosis candidates can be achieved
by proposing a series of individual measurements and interpreting
their results. However, most existing systems have gone farther than
that and have made two additional assumptions:

— Each measurement result contributes directly to the discriminaton

() Rule-based systems usually make an equivalent assumption (tacitly most
of the time).



24 KLAUS NOKEL - MICHAEL M. RICHTER

process.

— Based on the measurements taken so far one can always propose
a single successor measurement ().

During knowledge acquisition for Moltke we first came across
this type of situation, but soon we discovered more examples in
every domain. Consider e.g. that you need to test whether one of
the cylinders in your automobile’s engine is not working properly.
The usual procedure applied to each cylinder in turn would be to
observe the speed of rotation with the motor running idle, and then
to remove the lead from the sparking plug. A subsequent drop in the
speed of rotation would indicate that the cylinder had been working
alright, whereas a constant speed would imply that the cylinder had
not been working all along.

In this example, three aspects are worth noting:

— The temporal order of the two measurements and the action
is highly significant. This is typical of measurements which in
isolation carry no information except through the interpretation
of other measurements in their context.

— As a consequence it seems awkward to suggest the three steps
of the test one at a time. Neither of the measuremets, much
less the action, seem promising, if one does not have the overall
effect in mind. ‘

— The action modifies the device under consideration (and hence the
model). This means that even if we were willing to stretch the
meaning of «measurement» to encompass complex seque_nces of
actions and observations, it would seem unclear how algorithms
designed to find «the best location for the next measurement» could
handle distributed measurements, since these cannot be assigned
a meaningful location w.r.t. any one model.

(®) The claim is not that there will be one unambiguous proposal but that the
planning horizon is confined to exaxtly one more measurement.



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,... 25

If temporally distributed symptoms cause so much trouble, can’t
we simply do without them? The answer depends on the kind of
devices we are trying to diagnose. Particularly where the locations of
potential measurements lie relatively dense and measurements are
cheap, isolated observations are often sufficient. At the other extreme,
there are cases where potentially useful measurements are in practice
impossible (e.g. because they are destructive) and an observation
over time may be the only way to deduce the result from more
accessible sources. In between there is a wide spectrum of examples
where temporally distributed symptoms are used as substitutes for
isolated observations, not because the latter are infeasible in a strict
sense, but simply because the former are more convenient (less costly,
easier to check,...). The car engine example belongs in this category.
A model-based diagnostic system that aims to choose a series of
observations minimizing some measure of cost shouls reproduce this
behavior of human experts.

Coping with temporally distributed manifestations of faults can
be broken into two subtasks:

(1) Given two (or more) doagnoses that we would like to distinguish
between, if there is no satisfying single measurement, come up
with a temporal section of the device’s behavior that is specific
to one hypothesis and a set of actions which induce the behavior
if this hypothesis is true.

(2) Given a description of this behavior, plan a sequence of interleaved
actions and observations in order to detect an occurrence of
the behavior. Match the actually incoming results against the
description.

In Moltke we have concentrated on subtask 2, taking experts’
statements of situations (=sections of behavior) as the starting
point. We have designed a specification language for situations that
serves as the interface between the two subtasks. Following that
we have formally discussed the problem of verifying the occurrence
of a situation using discrete measurements only. An algorithm that



26 KLAUS NOKEL - MICHAEL M. RICHTER

embodies a practical definition of matching has been developed and
implemented. Aside from solving the problem at hand this research
also provided insights into how the expressive power of Allen’s
interval calculus underlying the specification language can be suitably
constrained in order to make it computationally more efficient. All
of these results are presented in greater detail in [Nokel 88al and
[Nokel 88b].

In the future we no longer want to rely on situation descriptions
given by human experts. Our current research therefore focuses
on solving subtask 1. This involves primarily a partial qualitative
simulation in the models corresponding to the different hypotheses
(and probably in the model of the fault-free machine, too). The
simulation starts at a point where two of the models diverge and
tries to propagate the effects of the difference both forward to a set
of observable quantities and backward to a sequence of actions that
guarantees the point of divergence to be included in the behavior.

At first sight this may sound very similar to test generation
techniques employed in electronics for years. However, many of the
assumptions that are (legitimately) made in electronics do not carry
over to our domain:

— The quantity spaces involved are mush more diverse.

— As a direct consequence the fault models can be much more
complicated than simple «stuck-at» models.

— The model can change as a result of actions by the observer.
— Asynchronous processes require a more general treatment of

time.

We consider each of these items an important research problem
which deserves further investigation.



MODERN TRENDS IN KNOWLEDGE REPRESENTATION,.. 27

REFERENCES

[1] [Althoff et al. 88] Althoff K.D., Nokel K., Rehbold R., Richter M.M.,
A Sophisticated Expert System for the Diagnosis of a CNC Machining
Center, in: Zeitschrift fiir Operations Research, Vol, 32, (1988), 251-269.

[2] [AN 86] Alt-Kaci H., Nasr R., Login: Electric Programming Language
with Built-in Inheritance, Journal of Logic Programming 3 (1986),
185-215.

[3] [BeSp 89] Bernardi A., Spieker P., L L-shell: Eine hybride Expertensy-
stementwicklungsumgebung, manuscript Kaiserslauten 1989.

[4] [Boley 85] Boley H., and the Lisplog group: Lisplog: Momentaufnahmen
einer Lisp/Prolog-Vereinheitlichung, Memo Seki-85-03, Universitét
Kaiserslauten, 1985.

[5] [Clocksin, Mellish 84] Clocksin W.F., Mellish C.S., Programming in

- Prolog, Berlin, 1984.

(6] [END 89] Enders R., The object-oriented extension of Prolog XT,
Technische Berich INF 2 ASD-7-89 Siemens AG 1989.

[7] [Goguen, Meseguer 86] Goguen J.A., Meseguer J., Eqlog: Equality,
Types, and Generic Modules for Logic Programming, D. deGroot, G.
Lindstrom: Logic Programming - Functions, Relations and Equations
Prentice-Hall 1986.

[8] [Hinkelmann 88] Hinkelmann K., Saslog: Eine funktional Sprachintegra-
tion mit Lazy Evaluation und semantischer Unifikation, SEKI Working
Paper SWP-88-6, Universitdat Kaiserslautern, 1988.

[9] [HKPS 86] Huss K., Kiichenhoff V., Pichler C., Schmauch C., Objekt-
orientierte Programmierung in Prolog., If Prolog newsleter 1 (3), (1986),
3-11.

[10] [MEY 89] Meyer M., Ein Debugger fiir die objekt-orientierte Erweiterung
von Prolog XT. Diplomarbeit, Universitat Kaiserslautern 1989.

[11] [Nokel, Rehbold 86] Nokel K., Rehbold R., SASL: Implementierung einer
rein funktionalen Sprache mit Lazy Evaluation, SEKI Working Paper
SWP-86-07, Universitat Kaiserslautern, 1986.

[12] [PB 85] de Primio F., Brewka G Babylon: Kernel System of an Integrated
Environment for Expert System Development and Operation, in: Expert
Systems and their Applications, Avignon, (1985), 573-583.

[13] [Smolka 86] Smolka G., Fresh: A Higher-Order Language Based on
Unification, "in; D. de Groot G’i Lindstrom., Logic Programming -
Functions, Relations and Equations Prentice-Hall 1986.

[14] [Subrahmanyam, You 86] Subrahmanyam PA., You JH., Funlog
Computational Model Integrating Logic Programming and Functional
Programming, in: D. de Groot G. Lindstrom: Logic Programming -
Functoins, Relations and Equations, Prentice-Hall 1986.



28 KLAUS NOKEL - MICHAEL M. RICHTER

[15] [Turner 83] Turner D.A., SASL Language Manual, (revised version),
University of Kent, Canterbury, 1983.

Univeristit Kaiserslautern
Erwin - Schrodinger - Strasse
6750 Kaiserslautern



