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ALPES: AN ADVANCED LOGIC
PROGRAMMING ENVIRONMENT

CRISTINA RUGGIERI (Bologna)

This paper introduces a sfoware programming environment for an
extended Prolog language, called ALPES. The purpose of ALPES is to
enable a logic programming paradigm to become a software engineering
tool to design, develop, and prototype traditional seftware systems, as
well as artificial intelligence applications. The key structuring concepts
for programs, as well as for the system architecture as a whole are
those of contexts, processes and communication. The software design
and development methodologies induced by the use of the Alpes-Prolog
language have been incrementally used to develop the environment itself,
This research was conducted under the Esprit projects P973 (ALPES).

1. Introduction.

The ALPES (advanced Logic Programming Environments) project
started with the following objectives: : ‘

e to improve the process of designing, developing and testing
Prolog programs by devising «classical» tools such as debuggers,
browsers, editors, interfaces with graphic systems, etc. in light of
the specificity of logic programming; o
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e to provide «advanced» tools exploiting theoretical improvements of
program synthesis, theorem proving, parallel execution, abstract
data type definitions, meta-reasoning, and modal logic;

e to allow logic programming to become an ordinary tool used by
engineers, even outside the field of expert system programming.

The first two objectives can be achieved by designing and
developing software systems whose features characterize «classical» or
«advanced» tools. The third goal is, in some sense, more fundamental
than the previous ones. In fact, if we allow logic programming to become
an ordinary tool for software engineering, then logic programming
itself can be used to design and develop specific tools.

The first specification of the Alpes architecture was designed in
this perspective: satisfy the first two goals of the project using a
logic programming paradigm, i.e, realizing the third objective as well.
Consequently, most of Alpes is implemented in a logic programming
language, called Alpes-Prolog. In fact, the largest test of the adequacy
of Alpes for its specification was the incremental implementation of
the environment, realized by using at each stage of the development
the language and the environment supported by the earlier prototypes.

A current issue in software engineering is the importance of
prbtotyping languages and environments (see for example the recent
call for proposal by DARPA [2]). Itis today believed that the conventional
view of software life-cycle, which separates design, prototyping and
coding as independent development activies has proved inadequate to
solve the problems posed by software development and maintenance. In
particular, such separation causes delays in the discovery of incorrect
or inappropriate specifications and requirements, which cannot be
detected until the testing phase that follows implementation. An
alternative approach is based on the belief that software systems are
best built through prototypes. Early implementations are useful to
refine and validate specifications through trial use and feedback [24].

In view of the above considerations, a second specification for the
Alpes architecture was to exploit the potential of Prolog as a prototyping
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language, motivated by the belief that the features characterizing the
logic programming paradigm satisfied many of the requirements of a
prototyping language. In particular, logic programming declarative
style, introspective and meta-programming capabilities, separation
between knowledge and control, are all essential features of a
prototyping language. Alpes is today the first prototyping environment
based on a logic programming paradigm.

A prototype is ideally an executable specification of the software
system, produced in less time and with less effort that it would
take to produce a working «deliverable» program with the same
functionality. The first requirement of a prototyping language is
therefore its expressiveness as a high-level specification language.
Writing executable algorithms in such a language should be as natural
as possible. While logic programming allows to express certain classes
of algorithms quite easily, it still requires «ad hoc» programming
tricks for others. To abstract from these tricks is to bridge the gap
between logic programming and expressing algorithms in logic. For
this purpose Alpes includes an advanced program synthesis tool, which
still in its research stage (i.e. not usable by common programmers)
is neverthless the first attempt towards executable logic specifications.
Partial evaluation, and in general program transformation techniques
can also be seen in this framework, as advanced programming tools
that relieve the programmer from the task of finding the most efficient
coding of a given algorithm. Alpes provides a fairly general, although
not completely automated partial evaluator, well up-to-date with the
current technology [4].

The second characterizing aspect of a prototyping language
and environment is its ability to support incremental design and
implementation. A prototype is a program able to evolve dynamically
towards its final version. Software evolution under Alpes is realized
by specializing and extending early design and coding efforts, without
throwing away previously running programs. Typiéally the first
implementation expresses the initial design choices, while the last
prototype implements all the details of the final program.
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These capabilities of Alpes are achieved by an innovative archi-
tectural design, Whose characteristics can be summarized as follows:

e The architecture is open. Contrary to C-Prolog’s -philosophy of
" «protecting» system primitives from the users, in Alpes all parts
are available for extension or replacement.

e Modules (units) are reusable: all parts of Alpes are available and
easily locatable (through a special system folder and its sub-folders)
to be used, modified or extended by small modular additions.

e Alpes is fully customizable: users can tailor the environment to
support their own style or preferences.

o Alpes is self-revealing: information about the internal workings
of the system is immediately available. '

Furthermore all these activities can be performed dynamically
while using Alpes and, with a few exceptions, without altering the
behaviour of programs relying on the standard version of the system.
Considering these characteristics of the architecture the current Alpes
prototype can be correctly viewed as a particular instance of the general
framework provided by such an architecture. Thus Alpes, intended
for the development of complex software systems, also supports its
own development as a software system (and potentially commercial
product).

Prototyping environments like Alpes are particularly useful in the
development of research applicafions, where initial specifications are
often incomplete or too vague. On the other hand, more traditional
programmers can find Alpes useful to produce rapidly a running version
of the intial specifications to test their correctness and completeness.
Thanks to the philosophy of its architecture, the current Alpes
prototype is useful to different classes of users. Application users
(for example an expert system designer) can ignore all the low level
features of the kernel and build their applications as a specialized
prototype of the whole system. A logic programming researcher
can instead use the basic mechanisms of the kernel to prototype
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and experiment with new constr’uct‘s"for the language. Finally, a
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programming environment designer can easi_iy prototype new tools or

new environment organizations, extending the kernel with different

components than the ones composing the Alpes exténded environment

(represented as one part of level III of figure 1).
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Fig. 1 - The architecture of the Alpes Environment
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While the logic programming paradigm is well suited for pro-
totyping, standar Prolog lacks other important features necessary to
realize the dynamically evolving architectures described above. Our
aim in Alpes was to extend Prolog to make it suitable for a wider range
of applications beyond its traditional role as a language for knowledge
based artificial intelligence systems. These include:

e Traditional software tools (i.e. editor).
° Operating systems and Concurrent Activities.

e User interfaces.

These classes of applications are in fact all major parts of a
software environment, the first large prototype to be implemented in
our new logic programming language. In particular, a flexible and
dynamic modularity mechanism, concurrency and a high-level interface
with a graphic system were perceived as fundamental requisites to
prototype these applications and were thus included in Alpes-Prolog.
The resulting logic programming language, represented by the first two
layers of figure 1, was partly implemented with modular extensions to
the C-prolog interpreter (first layer of figure 1), and partly programmed
in this extended language (second layer).

The final programming language supported by the environment
(target language) can be any superset of the system language Alpes-
Prolog. Its features do not need to be completely determined. Currently,
besides Alpes-Prolog, Alpes supports standard C-Prolog, Unl-Prolog, a
dialect of VC-Prolog with stuctured control, and Combo, a typed logic
programming system with type checking and type inference.

The following sections introduce in more details the relevant
features of Alpes-Prolog and shows how they solve the problems posed
by the dynamics evolution of prototypes. More precisely, section 2
presents Contextual-Prolog, section 3 present the Alpes concurrency
mechanism, and finally section 4 presents Alpes declarative graphics
facilities.
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2. Modularity in Alpes: Contextual-Prolog.

Contextual logic programming [17] is an extension of the logic
programming paradigm based on the ideas of context-dependent
predicate definitions and variable context of proof. The two basic
notions are those of a unit u:U, which is a set of clauses U with name
1, and of an extension formula u>> £, which is true in a context if f is
true in the context extended with the denotation of u.

The purpose of introducing contextual notions in logic programming
is twofold. On the one hand, to address software engineering concerns
of modularity. On the other hand, to provide a computational model
for contextual reasoning, so prevalently needed for most Artificial
Intelligence tasks such as natural language interpretation, question
answering, planning, etc.

Modularity, abstraction, reusability are classical software enginee-
ring concepts necessary for the development of large applications. They
are all related to the idea of a sofware component viewed as a cohesive
unit that should denote a single abstraction, and that should be
defined independently of any other abstraction. If evaluated from this
perspective, the features of most logic programming languages, and
Prolog in particular, cannot satisfy these basic software engineering
requirements. In particular, the two forms of modularity intrinéically
provided by Prolog.

e separation between knowledge and control;

e distinction between different facts and rules (procedures)

have a too fine granularity to meet software engineering requirements.
It is instead necessary to have the ability to arrange clauses into several
databases rather than in a single one and to build and manipulate
these databases explicitly in the language.

Many systems in the literature have tried to overcome this
drawback by enriching logic programming with more powerful models
to structuré, describe, and manipulate the database of clauses. Most of
the extensions being currently proposed are based on the introduction
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of modularity [15] or object-oriented concepts [5, 7, 26] into logic
programming. However, in a software engineering perspective, and
in particular when the goal is the definition of a language to support
exploratory programming and rapid prototyping, requirements such
as flexibility and generality become also fundamental. For this
reason in Alpes we decided to adopt a general-purpose modularity
mechanism that would allow prototyping and experimenting with
different knowledge structuring models. In particular the following
facts have heavily influenced the design of these mechanisms:

e It is widely recognized that modularity and information hiding
are basic concepts for structuring a complex software system.

e Some programs are well vrepresented by a static hierarchical
structure, as in object-oriented systems happens.

e During exploratory programming and prototyping, the program
might need a more dynamic structure, that can be dynamically
tuned or changed when new information about its behaviour is
generated.

e Different vewpoints of the same program can be necessary during
both its developing phase (to contemorary maintain and test
different alternative for it) and its real execution, if it has to offer
different interfaces and behavior to different clients.

The first ideas appeared in [18], based on the distinction between
formal definitions contained in units and actual definitions used in
contexts to solve goals. In [17] precise top-down and bottom-up
derivation relations for the basic context-extension construct were
presented, together with a study of its declarative semantics in terms
of a possible-worlds model. Besides the basic notions of context
extension, other notions were proposed in [17], like predicate hiding,
predicate extension, parameterized units, unit links, context switching
and two-level contexts. In a separate effort [13] and [16] the notions
of context extension and predicate hiding have been extended with the
concepts of binding time (eager or lazy) for predicate calls, dynamic
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unit creation, and lexical or dynamic scope for units. Since this
papers introduces briefly only the basic concepts of contextual logic
programming, the interested reader can find more details in all the
papers mentioned above.

Contexts were first implemented in ALPES on top of a standard
Prolog interpreter. A compiled version is currently under implemen-
tation on the basis of an extended Warren Abstract Machine, called
Contextual Warren Abstract Machine [11]

2.1. Context extension.

It is useful to start with an example, presented also in [17].
Consider the two following units:

authors:

author (Person) :— wrote (Person, Something) .

books:
wrote (plato, republic).
wrote (homer, iliad) .

author (Person) :— author (Person).

The first unit has name authors and one clause, stating that an
author is a person who wrote something. To derive some information
on authorship using this clause, we need further information about
who has written what. We call the definition of author/1 context
dependent, since it relies on the context to provide the definition of
wrote/2. In the context we may have information about writers of
musical pieces, books or computer programs, and the same definition
of authorship applies to them all.

The second unit has name books and three clauses. The first two
clauses define the relation wrote/2. The third clause, containing the
extension formula authors 3> author (Person) in its body, states
that an author is whatever is declared as such in the unit authors.
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Syntactically in Contextual-Prolog, besides the usual sets of
predicate, function and variable symbols, we need a set of unit names,
denoted Un. A program is a system of units U, where a unit is a
formula u: U consisting of a set of definite clauses U with name u € Un.
The syntax for clauses is the usual one, except that they may contain
extension formulae u> G in their bodies, where u is a unit name and G
is a set of atomic or extension formulae. The derivation of a formula is
like the derivation for Horn clause logic, except that the set of clauses
available for reduction (the context) may change during the derivation.
In other words, a context represents a sort of current line of reasoning.
Predicate definitions may vary according to the context, thus the same
set of units can be used for solving different problems, by changing
the way they are composed together in the context. _

We represent a context by its name, which is just a sequence of
unit names, intended to record the history of the formation of the
context. In general, to derive an atomic formula in a context, just
derive the formula in its most recent unit, using the remaining units
of the context when appropriate. More precisely, an atomic formula £
can be derived only in a non-empty context [u|C], and two cases may
arise:

e If the predicate name of £ is defined in u, use those clauses in u
and only them to reduce f, and proceed with the derivation in the
same context. ‘

e If the predicate name of f is not defined in u, derive f in C.

To derive an extension formula uw>G in a context C, extend the
context to [u|C] and derive G there. To derive a set of formulae G
in C, derive each formula of G in C. Note the implication of the last
rule: any change of context that may occur during the derivation of
a formula in G does not side-effect to the derivation of the remaining
formulae, since they all must start from the same context C.

As an example we show the derivation of the formula books >
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author (plato) in the empty context.

[1 |- books > author (plato)
[books] | — author (plato)
[books] | — authbrs > author (plato)
(authors, books] | — author (plato)
[authors, books] | — wrote (plato, Someﬁhing)
[books] | — wrote (plato, Something)

{Something = republic}

The precise operational semantics describing how the derivation
relation is defined, can be found in [17] or [16].

The example above shows the basic derivation mechanism of
Contextual-Prolog. In fact different policies exists for determining
the meaning of predicate definitions and of predicate calls within a
context. The choice of one specific policy is a key architectural choice
[3]. In contrast with more statical architectures, in Alpes-Prolog we
needed to fulfill a fundamental requirement of prototyping: a high
degree of flexibility. For that reason in Alpes-Prolog different policies
are available to construct contexts and to derive goals in them. These
policies are described in depth in [16].

The overhead due to context and context-extension in the inter-
preted implementation of Contextual-Prolog can be reduced by the use
partial evaluation techniques [4]. Given a program organized in a
set of distinct units, the expected result of applying partial evaluation
is the definition of a new configuration of that program where all
‘the known bindings were resolved and statically specified. This idea
is based on the following considerations. Partial evaluation is based
on a compile-time execution that allows to gather information on the
binding context of predicate calls at each instant of the computation.
The partial evaluation of the same call in different contexts will then
result into different predicate definitions in the transformed program.
Furthermore, all program components which are not actually in use are
automatically excluded from the resulting program. Since each binding
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name-meaning can be statically resolved, the partial evaluation of a
program organized in a set of distinct units produces a new program
in which all the different meanings associated to predicate names are
explicitly represented as sets of different predicate definitions and,
accordingly, of different predicate calls. The combination of these two
effects of partial evaluation effectively realizes the resolution of all
used bindings, as well as the elimination of older, unused code.

Once a dynamic configuration of the program has been successfully
tested and validated, partial evaluation can be used to freeze such
configuration into a static one. If all the unit names of the source
configuration are statically known or statically computable, the code
produced by partial evaluation can be flattened into a single unit. Also,
due to the explicit representation of the binding between predicate
names and definitions, its execution can be performed without referring

to any binding environment.

2.2. Contexts in the environment.

The introduction of contexts in Alpes-Prolog has had a considerable
impact on the environment. They are used extensively to reproduce
- different running configurations of the environment. Subparts can
be dynamically loaded only if their functionality is requested. New
additions to the system can be dynamically experimented by temporarily
extending the current context with the code to be tested. Furthermore,
contexts are used to structure most of the tools represented in layer
IV of figure 1. The browser, for example, is a graphic tool used to
display relationships among a set of objects in the environment or in a
program. It functions with two main components: a graphic displayer,
and a specialized browsing component, which varies depending on the
relation to be displayed. The main generic unit defines a generic
predicate start display/2 as follows:

display ( Program,Relation): —Relation>»display (Program) .

Each specialized browser instance is obtained as the combination of



ALPES: AN ADVANCED LOGIC PROGRAMMING ENVIRONMENT 111

a generic component and its specialization to a particular type of
relation. For example, to display the call relation between predicates
in a module, the browser is invoked with the goal:

browser > display (Module, call rel)

where call rel is the name of a browser unit specialized for computing
the predicate call relation.

Within the environment, the extension operator > provides a
natural way to automate the process of consulting and reconsulting
files. The environment mantains a special system knowledge base
unit, called skb, with the information about the units currently loaded
in main memory. This information is checked by the execution of
an extension goal. If the unit specified in the extension goal is not
present in memory, or has been modified since the last load, the
Unix file corresponding to the unit is located and its content is loaded
in memory. This mechanism, fully integrated with the Alpes editor,
allows the user to modify parts of a complex program, without -having
to remember the full dependency structure of its modules.

3. Concurrency in Alpes: Communicating Prolog Units.

Abstracting from specific tools, an environment is a collection
of activities which could be either independent or related. Each
activity performs a well identified task, i.e. solves a precise goal.
Typical examples of activities are those performed by the tools of the
environment such as browser, editor, debugger, explanator, program
synthesizer etc. Since a user might require to perform actions
without waiting for the completion of previously requested actions, the
environment should be able to start activities either synchronously or
asynchronously with respect to the previously running activity. For
example, a user might request an editing action while a program is
running in debug mode. In this case, editor and debugger represent
asynchronous, parallel, independent activities. On the other hand,
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during its execution, the debugger could ask the user to edit the
program. In this case, the environment should activate a new instance
of the editor whose behaviour is now striclty related with that of the
debugger.

As stated earlier, our intent in Alpes was to use the Alpes-
Prolog language to design and implement the various layers of the
environment. The main consequence with respect to the organization
of the environment activities mentioned above is that in Alpes-Prolog
it must be possible to express asynchronous, cooperating activities, i.e.
processes. Furthermore these processes must be efficiently implemented
on the target Alpes machine: a monoprocessor workstation running a
Unix environment.

Alpes-Prolog supports a model of concurrency which is low-level
enough (i.e. contains a minimal set of process management policies) for
operating system programming, but which at the same time completely
abstracts from process implementation details. This model is called
Communicating Prolog Process (CPP) and was initially presented in
[15]. In CPP a set of independent Alpes-Prolog activities cooperate by
exchanging messages through abstract Communication Units (CU).

A Communicating Prolog Process (CPP) is the abstraction of the
behavior of the sequential machine that supports the Alpes-Prolog
language. While the traditional Prolog machine can access a single
input and single output device at a time, each Alpes-Prolog process
can access a set of Communication Units which are the abstraction
of input-output devices. Alpes-Prolog processes can be dynamically
created through the built-in predicate:

activate (P-NAME, I goal)

where I_goal (input argument) is the initial goal of the process and
P _NAME (output argument) is the process unique identifier. The set
of resources (units) that a process can initially access is expressed
by the context specified in the initial goal. These units can be
private to the new process or already used by its creator or by other
processes. During the demonstration of its initial goal, the process can



ALPES: AN ADVANCED LOGIC PROGRAMMING ENVIRONMENT 113

dynamically change the set of resources it can access, according to the
methodology of Contextual Logic Programming.

The concept of process synchronization in CPP is related to the
access to variant knowledge. The suspension of the activity of a
process means that the process wants to wait until a knowledge base
is changed so that the process can solve the goal it was unable to
solve before. Inter-process communication occurs when two processes
share a set of Communication Units. In order to insure correctness,
any read-write access to inspect or modify a clause in a CU is atomic.
More precisely these accesses to a CU ComU are available through
the following operations: '

e out (F) adds the unit clause F to Comu. The operation always
completes with success;

e in (F) removes the unit clause F from ComU. The operation never
fails: the process waits until it succeeds;

e get (F) removes the unit clause F from Comu. The operation fails
if no unit clause F exists in ComuU.

Communication Units provide a uniform framework for process
interaction: they represent a general abstraction for all those input-
output devices which integrate the notion of communication with
that of synchronization. Thanks to unification, the language allows
powerful forms of message inspection and manipulation. For example,
if we introduce messages of the following structufé:

message (Source, Dest, Item)

then:

e if Source is not bound, the message can be received from any
process;

e if Source is only partially specified (e.g. [class, X]), then only
messages sent by processes of the specified cléSs can be received,;

e if Dest is not bound, the message can be regiiféd by any process;



114 CRISTINA RUGGIERI

e if Dest is only partially specifed (e.g. [class, X]), then the
message can be received by a process of the specified class only;

e specific messages can be searched for, depending on the structure
of the Ttem argument.

However, the CUs model supports equally well models of process
interaction based on shared memory [20]. The presence or absence of
a fact in a CU acts as a semaphore that can be used to gain exclusive
access to the information stored in the shared resource represented by
the CU itself or by other Units.

The following example, taken from [6], shows the type of problems
which Alpes-Prolog can solve in an effective way. It was originally
reported in [19] as an application of the merge operator. MSG is a full
duplex message sending system for two computer terminals, A and B.
Input from A’s (respectively B’s) keyboard K1 (K2) is echoed on A’s (B’s)
screen S1 (S). However, when K1 (K2) issues a «send», the following
form should be displayed in a timely fashion on S2 (S1).

Suppose that k1, k2 are global names that designate two instances
of the Communication Class keyboard, and s1, s2 are instances
of the Class screen. Then, the Alpes-Prolog system that solves the
problem is set up by calling the goal: msg > start, where:

unit msqg.

start:~activate (select (kl1l,sl,s2),A),

activate (select (k2,s2,s1),B).

| sel_ect(Keyb, MyScr, AlarmScr) :—,
Kyb >> in (Msg),
MyScr >» out (Msgqg),
(Msg == send (X), !, AlarmScr > out (X); true),

select (Keyb, MyScr, AlarmScr) .

In this solution the process A and B handle the two computer
terminals according to the specifications. Their environment is that
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of the system launching the goal above, extended with the unit msgq.
Here is the solution expressed in [19] by using Concurrent Prolog (CP):

msqg (K1,S1,K2,82) :-
select (K1?,K11,K12), select (K2?,K22,K21),

merge (K21?,K11?,81), merge (K12?,K22?,S82).

select ([send(X) |Xs], [send(X) |Ys], [X]|Zs]) : -

select (Xs?,Y¥s,Zs).

select ([X|Xs], [X|Y¥s],Zs) :~=dif (X, send())) |
select (Xs?,Ys,Zs) .
select ([1,[1,[]).
merge([XIXs],Ys,[XIZs]):—-merge(Xs?,Ys?,Zs).
merge (Xs, [Y]|Ys], [Y]|Zs]) :-merge (Xs?,Ys?, Zs) .

merge([],Ys,Ys).

The comparison between CPP and CP modelsis not in the scope
of this work. However it is a fact that the presence of processes to
merge streams does not help in understanding the structure and the
behavior of CP systems.

3.1. Processes in the Environment.

Communication Units provide a uniform framework for process
interaction. in the environment by constituting a general abstraction
for all those input-output devices which integrate the notion of
communication with that of synchronization. Specific communication
channels (mailboxes, pipes, etc), or classical input-output devices
(windows, printers, etc) or pure synchronization devices (semaphores,
locks, etc) can be associated with specific CUs during a system
configuration phase. This possibility, extensively used in the design
of ALPES provides a uniform abstraction for process interaction that
excludes any notion of input-output device from the language.
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Furthermore, the strong integration between CPP and contextual
logic programming has great influence on the issue of system
configuration. The running context of a process represents the set of
its available resources at a certain time. Thus, processes intringically
work according to the principle of least privilege [9] if the context is at
each time the minimal one necessary to perform their current function.
The relationship between processes in terms of resource sharing is
also expressed by contexts. In particular, the environment of a new
process at activation time can be:

e the same of the creator;
e that of the creator, extended with new units;
e part of that of the creator, with possible extensions;

a completely new one.

In Alpes it is then possible to define, within the same running
system, systems which are (sligth) different versions of the previous
one or completely new. The concept of prototype programming can
then be immediately applied in the field of concurrent applications.
Currently CPPs are used to dynamically configure an instance of the
Alpes environment. Many tools are implemented as a sepérate process,
when invoked as a user command. This allows a user to run the tool
in parallel with.the standard Alpes-Prolog top-level, which in Alpes
becomes just one more process of the environment, using the same
model of inter-process communication. More precisely, the top-level
process has the following structure:

e wait for a message M from a spéciﬁc input unit;
e interpret the message M as the initial goal and solve it;
e send the answer of the demonstration to a specific output unit.

User programs can be run within the top-level process (as in
standard-Prolog), or as independent processes. |
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4. Interface with a graphic system: X-Prolog.

Software systems are constantly getting complex and users are
faced with the task of accessing an ever-increasing set of programs.
A key factor in computing is the interaction process between the user
and the programs. Often the interface to a program ends up being the
deciding factor ot its usefulness. Fundamental réquirements of a user
interface include [10]. |

e Customizability: an interface can be tailored to one’s liking. The
ability to change default physical input event bindings is an
example of customizability.

o Extensibility: the list of available interface commands can be
augmented using the system primitives themselves.

o Configurability: a user’s own specification and structure can be
imposed on his interface. A configurable interface permits the
user to modify all aspects of the interface from within.

Traditional programming environments have been limited to what
an operating system was able to offer. On the other hand powerful user
interfaces have developed that make use of raster displays and direct
manipulation of graphical objects. Usually these interfaces, like the
Apple Macintosh interface [23] are dedicated to non-expert computer
users, and are not integrated in any programming language paradigm.

However in a rapid prototyping environment, programming is
not only seen as coding, but also as a supporting element of the
overall design process. In this view, interface issues become closely
connected to the program development process. Interface programming
needs then to be integrated in the general programming language
paradigm supported by the environment. This integration is also the
most natural way to satisfy the three requirements above. These
considerations are not novel in the field of Artificial Intelligence: all
the recently developed programming environments for Al based on
Lisp, provide interface programming facilities [25, 8].

Finally in Alpes we required that the environment and all its tools
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had to be developed and prototyped in the logic programming language
supported. Therefore, to allow the construction of tools’ interface,
Alpes-Prolog had to be able to interact with a general-purpose window
manipulation system.

The X Window system presented all the characteristics we needed
in Alpes. X is based on a network protocol, built on the client-server
model. The Xserver is the server program that runs on the workstation
and multiplexes between clients on the network. The clients themselves
can speak to multiple serves and can open windows on multiple displays
as long as the host to which the display is connected runs an X server.
These features make X the appropriate choice for a heterogenous
environment with different machines connected through a network. In
Alpes the choice of X allowed the graphic interfaces to be independent
from the specific machine used, and made the environment portable to
any computer supporting Unix, C and an X server.

Input to X consists of events that are generated explicitly by the
user via the keyboard and the mouse and implicitly as a result of a
user action. A user action could be for example moving a window
causing another window to be exposed or obscured. Client programs
specify the class of input events they are interested in, and the X server
dispatches these events to them. The window system is hierarchical
and supports recursive subwindows.

The X Window system includes a Toolkit designed to simplify the
implementation of application user interfaces in X [12]. This Toolkit
provide mechanisms (functions and data structures) for extending the
basic programming abstractions provided by the X Window system. The
X Toolkit is composed of two parts: the Intrinsics library package and
a widget set. The Intrinsics is a library package layered on top of the
X Window library (Xlib). It provides the base mechanisms necessary
to build a wide variety of widget sets and application environments.

A widget is the fundamental abstraction and data type of the
X Toolkit. It is a combination of an X window and its associated
input/output semantics, it is dynamically allocated and contains state
information. Some widgets display information (for example text or
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graphics), and others are merely containers for other Widgeté. Every
widget belongs to exactly one widget class that is statically allocated
and initialized, and, that contains operations allowable on widgets of
that class. Logically, a widget class is the procedures and data that is
associated with all widgets belonging to that class. :

Since the Intrinsics mask implementation details from the widget
and application programmer, the widgets, as well as the application
environments built with them, are fully extensible and - support
independently developed new or extended components. Given these
characteristics, the X Window Toolkit was chosen as the most
appropriate candidate for the Alpes-Prolog window interface.

The Alpes XProlog set of extensions developed at UNL [1] enables
the Alpes-Prolog programmer to access most of the functionality of the
X Window System (Version 11) Toolkit Intrinsics. The mechanisms
provided in Alpes are sufficiently general to cover all widget sets. The

“currently available widget sets consists of the Athena Widgets [21]
the HP Widgets [22], as well as a few homebrew widgets.

The Alpes-Prolog interface further extends the X Window Toolkit
flexibility, by providing a means of incrementally constructing new
widgets in Prolog, as a combination of more primitive widgets. More |
specifically, The X Toolkit, being written in a procedural language (C),
provides a procedural interface as its only means of creating graphical
objects (Widgets). While it is feasible to use this approach in a Prolog
interface to the Toolkit, the solution is not a very elegant one, as
the Prolog code would be filled with invocations of widget creation
predicates. To answer this need for more declarativeness, patterns
of widgets may be described as a single Prolog term. Such a term
will be known as a Widget Structure Description Term (WSDT), the
format for a valid WSDT is known as the Widget Description Language
(WDL). The WDL was intended to provide a means of specifying,
creating and sending messages to widgets well suited to the Logic
Programming paradigm, while retaining some of the object-oriented
aspects of the underlying system. This declarative part of the interface
is where Alpes XProlog may depart more significantly from other
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implementations of window system interfaces. Rather than presenting
the syn;cax and semantics of WDL, we will show an example, taken
from [6], of a Widget specification programmed in WDL. For a more
precise description of WDL, see [1].

Suppose we want to have a window with three command buttons.
The following is a possible WDL specification for a box widget containing
a label widget and several command widgets:

Parent widget the box (BOX_ID) <->

BOX ID=
box - [

foo: label / foreground (red),

"Button 17: cémmand / callback (t (start (one))),
. "Button 2’ : command / callback (t (start (two))),

"Disabled’: command / [callback (t(start (three))),

sensitive (false) 11.

The XProlog parser will create a Widget Definition Template
named «the box» which can later be activated by:

., ParentID widget the-box (BoxID), ...

Notice that the variable BOX 1D, which is shared between the
head of the definition and its body may be used as a handle to
refer to the box widget. The callback attribute of the command
widgets specifies the Prolog goal that should be executed when the
corresponding button is clicked. The XProlog interface provides both
the callback and the translation mechanisms of the Intrinsics Toolkit.
These mechanisms allow the interface programmer to specify the
‘translation between phisical and logical events. The physical layer can
then be éomﬁletely ignored by the application programmer, who needs
only to prov"idé reépdnses to the possible logical events. Any Alpes
user can dynamically alter one or more of the bindings of phisical to
logical events. Thus any Alpes interface can be customized directly
using Alpes-Prolog. o
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The ALPES XProlog interface and WDL language have been
extensively used to program all the user interfaces of the tools in the
environment. More precisely, the ALPES editor, file-system browser,
relational browser, tracer, explanator, rational debugger and partial
evaluator, all have graphic interfaces programmed in XProlog and
WDL.

5. Conclusions.

The features introduced in Alpes-Prolog, contexts, concurrent
processes and a language to specify graphic objects, define a prototyping
logic programming language suitable for the construction of fully flexible
and open software system. The programming environment for Alpes-
Prolog is the first implementation of such a system, which exploits
many of the design choices of the language.
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