«LE MATEMATICHE»
Vol. XLIIT (1988) - Fasc. I, pp. 53-78

SET ORIENTED LANGUAGES
AND PROGRAM TRANSFORMATIONS

PHILIPPE FACON (Evry) - YO KELLER (Paris) (*)

Set constructs and notations provide in many areas an unprecedented
expressive power. Sets are nevertheless almost non-existent in most
programming languages since they don’t have a general-purpose efficient
enough representation. Only global transformations, taking into account
the context of set constructs and operations may provide a reasonable
efficiency. After a brief survey of existing Set Oriented Languages,
we present recent developments taking place at New York University
concerning SETL and its successors, especially fixed-point specifications,
elimination of repetitive evaluations by finite differencing and elimination
of associative access costs by an appropriate Data Structure Selection
for implementing sets. In this framework we present two original
contributions: the first one concerns a rewrite operator on sets for
dealing with fixed points of some non-monotonic transformations. The
second one concerns Data Structure Selection and how we have extended
and reformulated its mechanism as a special kind of type inference,
relatively easily implemented in Prolog.

(*) Part of this work has been supported by the Esprit project Sed, and in
conjunction with NYU-Computer Science Department, under contract with Thom-

son-CSF/DSE.

54 PHILIPPE FACON - YO KELLER

1. The need for set theoretic dictions in programming.

The classical set theory is a formalism which is quite widespread
and close to the intuition, at least in its naive forms. Its expressive
power is especially significative in the following kinds of applications:

* applications dealing with structured information, as in business
data processing, or in CAD-CAM. In such applications many objects
are readily modeled by set constructs: the set of employees in a given
department, the set of activities of an individual, the mapping of
a set of attributes to an individual identification, and its converse,
the set of components of a mechanical device, and recursively the
components of each of these components, etc.

The main data model, the relational model, does not allow the
direct expression of set attributes: instead, this notion is translated
as a kind of dependency between atomic values in tuples. Such
dependencies are neither easily expressed by a user nor easily
analyzed by the system. This is why recent developments in data
processing languages for «complex objects» [Abi, 87] are essentially
based upon set primitives, whether in an algebraic framework (the
language is a set of composable operators) or in a predicative one (the
language is based upon 1st order predicate logic). Let us note that
these languages are exclusively concerned with the data processing
aspects, and that the atomic values are not interpreted (e.g. their type
is not analyzed), only equality tests are available. Such languages
will doubtless play an important role with the coming of multimedia
data bases, storing all types of information including text, sound and
images. ‘

* algorithm design, where the possibility of defining freely sets
and of applying to them global operations lead to particularly elegant,
i.e. precise and concise, formulations of many problems. For instance
a graph G with vertices {a,b,c,d} and edges [a,b], [a,c], [c,d] is
described as a set of pairs G = {[q, b], [a,c], [c,d]}. Then the existence
of a cycle in G can be written as:

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 55

J4C € powerset ((HVX € C, 3Y € C: X[2]1=Y[1]

This expression is directly executable in SETL. Other simple
and useful examples of set expressions (all are actually executable in
SETL) are:

Vp € [2..n~ 1]|n mod p=0 ' prime(n)
{[z,y]: [y,z] € f} !
{lz,2]: [z,y] € R, z € S{y}} SoR
{lz,y]l: 2 € A, y € B} Ax B
type (f) = set and Vp € f| type (p) = tuple
and p(l)#om and #p =2 map (f)
(f is a 2-ary relation)
map (f) and Vz € domain f|#f{z} =1 smap (f)
(single-valued map)
smap (f) and Vz € domain f, Vy & oneone (f)
domain fi:z#y = f(z)=f(y) (injective function)
{f € powerset (A x B)| functions from A to B

domain f = A and smap (f)}

Similarly all usual data structures, e.g. linked list, stack, queue,
tree, multiset, polynomial have simple abstract presentations in terms
of set constructs and operations.

* semantic analysis of programs, both deterministic and non-
deterministic programs. The basic data structures are data and control
flow graphs which are well represented as (multivalued-) maps. The
basic queries concern the propagation pathways of variables — and
expressions — values and types: where, in a program, is the value
defined, where is it used? Likewise, one has to consider sets of
possible values at execution time for specific program parameters (e.g.
the type of an expression). Most properties may then be formalized as
fixed-points for functions on sets. Again the analogy with databases
is striking. As observed in [Aho, 791: «fixed-point operations arise
naturally in a variety of database applications. In an airline reservation
system, for example, one may wish to determine the number of possible
flights between two cities during a given time period. [...] No such
query can be couched in relational algebra». The computation of

56 PHILIPPE FACON - YO KELLER

fixed-points requires that sets and relations be 1st-class objects, in
order to express properties like being monotone:

sCt= f(s) C f®)

or to construct a procedure to compute such a fixed point, e.g. as a
while loop:

s={}

(while g(s)#{})
s:=sUg(s);

end;

2. Set primitives in programming languages.

There is a priori, many different ways of integrating sets to
a programming language. One has to design first the ur-elements
(primitive elements which are not sets): it is still possible to exclude
such ur-elements and reconstruct everything starting with the empty
set; however this seems a rather futile exercise nowadays in computer
science. The ur-elements will denote elements the structure of which
is ignored. One has then to determine which operations will be used
to create and process sets. For instance infinite sets may be made
available. Otherwise, it is possible to prevent them syntactically by
restricting definitions of sets in comprehension. The freedom to nest
set constructs and quantifiers may be also restricted. |

An extreme case is that of Pascal: finite (very smalll!!) sets,
without imbrications nor quantifiers or definitions in comprehension.
In fact, with the exception of the very recent above-mentioned
data-base studies, there are very few languages implementing a
significant part of set theory. Among imperative languages SETL is a
— relatively old — example offering a quite complete set of primitives
for handling hereditarily finite sets.

In Logic Programming the need for set expression emerged
rapidly, especially for expressing the set of terms satisfying a given

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 57

- predicate. Indeed the simulations of sets with lists (e.g. accumulators
of single-question solutions) are difficult to implement in full generality
and inefficient. It should be stressed that other 2nd order possibilities
(variable predicates, A-expressions) are much easier to simulate by
meta-programming. This is why recent version of Prolog offer some
direct set processing primifives (set-of, find-all), extending the First
Order Logic and usually praised by programmers.

Among functional languages, some like Miranda or Me Too [Naf,
86] allow some set oriented operations, including with infinite sets
(by means of a lazy evaluation). However, no more than in Prolog,
sets may be considered truly as native language objects. An exception
could be S3L [Lac, 88] under development at the University of
Orleans, which considers itself as based upon (a) set theory.

Thus, despite its advantages, set theory has had, until now only
relatively little success in programming languages. The main reason
seems to be an efficiency problem: there are no general representation
of sets able to support efficiently all the set operations. Before
examining possible solutions to this problem, we will present rapidly
the framework in which these solutions have been worked out, i.e.
SETL and derived languages.

3. Set primitives in SETL and its successors.

Developed at NYU some 15 years ago, SETL provides a complete
set of primitives for hereditarily finite sets. Besides sets, the basic
language structures are the tuples and the maps: the latter one being
simultaneously sets of pairs, graphs of functions or binary relations,
the former ones being plain unlimited lists. The following table
provide a quick overview of the extent and flexibility of the SETL
primitives (the table includes the two SQ+ fixpoint operators(l)).

(1) The S@Q+ language exposed in 4 is a functional language essentially equi-
valent to the SETL expression language presented here.

58 PHILIPPE FACON - YO KELLER

SETL set, maps and truple expressions

sUt,sNt,s—t set union, intersection, difference
sCt,s=t subset and equality tests
#s set cardinality, sequence size
S5 s arbitrary choice
T Es,zés membership tests
y € g{z} test [z,y] c g
{}{z1,22,..., zn} empty set, enumerated set,
[}, [zl,22,..., zn] empty tuple, enumerated tuple

{e(z):z € S|k(z)} set former
[e(z) : = € s|k(z)] tuple former
Vz € s|k(z),3z € s|k(z) boolean valued quantifiers
domain f, range f domain and range of a map

f(x),t() image of an element by a map (undefined
if not unique), i-th element of a tuple
Az}, flz] set of images of z, set of images

of elements of z
Lfp(s,e),gfp(s,e) least (greatest) fixed point of e greater
(smaller) than s (specific to SQ+)

SETL main iteration constructs and set, maps and tuple instructions(?)

swith :=x;sless =z set or tuple element additions
and deletions
g{z} with := y;g{z} less :=y add (delete) pair [z,y] to (from) map g
s:={}, f(z) = {}, f{z} :={} assign empty set to a variable, as the
image value of an element in a map,
as image set

fl@)=...,f{z}=1{.} assign a value as the image value
of an element in a map, as image set
g(z) :=Q remove z from domain ¢
(for z € s) [Block] end execute Block for each element z € s

(while Bool) [Block] end execute Block as long as condition
Bool holds. Bool is any boolean
expression (see above)

(2) The SML language is a subset of SETL consisting of the elementary expres-
sions, assignments to sets and maps, set element additions and deletions (there
is no global operation between two sets). It is an intermediate language for the

translation of S+ into imperative and setless low level languages.

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 59

The type of SETL objects is extremely dynamic: a variable may
change its type, even the same occurrence, during the same execution.
Although (type) declarations are possible, they are not mandatory,
and most SETL programs are declaration free. SETL is well suited
for the rapid development of prototypes. A complete tutorial and
presentation of the language may be found in [SchD, 86].

SETL is a rather old language and some of its defects are rather
obvious. For instance problems concerning the scope of variables,
some side-effects and the semantic of some constructs are being
addressed in a new version «SETL2» under development at NYU
[Smos, 88]. One could also question the imperative nature of the
language, but it seems to fit its vocation as a prototyping language,
for prototypes evolving gradually toward an Ada implementation as
suggested in [BIG, 88]. One could also question the weak typing, since
its disadvantages are well known: type errors go undetected before
run-time, performance loss due to continuous run-time type-checking.
This is why a new type model for SETL2 is under study. This
model, outlined in [Hen, 87], should preserve the flexibility of the
language, including it being declaration-free, while enforcing some
form of strong typing. This model constitutes an extension of SETL
with procedures as first-class objects and tagged values. The model is
inspired by ML’s polymorphism and type inference.

4. SETL Program Transformations.

Program Transformation has always been an active area of
Research in the SETL community. It resulted mainly in two distinct
systems: the SETL Optimizer [Fre, 83] and the RAPTS system
[Pai, 87]. We will discuss here the latter system. Bob Paige and
his team have designed a specification language, SQ+[CaiP, 88],
and an associated transformational system: RAPTS. The goal is the
automatic generation of efficient imperative programs for a certain
class of problems: those which could be reduced to the search for a

60 PHILIPPE FACON - YO KELLER

fixed point of a set function monotone (or antimonotone) wrt the set
inclusion. Indeed an important number of set oriented specifications
can be expressed as SQ+ fixed point expressions e.g.:

themin S : X C S|S = h(S)

denoting the smallest set S containing‘ X such that S = A(S). This
expression is undefined if there is no unique least fixed point. An
inductive definition of a set can always be turned into a fixed-point
normal form (this is even also the case of any partial recursive
function). For instance the powerset of X is:

(3) themin S': {{}} C S[S=SU{{z}Uy: v € X,y S}

Let us consider the attribute closure problem arising in relational
data bases. Let U be a set of attributes. Given a subset X of U
and a map f between subsets of U (the pairs in f are the socalled
functional dependencies), one has to determine the smallest set Z of
attributes such that:

XCZandVY : Y CZ = f¥Y)C Z

Using the domain operator (which applied to a map or 2-ary
relation returns the set of all 1st components of the tuples in the
relation), Z can be directly expressed in SQ+ as:

Z =themin§S : X C S|(VY € domain f[Y C § = (f(Y) C S)

By means of simple syntactic transformations this specification
is tranformed into the fixed-point expression:

4) theminS : X C §|S = SU f[{Y € domain f|Y C S}]
where we use the classical notation

fIP1={f(z): 2 € P}

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 61

The attribute closure problem is now well under the form (2).

When h in (2) is monotone (wrt. set inclusion) then Tarsky
theorem provides the solution by an iterarion:

X =85,

loop X := h(X) until converge;
i.e., stated with more conventional notations ()

X =5,
while X#h(X) do
X = h(X);

end;

Monotonicity is an undecidable property. However sufficient con-
ditions for being monotone can be stated as syntactic patterns:
identification of known tabulated primitives, preservation of monoto-
nicity through function composition, etc. By this method, and with
some other minor transformations one obtains a first algorithm for
solving the attribute closure problem *

S =X

while exists z € f[{Y € domain f|Y C S}]—.S do

(5)
S with = z;

end;

The complexity of this iteration is O(n?), n being the size of
U, whereas the direct fixed-point search is exponential. The Finite-
Differencing incremental re-evaluation techniques (exposed later in 6)

(3) In what follows we take some lexical freedom from the actual SETL syntax.
(*) S with:= z is the same as S := S with z; or equivalently: S := S U {z};

62 PHILIPPE FACON - YO KELLER

suppress the repetitive evaluation of f [{Y" € domain f|Y C §}]1- S at
each step in the iteration. Instead the value computed at the previous
iteration step is used and updated. This results in a linear complexity,
if one admits that associative accesses (e.g. membership tests) can
be made in constant time. This is in theory possible with hashing
techniques, but in practice, constant time is not uniformly achieved.
Besides space complexity is essential in set oriented programming.
Whence the selection of set representation according to an access
analysis (see 7, 8) completes this optimization: the initial variables,
as well as those introduced by the finite-differencing techniques are
represented in such a way as to minimize the cost of associative
accesses. The resulting complexity is then truly linear in both space
and time.

‘Two other techniques, more classical, improve execution-time
(by a constant factor): loop fusion and dead code elimination. These
optimizations clean some of the useless or redundant code introduced
by the transformational technique during the intermediate phases of
code generation.

Together all these techniques enable the RAPTS system to
-generate many efficient algorithms from their specification. This
has been illustrated with semantic analysis algorithms (flow-graph
analysis) and with difficult graph algorithms, such as Hopcroft-Tarjan’s
graph Planarity Testing [Cai, 87]. The latest developments around
RAPTS concern the resolution of systems of fixed-point equations and
the recomputation of fixed-point after the modification of a parameter.

5. A rewrite operator on sets.

In [DaM, 86], Dahlhaus and Makowsky discuss in detail the
choice of primitives in languages & la SETL. They propose as criteria
for the basic primitives: complexity, independence and completeness
(wrt. a semantic definition of computable functions over hereditarily
finite sets). They present a language satisfying these criteria, a kind

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 63

of well-defined subset of SETL, with the same expressive power, using
operators for: union, complement, pair construction, loop and parallel
application on all the elements of a set.

[DaM, 86]s criteria concern basic operators, i.e, the target
language for algorithms generated by fixed-point specifications: The
criteria which we retain for higher-level operators — i.e. at the
specification language level — are completeness (the ability for
expressing everything compactly with a few high-level operators only),
" correctness provability (in this respect, the while operator is far
too general) and transformational derivability. This is why we have
attempted to generalize the converge iteration

loop X := h(X) until converge;

to non-monotone functions, i.e. functions which are neither monotone
nor anti-monotone. Let us observe first of all, that this form of
expression, although imperative, is sometimes more appropriate than
the associated fixed-point expression (which is of a higher-level and
may hide more information, e.g. arbitrary selections). Let us state
informally our rationale: the set X in the iteration is not in general
fully modified at each step. The converge loop attempts to capture
the corrections being applied successively to the same set leading
progressively to the result. It is this mechanism which we propose
to generalize. Intuitively, instead of constructing the solution with
successive additions to a set, one constructs a succession of local
transformations which take us each time nearer to the solution.
Element by element transformations being too limited, one will
‘consider as transformations rewriting of part of the set.

More precisely let P and @ be set valued expressions with free
variables. All the free variables of () are also free in P. We consider
substitutions to the free variables of only terms without free variables.
We write o(P) the result of the substitution ¢ applied to P.

Then, the elementary rewriting rewrite 0 (P — () is applicable
to S iff there is a substitution o that satisfies:

— the matching condition: o(P) C S

- 64 PHILIPPE FACON - YO KELLER

— and the change condition: not (c(P) C o(Q) C S)

Le. a certain subset of S matches P and its replacement will
modify S.

The result of that elementary rewriting is:

S —o(P)Uc(@)

By the change condition, that result is necessarily different from
S.

For instance, rewrite 0(X U {{X,a}} — X U{a}) — where X is
a free variable — is applicable to {c,d, b, e, {{b,c},a}, f} because the
substitution X = {b,c} and the result is {c,d, b,¢,aq, f}.

Then, the full rewrite operation repeats that elementary rewriting
until it cannot be applied any more: for all part of S, either it doesn’t
match the pattern P or it violates the change condition.

We can define in SETL:
rewrite (P — Q) in S

to be
while 3X C §|C(X) and

not (X subset F(X)) or not (F(X) subset S)) do

(7)
' S =85 - XUFX);

end while;

where C(X) corresponds to Jo|X = o(P) and F(X) to o(Q).

Rewrite is non-deterministic: at any given moment, several parts
of the set S may satisfy the match and the change conditions. Any
one of those parts is selected for rewriting, and this is well reflected
by the semantics of the SETL 5 operator. |

Let us observe that a monotone iteration on a set S to a
fixed-point of a function f may be written:

rewrite ({X} — {f(X)}) in {S}

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 65

The same iteration has the more interesting form:
rewrite (X — f(X)) in S

which requires to apply non-deterministically the rewriting X — f(X)
to any part of S until stabilization; and, thanks to the monotonicity
of f, the final value will be the same as in the previous rewrite
rule, independently of the order in which rewritings are applied; To
this non-deterministic algorithm corresponds a family of deterministic
algorithms, one of them being the naive classic solution (the considered
subpart is the whole set each time), the other ones explicity using
purely local transformations.

A kind of analogy can be found between the rewrite operator and
some mechanisms in Artificial Intelligence systems which continuously
re-interpret their data. As a matter of fact we have been influenced
by the efforts towards extending term-rewriting to new objects,
especially graphs, and also by the I' combinator of Banatre and
LeMetayer [Bal, 86] presented within the framework of an FP-like
language working with multisets instead of sets. The use of multisets
introduces important differences. For instance a modification of a part
of a multiset implies a modification of the whole multiset; of course
that is not the case for a set: for instance, substituting f(P) to P in
S has no effect upon S if P C f(P) C S. Some problem descriptions
have a better fit with a multiset representation and some other ones
with set representation.

Let us consider a few examples:
(8) rewrite ({a} — {}) in S
suppresses a from S
) rewrite ({} — {a}) in S
adds a to SC)
(10) rewrite {X,Y}HX <Y —{V})in S

() In that case, the rewriting is applied only once, since the change condition
may be satisfied at most once.

66 PHILIPPE FACON - YO KELLER

given an ordering < on S, this will construct a set containing as
elements the max_ S. This algorithm is the least deterministic possible
algorithm: it suppresses from S any element for which a greater
element is known to exist. Eventually, only the max. S elements are
left.

The next example, inspired by an example in [BaL, 86], is the
topological sort of a set S, according to a given map or binary
relation R. We use here pairs or 2-uples with the usual set theoretic
meaning: [a, b] stands for {a,{a,b}}. R is described as a set of pairs,
e.g.: {[a,b],[c,al,...} means that rank of b must be greater than rank
of a, rank of ¢ than rank of ¢ etc... First of all let us consider an
afbitrary enumeration function on sets enum (S) which returns any
given set S as an enumeration, i.e. as a tuple, in any order. For
instance: enum (S)=[z :x &S] The iterator semantics for € S is
that of the V operator on sets, i.e. one of arbitrary selection at each
iteration step. Instead of the tuple notation for unlimited lists we use
‘the map notation:

t:=[a,b,...,91 = t' ={[1,a],12,0],...[#, 91}

which associates to each tuple element a pair made of the rank of
the element and the element itself. Let S’ be an enumeration of S
under this form. The topological sort algorithm reads:

(assuming [X,Y] e R,[+,X]1€ S, [J,Y]1e& S
rewrite {[X,Y1,[1, X1, [/, Y1j: > j} —
(11)
{IX,Y],[/,X],[i,Y]}) in RUS'
The transitive closure algorithm (4) may then be written:

(12) (rewrite (Y Wifh {YV\D} - YUD)in XUf)~f

where f is considered a map, i.e. a set of pairs. In others words, in
presence of its origin (the set Y), a functional dependency — more

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 67

precisely the corrsponding singleton set — is rewritten into its target
(the set D). From this specification one immediately sees that a
functional dependency is only used once! This observation, important
for efficiency, is not easily inferred from the expression in (4). It is
relatively easy to show that both solutions identify the same set of
attributes.

The rewrite operator aims at the definition of fixed-points of
ordinary set functions — on finite sets — through local transformations.
The rewrite operator allows the description of transitions among sets
with a very high level formalism — still an operational description.
As we have seen, a direct translation in SETL of such specifications
is possible. In this context, it is naturally much more difficult to
synthetize a rewriting algorithm from a specification that it is
in the doubly monotone context of RAPTS. However the ensuing
optimizations — e.g. finite-differencing, data structure selection —
remain the same. These optimizations have been developed until
now by Paige’s team to transform SQ+ specifications into efficient
imperative programs executing on traditional — i.e non-parallel —
machines. We are studying their adaptation to the rewrite context.
We are also studying under what conditions it is possible to transform
non-monotone rewrite operations into monotone fixed-point iterations.

6. Optimizing set computations-1: finite differencing.

Let us expose briefly the principles behing the ﬁnite-differencing
optimization, one of the major techniques used in RAPTS [Pai,
84] [Pai, 87]. Let EXP be a set expression of high evaluation cost,
repetitively evaluated in a given loop. Let E be an auxiliary variable
and consider maintaining the invariant F = EX P whenever EXP is
evaluated. It will then be possible to replace the evaluation of EX P
by an access to the value stored in E. To maintain the invariant
E =FEXP one has to:

68 PHILIPPE FACON - YO KELLER

— compute EXP and assign its value to F upon entering the
loop

— propagate to F any modification of a parameter of EX P during
the loop execution. This propagation takes the form of difference code
for EX P wrt. the parameter modification. An example will illustrate
the process. Let us consider a program fragment (on the lhs) and its
transform (on the rhs) which exhibits 2 invariants associated to the
auxiliary variables D and E:

(13)
D =#{z € A|K(x)};
E:={z € S|C(z) and z ¢ A};
(while 9z € S|C(z) and z ¢ A) (while 3z € F))
v F less = z;
A with = z; A with = z;
' if K(z) then D+ :=1; end
print@#{z € A|K(z)}); print(D);
end; end;

In italic we have displayed the code needed to maintain the
two invariants. This transformation is an optimization only if the
cumulated cost of executing the difference code is less than the
cost of re-evaluating the expressions. In that case the expressions
are considered differentiable wrt. the modifications. To that effect an
evaluation of the asymptotic computing cost is performed, by induction
on the structure of the expressions. This technique is applied to all
the sub-expressions of a given complex expression: thus a cascade-
of maintenance code and invariants will be introduced. It should be
stressed that in RAPTS the system transforms into a normal form all
the considered expressions in order to exhibit a maximum number
of differentiable subexpressions. In the attribute closure example (5)
the sub-expression v C S of f[{Y € domian f|Y C S}]— S will be
rewritten: #{z € Y|z ¢ S} =0. Thus the invariant #{z € Y|z ¢ S} will
be maintained for each Y in domain f. Whence the propagation of
the extensions of S to the triggering of functional dependencies will
be assured.

This technique could be used outside the program synthesis

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 69

context: the user may declare his intention of maintaining a variable
equal to a given expression, within a given program region, and
supplies the appropriate difference codes. The system will then insert
the appropriate code in all the needed places [Pai, 86]. This is a fairly
general and particularly powerful technique which was applied in a
restricted form (strength reduction) in some compilers. Applications
to the maintenance of views in databases are also possible [Pai, 84].

7. Optimizing set computations 2: data structure choice.

There are many possible representations for sets. This may be
perceived as a disadvantage, since no a priori computer representation
exists, unlike for lists. It has its advantages: it provides a great
freedom of implementation which could yield in the end very different
algorithms. A common default representation consists in a doubly
linked list combined with a hash-table. The goals for an efficient
representation are to minimize:

1 the systematic traversal of sets,

2 the cost of associative accesses (e.g. membership tests, access
to the domain of a map for finding the range element f(a) of a given
map f)

3 data redundancy: storing only once values which are shared by
several sets(®) ’

The default representation satisfies goal 1, more or less goal 2
and absolutely not goal 3. |

In order to get a good understanding of the data structure choice
mechanism, a good clasisfication of associative accesses is needed. The
following example illustrates all the access patterns we are interested

m:

©®) the languages semantics is a copy-value semantics which entails practice
may duplications of data values, e.g for each assignment ¢ := z;

70 ' . PHILIPPE FACON - YO KELLER

syntactically detectable access patterns:

Ve e S... z retrieved from S
Q less :=1; z used to access ()
S less = 1; 7 used to re-access S
(14) ifrc Rand ¢ T z used to access R,T
then 7" with:=z; gz added to T '
end if;
end V

In (14) S could be trayersed like a list, and access to its elements
is sequential (). However access to @, R, T should be at constant cost.
This could be possible if the value z were stored at a location from
which the value of the expressions:z € QQ, z € R, © € T could be
directly computed without using z itself. The following organization
of the data may satisfy these requirements:

values of elements of B (Q R

T

: a 1 0 O

(15) b O 1 O
c 0 1 1

B, in the table (15), is a set which could be seen as the union
SUQURUT. The 1, and 0O, on each row indicate whether the
corresponding value is a member of the set indicated in the column.
For instance the 1st row of (15) reads: a € Q, a ¢ R, a ¢ T. S could
be a linked list of pointers to the appropriate elements of B. B is
called a base. Sets implemented as (), R, T are called strongly based
whereas S is known -as weakly based.

A base is a union of sets exchanging data. Dynamic bases are
bases whose set of stored values changes at execution-time. Dynamic
bases have been found to have poor performances. Therefore RAPTS
considers only static bases, i.e. made of elements all present in the
input data of the program. Individual sets are modifiable, provided

™y Ideally, as suggested in [DaM, 86], access to all the elements of S' could be
in parallel. '

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 71

they take their elements from a fixed set of values determined at the
end of the data input phase. Sets which could not be based will be
implemented with the default implementation.

From an analysis of the set operatiorjls on a given (SETL,
SQ+) program it is possible to determine the bases and the type
of representation (weakly-, strongly-based) for the basic sets. Such a
technique is partly integrated into the SETL optimizer [Fre, 83] which
allow the user to define the bases for specific sets. A fully automated
version associated with SQ+ has been designed. That version has
been extended and reformulated as a type inference problem by one of
the authors [Fac, 88], [CFHPS, 88] who implemented it in PROLOG.
This is what will be discussed in the following section. We discuss
first how we have used these techniques in the SED project.

The SED project is an ESPRIT project for experimenting softwate
engineering, and specifically prototyping with SETL. A basic language
environment for SETL [DDFJ, 87] has been build with MENTOR
[DoKLMM, 83]: the SETL programs are represented as abstract
syntax trees, annoted with type information; this type information
is computed by a type inference system build with the help of
TYPOL [Des, 86] [Kah, 87]. TYPOL is a language for specifying' a
program semantics as a syntax-directed pattern matching inference
system. The pattern matching capability of TYPOL mixes MENTOR
pattern matching in trees with PROLOG unification. Around .this
MENTOR-TYPOL kernel a number of tools have been constructed.
Among these, an adaptation of RAPTS and a fully operational, yet
non-optimized SETL-to-Ada traslation system [Dob G, 87]. A natural
objective consists in optimizing the Ada generated code. The data
structure scheme we have exposed has proved quite effective on SE:I‘L
programs as well as on Ada programs representing the traﬁélaffbn
of SETL programs. A hand simulation of the proposed data-structure
selection method combined with effective performance measuréements
[CFHPS, 88] has confirmed the importance of such an optimization
in the SETL to Ada translator.

It will be shown later that data structure choice as exposed in 7

72 PHILIPPE FACON - YO KELLER

could be seen as an extension of type inference to an extended type
model, provided a special kind of sub-typing discipline is exercised.
In the SED case, the type inference system for SETL described in
[DDFJ, 87] was used as the starting point. Unlike the type and data
structure determination system for SQ+, the type determination for
full SETL programs may only provide approximate results, because
the weak typing. This is why it is expected that data structure choice
considered as an extension of the type-finder for SETL would be
less refined than for SQ+. At the present time this facility is under
development in the SED environment.

8. Inferencing representations for sets.

The algorithms developed until now (e.g. [Fre, 83]) for determining
the bases and the associated set representations use a value-flow
analysis, quite different from — but still in the same spirit as — classical
data flow analysis: these algorithms compute all the relations existing
among vaﬁables, e.g.: adding X to S, testing for the membership of
X in S, etc. Starting from these relations, these algorithms compute
the bases in a succession of merge operations: informally, as soon as
two sets communicate, they merge their bases.

We have formalized this problem [Fac, 88] [CFHPS, 88] in
Natural Semantics, a formalism originating with the work of Plotkin
[Plo, 81] which was developed at INRIA with the TYPOL language.
Its root principle is the construction of a formal system in the style
of Gentzen’s natural deduction. This system axiomatizes the relations
which should hold between syntactic objects, here SQ+ (or:SETL)
abstract syntax trees and the semantic values, here the properties
of bases. The system must generate sequents of the form F|— P:V
meaning: under the hypothesis F, or, in the environment F, P has
semantic value V. These sequents are generated by inference rules,
constituting a systematic induction on the abstract syntax. E.g. a

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 73

simple type inference rule for SQ+ reads:

E|-X:T E|—- S :set(T)
E|— X € S : bool

(16)

Rule (16) formalizes the following: if, with the hypothesis F on
types, it is possible to prove that the expression X is of type T,
and that S is of type set (T"), then, under the same hypothesis it is
possible to conclude that the boolean operation X € S is well typed
with type boolean.

Conversely the proof that a given S(Q+ expression is well typed in
an unknown «environment» F, will intanciate E to a set of assertions
on the variables types. A type inference for SQ+ and another for
SETL have been been designed in this way.

A very fruitfull idea ‘consists in reducing the computation of
bases to a type inference problem. We consider bases expressions
comparable to type expressions, using variables for unknown bases,
and we build a formal system allowing a constructive proof that a
given program is well-based. This proof will supply, in the end, the
bases and the representation as an association between identifiers
and base expressions. Among such associations there will be terms
like: '

S :set(B) S is a set based upon B ,
X:B X is an element of the base B
An essential property is the
subtyping rule #1:
(17a) if both, a base and a type expressions can be proved for the
same X:
X :B, X :t(e.g X: integer)

then, under the strong typing hypothesis(®), any element of the
base B has type t (e.g. integer), i.e. the sub-type relation

B <t(e.g. B < integer)

(8) The strong typing hypothesis implies the homogeneous charcter of a base:
all the elements of a given base have the same representation.

74 PHILIPPE FACON - YO KELLER

holds.

A contrario, if one proves that X : ¢ (e.g. X: integer) holds but no
relation of the kind X : B, the X will be of type ¢ (e.g. integer) but
not a member of a base. This will be the case if X is a value created
from the evaluation of an expression (see below the example (18)
with an addition expression) since we have excluded dynamic bases.

Similarly S : B1 S :set(B2) means that S is an element of the
base B1 and also that S is based upon B2. Thus all the elements of
B1 are based upon B2. This is again a subtype property: B1 <set(B2).
Usually the notion of subtype is used to model type conversions and
coercion rules or inheritance properties. The only aspect which is
relevant to our subtyping is the: ' |

subtyping rule #2:

(17b) o
ENV|— EXP:t1 ENV|- EXP 41 <12

ENV|—EXP :t2
meaning that if an expression must be of a given base or type t2,
in the context associated to the set of constraints («environment»)
ENYV, then every subctype t1 of t2 is also acceptable.

This rule is actually present in our system, and states that it
is possible to abandon a base and still get a correct (less refined)
basing. In fact the «finest» type model corresponds to a partition
of sets into the smallest possible bases, the «coarsest» model to a
simple type inference without bases. By adding rule (17) to a classical
type inference system for a strongly typed version of SQ+, one
expresses base inference (without the selection between strongly and
weakly based) as the «finest» type model in the new system. For
instance, rule (16) remains valid if 7 denotes a base. It has as new
interpretation, that X is an element of the base upon which S is
based. However let us consider the typing rule:

ENV|— X :integer ENV|—Y : integer

18
(18) ENV|— X +Y :integer

If X and Y are elements of an integer base B then X: integer,
Y': integer will result from X : B, Y : B, B <integer, according to

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 75

(17b). However, for X +Y no rule will guarantee that X +Y : B. If
for instance this expression is assigned to a variable 7, then the
‘assignment rule will force the type of Z to integer: it’s value being
computed Z cannot be a base element. Furthermore, the rule for
expressing the constraints on inserting an element into a set will
entail that a set containing Z as element cannot be based.

It is interesting to note that this kind of interaction information
is implicitely computed by a simple type inference system but is
rejected in the final type determination because of constants in type
expressions. Here is an example: given sets § and 7', let us assume
that one has determined that S is of type set (integer) and that
because of interactions between S and 7', 7" has the same type as S,
then type inference will infer:

(19) type(S) =type(T") =set(integer).

However, if the type of S and that’of T have been established
independently of one another to be, in both case, set(integer), then
type inference will infer (19) too. But in the first case (19) means:

S :set(B), T :set(B), B <integer
whereas in the second case:
S set(B1),T set(B2), Bl <integer B2 <integer

The rule to keep the information about type is a reformulation
of sub-typing rule #1 (17a): to infer S : ¢ it suffices to infer S : B for
some B < t. An equality between subtypes will be generated only if
the corresponding sets are interacting. :

This notion of sub-types has allowed us to use thé same
framework for computing several relations among bases which were
not accounted for in the usual base determination algorithms.

We have implemented this system in PROLOG, working directly
on the SQ+ abstract syntax terms. The main difficulty was to obtain

76 PHILIPPE FACON - YO KELLER

a deterministic system computing the bases directly from the formal
inference system — for which these bases were just one of the possible
solutions. We succeeded essentially by adding two rules derived from
the system and by ordering the clauses correctly. The resulting
PROLOG program then generates as first solution the finest possible
model, then solutions with fewer and fewer bases, until it produces
the coarsest solution, corresponding to «pure» type inferencing and
no bases. Base merging corresponds in this program to PROLOG
unification. The rules are somewhat more complex for the exact
representations (i.e. strongly- or weakly- based sets), but they have
been designed in the same style by refining the preceding rules.

A version of this base inferencing system implemented in SETL,
using specific pattern matching in trees instead of PROLOG, will be
incorporated to RAPTS.

As explained in 7 a TYPOL version of this sytem, but for full
SETL instead of SQ+ is being implemented, using as starting point
the type-finder for SETL developed for the SED project. Subtyping
rule #2 garantees correctness even with our approximate handling of
type-finding. This will eventually support a corresponding optimization
of the SETL-to-Ada translatioq.

9. Conclusion.

The set oriented notations present essential qualities for pro-
gramming. They correspond to a widespread formalism with rigorous
and well known foundations. If such notations become executable they
become a formidable tool for prototyping. Their importance increases
with the new data models, able to take into account set oriented
objects.

To achieve a real programming tool, with acceptable performance,
without limiting the spectrum of set oriented constructs and
operations, deep transformations and optimizations are required.

SET ORIENTED LANGUAGES AND PROGRAM TRANSFORMATIONS 77

We have presented some of those. They aim at the production of
efficient imperative code from very high level specifications. Other
~ approaches are possible, and some of the exposed techniques could
probably be applied in other contexts. The initial results are extremely
encouraging, and automatically generated code from specification has
been demonstrated to be as efficient in some complex cases as
carefully hand crafted programs.

It is probable that the development of this kind of work will
stimulate the use of set oriented operators in programming languages.

10. acknowledgements.

This work owers enormously to the many discussions we
had with Bod Paige, Fritz Henglein ,and Jaizhen Cai. And also with
Veronique Donzeau-Gouge, Catherine Dubois and Thierry Despeyroux.
Francoise Jean, Jacques Leger, Ulrich Gutenbeil and Wolfgang Franke
have actively participated to the implementation of the presented
transformation system and of its erisuing experimentation.

REFERENCES

[1] [Abi,87] Abitboul S., Grumbach S., Bases de donneés et objets structurés,
TSI 6, 5, (1987), 383-404.

[2] [AhU,79] Aho A.V., Ullman J.D., Universality of data retrieval languages,
Proc. 6-th POPL, 110-120.

[3] [BaL,86] Banatre J.P.,, LeMetayer D., A new computational model and
its discipline of programming, Res. Rep. 566, INRIA, sept. 86.

[4] [BalG,88] Balzer R., Gabriel R.P, (editors) Draft Report on Requirements
for a Common Prototyping, System, Darpa-ISTO, Nov. 88.

[5] [Cai,87] Cai J., An Iterative version of Hopcroft and Tarjan’s Planarity
Testing Algorithm, Tech. Rep. 324, NYU, Courant Institute, 1987.

[6] [CaiP,88] Cai J., Paige R., Program Derivation by Fixed Point
Computation, to appear in Sc1ence of Computer Programmmg, 1989.
(avail. as IBM report RC 13947, 23 Aug. 88).

[71 [CFHPS,88] Cai J., Facon Ph., Henglein F., Paige R., Schonberg E.,
Type transformation and Data Structure Choice, submitted., NYU-CS,
Nov. 88.

[8] [DaM,86] Dahlhaus E., Makowsky J.A., The Choice of Programming

78 PHILIPPE FACON - YO KELLER

Primitives for SETL-like languages, ESOP 86, LNCS #213, Springer-
Verlag.

[9] [DDFJ,87] Donzeau-Gouge V., Dubois C., Facon Ph., Jean F., Development
of a Programming Environment for SETL, Proc. ESEC 87, also in LNCS
#289 21-32.

[10] [Des,86] Despeyroux Th., TYPOL a formalism to implement Natural
Semantics, RR INRIA, Sophia-Antipolis, May 86.

[11] [DobG,87] Doberkat E.E., Gutenbeil U., SETL to Ada tree-transformations
applied, Information & Software Technology, 29, 10, dec. 87, 21-32.

[12] [DoKLMM,83] Donzeau-Gouge V., Kahn G., Lang B., Melese B., Morcos
E., Outline of a Tool for Document Manipulation, IFIP 83, North-Holland
Elsevier 615-620. ,

[13] [Fac,88] Facon Ph., Langages ensemblistes et transformations de
programmes, IIE report, nov. 88.

[14] [Fac,88-2] Facon Ph., Langages ensemblistes et transformations de
programmes, 10 STFI, Tunis, mai 89.

[15] [Fre,83] Freudenberger S., Schwartz J.T., Sharir M., Experience with
the SETL Optimizer, ACM TOPLAS 5, 1, (1983) 26-45.

[16] [Kah,87] Kahn G., Natural Semantics, RR INRIA #601, feb. 87.

[17] [Lac,88] Lacrampe J.J., S3L: un langage sur les collections pour la
manipulation fonctionnelle des ensembles, Journées GROPLAN: les
languages et leurs environnements, 1988.

[18] [Naf,86] Naftalin M., An experient in practical Semantics, ESOP 86,
LNCS #213, Springer-Verlag. ,

[19] [Pai,84] Paige R., Applications of finite-differencing to Database Integrity
control and query/transaction optimization, in Advances in Database
Theory, vol. 2, Gallaire-Minker-Nicolas editors, Plenum Press, 1984.

[20] [Pai,86] Paige R., Programming with Invariants, IEEE Software, 3, 1,
jan. 86, 56-89.

[21] [Pai,87] Paige R., Henglein F., Mechanical Translation of Set Theoretic
Problem Specification into Efficient RAM Code- A Case Study, J.
Symbolic Computation 4, (1987) 207-232.

[22] [Plo,81] Plotkin G., A Structural Approach to Operational Semantics,
DAIMI Fn-19 Notes, Aarhus University, Danemark.

[23] [SchD,86]1 Schwartz J.T.,, Dewar R.B.K., Dubinsky E., Schonberg E.,
Programming with Sets, an Introduction to SETL, Texts & Monog. in
Comp. Sci., Springer-Verlag, 1986.

[24] [Smos,88] Smosna M., Design of a new Ada front End for SETL, private

- comm., 1988.

Philippe Facon CNAM-IIE
18 allée Jean-Rostand BP 77
91002 Evry Cedex-France

Yo Keller KEPLER
8 rue des Haies
75020 Paris-France

