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A SURVEY OF COMPUTABLE SET THEORY

DOMENICO CANTONE (Catania, New York) (*)

This paper surveys various decidability results in set theory.
In the first part, we focus on certain classes of unquantified
set-theoretic formulae involving the relations € (membership), =
(equality), and the operators N (intersection), U (binary union), \
(set difference), {-} (singleton), pow (powerset), Un (general union),
n (choice operator), etc. The unquantified theory basic to the results
presented is the so called Multilevel Syllogistic (MLS) which is
the set of all quantifier-free formulae in the language €,=,MN,U,\.

The second part of the paper covers the quantified case and, among
others, we consider: a quantified version of MLS, the class of formulae
quantified over sets in which the membership predicate is not allowed,
the class of prenex set-theoretic formulae having three quantifiers and
the class having a prefix of the form VYV ... V4.

In the third part, some applications to domains different from pure
set theory will be reviewed.

Some undecidability results will be discussed in the last section.

An appendix on Zermelo-Fraenkel set-theory concludes the paper.

(*) This work has been partially supported by ENI and ENIDATA within the
AXL project.
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1. Introduction.

In the last decade, the decision problem for various classes of
set-theoretic formulae has been studied very intensively, as part
of a joint project between New York University, the University of
Catania, and Enidata-Bologna for the design and implementation of
a set-theoretically based proof verifier (see [28]). The large body of
results originated from such research has given rise to the novel
field of Computable Set Theory, whose central problem is to find new
decidable fragments of set theory. '

In this paper, which has evolved from [7], we will survey the
state-of-the-art of computable set theory (see [17] for a more extensive
treatment).

The formalism of set theory is very well suited for an all-purpose
theorem prover, mainly due to the great expressive power of the
set-former construct

{e(z1,...,20) : Pz1,...,3,)}

(where e(zy,...,z,) and P(zi,...,1,) stand respectively for a set-
expression and a predicate) which allows an explicit instantiation
of the objects crucial to predicate arguments. For instance, using
this formalism it is possible, starting from the barest set-theoretic
rudiments, to define cardinals, integers, rationals, reals, and complex
numbers in entirely precise formal fashion, and to culminate in a full
formal statement of, say, the Cauchy Integral Theorem, all within
the space of no more than 150 lines (cf. [28]).

The size of the elementary deduction steps that a proof verifier
system is able to carry out automatically (or at least to recognize as
valid inferences in an interactive proof verification session) is directly
proportional to the richness of its inferential core, and it is critical for
any practical application. Indeed, if the size of the elementary steps
is very small (as, for instance, in a resolution-based proof verifier)
then any proof, even of very elementary theorems, becomes very
long and requires entry of an overwhelming mass of tedious details.
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The same observation applies even more forcefully to the much more
pragmatic problem of program verification. Any hope of making such
verification practical must presume that existing proof verifiers can
be greatly improved, since in attempting to prove anything but very
tiny programs correct one will convert them into substantial masses
of mathematical statements, all of which must be verified formally if
the correctneéss of the original program is to be established in any
rigorously checked sense.

Computable set theory can serve to formalize the layer of
details that are ordinarily missing in proofs, as found in the
typical mathematical literature and therefore it could have important
applications in the fields of program verification and automated
deduction. For instance, the proof verifier envisaged in [28] will have
among other fundamental components an inferential core comprised of
an extensive (and extensible) collection of decision and semi-decision
procedures for several fragments of set theory and other branches of
mathematics too. -

To be a little bit more formal, given a class of formulae C
and a theory 7, a decision procedure for (C,7) is any algorithm
which allows to mechanically establish for any given formula ¢ in
C whether ¢ is in T or not, i.e., whether ¢ is valid in 7 or not.
Dually, a decision procedure could be defined with respect to the
satisfiability problem, and it is in this latter sense that the term
decision procedure will be used in the present paper. For our purposes
the theory 7 will be the Zermelo-Fraenkel theory of sets. In fact our
considerations will take place in the von Neumann universe % of
sets, but they can easily be formalized in ZF set theory. 4

Notice, in addition, that in most cases the decision procedures for
the fragments of set theory considered here allow also to instantiate
models. In other words, when a formula is declared satisfiable, the
procedure actually returns a description of a collection of assignments
satisfying it.

In the next section, we will consider some unquantified extensions
of the basic theory MLS which includes the operators U,N,\ and



128 DOMENICO CANTONE

the relators = and €. Some of the constructs considered are: pow
(powerset), Un (unary union), (] (unary intersection), rank and
cardinality related constructs, {-} (singleton), Finite, etc. No explicit
quantification is allowed at this stage.

Languages admitting quantification will be reviewed in Section 3,
where we will consider a class of formulae with restricted quantifiers
and no alternations, as well as some classes of closed formulae whose
quantifier prefixes are of a given type.

Section 4 will discuss some applications of the decision procedures
presented in the first part of the paper to domains different from
pure set theory.

Theoretical limitations to the problem of mechanizing set theory
will be considered in Section 5.

Finally, an appendix on Zermelo-Fraenkel set-theory will conclude
the paper.

2. Unquantified Theories.

It has been argued above that the richness of the inferential
core of a proof verifier can allow to shorten drastically the length of
the verification of proofs and/or the correctness of programs. Another
motivation for undertaking the research of new decision algorithms
is to prove a result analogous to the Herbrand’s theorem of predicate
calculus, but applying to set theory, which would be of great pragmatic
importance (see [46, 56]).

THEOREM 2.1. (Herbrand) There exists an automatic procedure
P which, given an arbitrary formula of predicate calculus, produces

an infinite sequence g1, 92,93, .. of propositional formulae such that q
is a theorem if and only if at least one of the g;’s is unsatisfiable. (For
more details see, e.g., [1]). [

It can be conjectured that the relationship of set theory to the
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class of unquantified formulae in the language including the operators
U (union), N (intersection), \ (set difference), {-} (singleton), pow
(powerset), Un (general union), n (choice function), x, (cartesian
product) is analogous to the relationship of predicate calculus to
propositional calculus. A preliminary step in finding such an analogue
of the Herbrand theorem might therefore consist in proving the
decidability of the theory sketched above. This section will review
some partial results of this kind.

2.1. Multilevel Syllogistic.

In this subsection we illustrate a technique which, properly
generalized, has been used to derive most of the decidability results
in this field. '

We begin by illustrating its application to a simple theory, the
so-called Multilevel Syllogistic (MLS for brevity), and then we show
how some extensions of MLS can be proved decidable much in the
same way (cf. [36]; see also [55]).

The language MLS is considered first. (Note that here ‘and in
the following we will use the term «language» or «theory» in the
broad sense of «set of formulae», not necessarily closed under logical
deduction).

The language MLS is composed using
e variables: z,y, 2,...

operators: U,N, \

relators: €, =

boolean connectives: &,V,—, —, <.

The language MLS is then the set of unquantified formulae
which can be built up from the above constituents by observing the
usual syntactic rules:

eUrn)&ady —zcz
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is an example of a formula in the MLS language.

We will prove that MLS is decidable, i.e. that there exists an
automatic procedure for deciding if any given formula in MLS is or is
not ‘satisfiable (in the standard von Neumann universe of set theory
(see Appendix)). Such a procedure will be exhibited explicitly.

It is easily seen that we can limit ourselves to considering only
those formulae () of MLS which are conjunctions of literals of the
following types:

() TE€y

= r=yUz, =y\z

For instance, literals of type z = y Nz are equivalent to the atomic
formula z = y\(y\z), whereas the literal z ¢ y is equisatisfiable with
the formula z € z & z = 2\y.

Before entering into the details of the proof, some terminology
and definitions are needed. In order to make the discussion which
follows clearer, it is convenient to assume that () can be satisfied by
an injective model M, i.e., a model which maps distinct variables
into distinct sets. Let V = {y1,v2,...,ym} be the set of all distinct
variables occurring in (). With () we associate its Venn diagram v é‘f
with respect to the model M in the universe U = U(M zU{Mz}).

eV
Specifically, V g is the set of the equivalence classes with respect to

the equivalence relation ~ defined on U by:

s~tiffs€ Mz <t € Mz, for all variables z occurring in ().

Let 01,02,...,0, be the elements of VY. Sets o, for 1=1,...,mn,
are called the parts of the Venn diagram vV g . Observe that every set
o; is either fully contained in Mz or is disjoint from Mz, for every
variable z occurring in (). Therefore with each part o; of the Venn
diagram 7/ g of Q it is possible to associate a 0/1-valued function (f
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defined on V by putting

l 1 if (oF) g Mx
(1) : mi(z) = {

0 ifosNMz=0

The following two properties hold for each such function =;:
(a) if the literal x =y U 2z is in Q, then 7;(z) = m;(y) V m;(2)
(b) if the literal z = y\z is in Q, then m(2) = m(y)&—m;(2).

DEFINITION 2.2. Any 0/ 1-valued function which enjoys properties
(@) and (b) above is called a place of Q. - |

Since oy Uop U...Uo, =U, then for every variable z in Q there
exists a unique part o of the Venn diagram V{{ such that Mz € o®
We call the corresponding place n* the place of Q at the variable z
It follows that
(¢c) m*(y) =1, if x € y occurs in (.

Indeed, if z € y is in Q, then Mz € My. But Mz € o%, therefore
by definition of the sets o; we have 0 C My, and then 7%(y) = 1.

Note that sets o; and places w; serve to describe the model M
fully. Indeed, for every variable z in () we have

L o

mi(z)=1

These last observations constitute a first step towards reducing
the decision problem for MLS to a purely combinatorial problem
concerning the clauses of Q) and the set of places m which actually
appear in a model M of Q). We go on to show that it is possible to
formulate decidable conditions concerning the set of places 7 and the
clauses of () which are both necessary and sufficient for Q to be
satisfiable. Furthermore we will show that when these conditions are
satisfied, canonical sets 7 can be associated to places 7 in such a

way that the assignment Mz = U i satisfies ().
m(x)=1
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In order to find appropriate conditions on places and clauses of
(), it is convenient to keep in mind that places are the syntactic
counterpart of the semantic notion of nonempty disjoint parts of a
Venn diagram of (). In particular, a place at a variable z (i.e., that
place which satisfies properties (a), (b), and (¢) above) is intended to
represent that part of the Venn diagram which contains the «set» z.

Assume that a set IT = {m,...,m,} of places of () is given such
that no two variables of () are Tl-equivalent, i.e. for all distinct z, y
occurring in @ there is a place 7 € II such that w(z)#n(y). Suppose
also that a place n* at the variable z is associated with each variable
z. Finally, let an ordering < among variables occurring in () be given
(this ordering is supposed to correspond to the ideal rank ordering
among the «set» z, for z in Q; for the definition of rank see Appendix).

A natural way to define an assignment M on the variables of Q-
is to associate pairwise disjoint nonempty sets 7 with places 7 & II.

After such sets have been chosen, the definition Mz = U 7, Where
m(z)=1
z denotes any variable z in @, plainly satisfies all literals of type (=)

in . In order for M to satisfy the remaining literals in Q of type
(€) also, we only need to be sure that we have

(2) Mz e 7%,

for every variable z in Q. Indeed, if z € y is a literal of Q, then by
the mere definition of a place at the variable z (cf. (¢) above), we have
n%(y) = 1. Therefore, by (2), Mz € #°C | ] #= My, and Mz € My.

m(y)=1
This shows that formulation of conditions necessary and sufficient

for construction of pairwise disjoint and nonempty sets 7 satisfying
(2) solves the decidability problem for MLS.

The most natural way to associate a set 7 to a place 7w in such a
way that the preceding conditions hold is as follows:

INSTANTIATION PROCEDURE
(A) FOR ALL 7 IN II DO
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7= 70 (sets 7@ should be chosen nonempty and paiwise disjoint,
and in such a way that the subsequent €-phase does not
disrupt disjointness)
(B) FOR ALL VARIABLES z OCCURING IN @, IN THE ORDER
DEFINED BY < DO

’ 7'rz:=7’r‘”U{U7’r}
m(z)=1

(C) FOR ALL VARIABLES z OCCURRING IN @, PUT

Mzx = U .

w(z)=1

We call loop (A) initialization phase, and loop (B) €-phase.

For the moment let us focus our attention on the c-phase (B)
which is intended to force property (2) to hold. Once a variable z has
been processed by performing the assignment

7% — U { Mz},

to be sure that U =Mz € 7 holds at termination of the algorithm

w(z)=1
shown above, where 7 are the final values, it is enough to require

that

if 7¥(z) =1 then the variable y
must precede z in the ordering <.

(3)

Indeed sets 7Y, with y > z, are the only ones which can change
because of an €-step during and after the processing of z (i.e. after

‘the value Mz = U 7 has been determined). Conversely, it is easy to

m(x)=1
see that property (3) is necessary for the satisfiability of (); indeed,

if the ordering < is defined to be any linear ordering extending the
partial ordering induced on variables by the rank ordering of the
corresponding values Mz (where M is a given model of Q) then z <y
implies that rank (Mz) <rank(My), so that My € Mz is impossible.
But since by definition My € oV, we have by (1) n¥(z) = 0.
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Referring to the initialization phase, it is easy to see that the
choice {{n+1,i}} for 7#'” (where n = [II)) prevents disruption of
disjointness during the €-phase. Indeed, no Mz can ever equal a set
{n% 1,4}, since either rank (M z) =0 or rank (Mxz) > n+3, whereas
rank ({n+1,1}) =n+2, ¢ =1,...,n Furthermore, since these sets,
called individuals, «mark» places to which they belong, in the sense
that on termination of the instantiation algorithm we have

{n+1,1} € Mz if and only if m(z) =1, fori=1,...,n,
it follows easily that M z#My, for all distinct variables z,y in Q.

This proves that condition (8) is both necessary and sufficient for

satisfiability of a set of formulae of MLS.

Summing up, we have proved:
THEOREM 2.3. ([386]) Let QQ be a conjunction of literals of the
types (=, €). Then Q) is satisfiable if and only if there exist
(i) a set Il of places of @),

(ii) a correspondence x +— %, where x ranges over the variable of @),

and ©w° is a place at z,
(i) an ordering < of the variables in ()
such that
(a) no two distinct variables of () are Il-equivalent,
(b) if x <y then n¥(z)=0. |
Since places are 0/1-valued functions defined on the set {y1,..., ym}
of the variables occurring in (), it follows that the number of all
possible places of () is bounded by 2™. Therefore satisfiability of the

conditions appearing in the preceding theorem above is decidable,
and we have

COROLLARY 2.4. The theory MLS is decidable. N

Much the same technique described above allow to prove the
decidability of the extension MLSS obtained from MLS when the
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singleton operator {s} which maps a set s into the set whose only
element is s is present.

By applying a straightforward normalization process as before, it
is easily seen that we can limit ourselves to considering only those
formulae @ of MLSS which are conjunctions of literals of the type
(=, €) and literals of the type

«h T = {v}.

In order to satisfy a literal in ) of the type z = {y} we must force
y € =, and also must ensure that the set z is given just one element.
The first condition can be satisfied by adding the formula y € z to Q.
To satisfy the second condition we need to impose the condition that
there is exactly one place 7 for which n(z) = 1, and moreover that
this place is precisely the place at y. It is clear that these conditions
together with those listed in Theorem 2.3 are both necessary and
sufficient for () to be satisfiable. This simple argument gives:

THEOREM 2.5. ([36]) The theory MLSS is decidable. ||

We mention here that also the extension MLSX of MLS by
one occurrence of the operator X(z), where X(z) = {{y} : y € z}, is
decidable (cf. [15]). Note that MLSX properly extends MLSS. The
proof of the decidability of MLSX involves considerations of various
special orderings on places.

In the next sections we will consider other extensions of MLS in
which similar considerations play an important role in proving the
decidability.

The decision procedures given for MLS and MLSS are easily
seen to be elementary recursive in the sense of Kalmar (cf. [477),
i.e. the length of the computation required to decide MLSS can be
bounded by a quantity multiexponential in the length of the input
formula. In fact, by refining the arguments above it can be shown
that the satisfiability problem for MLSS in NP-complete (cf. [27]).
Roughly speaking, the NP-completeness of the decidability problem
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- for MLLSS can be proved as follows. The NP-hardness is immediate,
since the propositional calculus is linearly embeddable in MLSS. To
prove the membership to the NP-class, one can show that every
satisfiable formula @ of MLSS admits a model which can be described
by a directed graph of size O (|Q|?), where |Q| denotes the number of
distinct variables in Q. Such a graph is called a model graph of Q.

More generally, it can be shown that all unquantified extensions
of MLS to be discussed below are elementary recursive.

However, in Section 3 we will exhibit techniques for proving the
decidability of particular quantified classes of formulae of set theory
which do not imply at once the elementary recursiveness of the
theories considered. |

2.2. Syllogistic schemes.

In the previous section we have seen that a formula ¢ MLSS is
satisfiable if and only if there exists a set O of finite and bounded
objects (such as places, places at variables, etc.) satisfying a collection
C of combinatorial conditions.

It has also been provided an instantiation procedure that given
an MLSS formula Q and a set O (of certain objects) produces an

ass1gnment Mo (7r ...,wg’)), dependmg on the initial choice for the
sets @”,...,7® (we are assuming that I1= {m,...,7,} is one of
the obJects in O). If O satisfies the conditions C, then there exists
sets 7,..., 79 (for instance, #¥ = {{n+1,i}}, i =1,...,m) such

that Mo (w&o),...,ﬁ,(f))) is a model for  (observe that in general
Mo @E?, ... 7©) needs not be a model for Q).

Given a satisfiable MLSS formula () two questions arise at this

point:
e Is any model of () representable as M (7,...,7,), for some sets
My een, Tp?

e Are the classes of models relative to distinct sets of objects disjoint?

In [23], the set of objects O are formalized in the language
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MLSSF (MLSS plus the predicate Finite (z)) in such a way that
both questions have affirmative answer, at least in the case of the
decision problem for MLSSF. The analogous problem for the extension
of MLSSF with a choice function and the comparison predicate has
been considered in [18, 19]; see also Section 2.9.

In [28], it is shown that for every set X = {z1,...,z,} of
variables, all possible assignments over the variables in X can be
partitioned into finitely many classes, each of which characterized by
a suitable formula called syllogistic scheme, such that every MLSSF
formula involving only variables in X has the same truth value under
all assignments in the same partition class.

To see how syllogistic schemes are obtained, consider m sets

Q1,...,Gm. Put i~ j ifa;=qa;, fori,j =1,...,m. Let 1y,...,7, be a set
of ~-representatives and for simplicity put s, =a,,, h=1,...,n Then
s;#s;, for every 4,7 =1,...,n such that s#j. Also put 1R j whenever

s; € s;. Hence, each s; can be rewrittens as

si=b;U{s; 1 jRi}

for suitable sets b; disjoint from {si,...,s,}. Additionally, form all
sets
cyg = ﬂ b,\ U bj,
ieH  j¢H

for all §+H C {1,...,n}, so that we have

5 = U cyg U U {s;}.

Finally, put Z = {H : cg#0} and F = {H € Z : cg is finite}.

It turns out that the equivalence relation ~, the acyclic relation
R, and the sets Z, F' are sufficient to allow the evaluation of any
MLSSF formula under any assignment which generates them.

More formally, let X be a set of variables, ~ an equivalence
relation over X whose equivalence classes are {z1p,Z11,.--,Z1L, }>-- -,
(@m0, Tnl s - -+ Tuiy - Put sy =30, fori=1,...,m,andlet S = {s1,..., 8, }.
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Additionally, let ® be an acyclic relation over S.For each
0=H C {1,...,n} introduce a new variable yy; and let ¥ be the
collection of all these variables. Finally, let F C Z C ¥ be such that
for no distinct s;,s; in S

e sR.s; if and only if s® s;, for all s in S, and
e 1 ¢ H if and only if j € H, for all yg in Z
can hold together.

Let Ox.Ryzr denote the formula

&ypev (Ur#d & &&icnsi & yur & &yer\fun) v Nym = 0)

&&ign S¢=$¢1=...=$1‘Li=UyHUU{S]'}
y;fgz iR
& &y, ecr Finite (yg) & &yyez\r Finite (yg).

Ox RyZF is called a syllogistic scheme over X (relative to ~, R, %, F).

Let ¥x denote the finite collection of all syllogistic schemes over
X. Then the following properties hold.

THEOREM 2.6. ([23]).
(a) Irredundancy: Every syllogistic scheme in Zx is satisfiable.

(6) Mutual exclusion: For every two distinct syllogistic schemes
01,072 € Xx,01&07 is unsatisfiable.

(¢c) Exhaustivity: (VzexT)Fyer v) ( \/ 0> s valid. n
, UEZX.
Moreover, if @ is an MLSSF conjunction with no compound
terms, involving only variables in X, then
THEOREM 2.7. ([23])

(a) For every o € Ly, either 0 — Q or ¢ — =@ is valid. Moreover it
is possible to establish algorithmically which of these two cases
holds.
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(b) It is possible to determine algorzthmzcally a subset ZQ of Lx such
that the formula

(Vaexz) | Q & Gyerw) | \/ ©

UEZQ
1s valid. [ |

\/ o is called a syllogistic normal form of Q.
OEZQ
Syllogistic normal forms can be easily generalized to any formula

of MLSSF (not necessarily simple conjuctions). Notice that an MLSSF
formula is satisfiable if and only if its syllogistic normal form
is nonempty. However, the decision procedure suggested by this
observation is utterly inefficient. In [27] it has been proved that in
the absence of the singleton operator, every satisfiable formula of
MLSF admits always a «minimum effort» syllogistic scheme, so that
in trying to prove satisfiability of a given formula, one needs only to
look for such minimal syllogistic schemes; see [27, 46, 38] for further
details. '

In the following sections we will review some other decidable
extensions of MLS.

2.3. MLS with cardinality constructs.

Next we consider the extension of MLS with the cardinality
operator |- |. Such a theory involves two kinds of variables, namely
set-variables and variables denoting cardinal numbers. Moreover the
addition + and cardinal relations < and = are also allowed.

Much as before, it turns out that in order to get a decidability
result for this theory, it is enough to consider conjunctions () of
literals of the form (=, €) togetehr with literal of the form

(I'D lzlzqh
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() vitvy =03, v <y, v1 =0, v =1

where z is a set-variable and v, v;, vy, v3 are cardinal variables.

Given a set I = {m,...,m,} of places of Q, we introduce a new
cardinal variable v, for each place 7 in II. Then a system Cgn of
cardinal linear equations and inequalities is obtained by adding to
the cardinal literals in Q of type (C) the equations Z Ur = v, ONe

' m(z)=1
for each literal in Q of the form |z| = v. v

The instantiation algorithm described in the preceding section
generalizes easily to MLS as extended to include a cardinal operator
(at least for what concerns set variables). Indeed, once having
instantiated all cardinal variables, all that is needed is to modify the
initialization phase of the instantiation algorithm in such a way that
the correct number of individuals goes to each set #; this number is
determined by the value of v, and the number of variables z such
that 7 is a place at z. |

Thus Q is satisfiable if and only if the conditions of Theorem 2.3
can be satisfied with a set IT of places of Q such that the system
of cardinal linear equations and inequalities Cgon has a cardinal
solution. Since the solvability of such a system Cgn can be tested
effectively (e.g. [563]), it follows that MLS extended by the above
cardinality-related operations is decidable.

It is also known that purely additive integer arithmetic is
decidable (cf. [50], [31]). Therefore much the same procedtire implies
the decidability of MLS theory extended by the cardinality-related
operators that have been listed, but with the further assumption that
cardinal variables can range only over nonnegative integers.

Observe that MLS with cardinals actually extends the simpler
MLSS theory considered before. Indeed, the literal z = {y} can be
expressed by writing y € ¢ & |z| = 1. Likewise, it can be expressed that
a set is infinite. For instance, the formula |yU{y}| = ly| is satisfiable if
and only if the set y is infinite whereas y =0V (z € y & |y\{z}| < ly])
is satisfiable if and only if y is finite.
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2.4. MLS with rank constructs.

In this subsection we will present some extensions of MLS
with rank related constructs. We recall that the rank of a set is a
measure of the depth of nesting of the constructor {-} within it.
Thus, for instance, rank(@) = 0, rank({{0},0}) = 2, etc. (see Appendix).
Intuitively, if rank(s) <rank(t), then the set s must have been
constructed before ¢ in the universe of all sets. The relation rank(s) <
rank(t) will be abbreviated with s < ¢t and < is called rank comparison.
We will survey in some detail the extension of MLS with < (see [15)).

To take into account the new relation <, the set of. places
IT={m,..., ) relative to a given formula @ of MLS plus < is
given an ordering relation (which, for simplicity, coincides with the
indexing order). The intuition behing m; < m; (i.e., 1 < j), with 1 <7,
j < m, is that the set 7; (to be associated with the place m;) must
have rank not greater than the rank of the set 7;. '

In addition, it is necessary to locate the places in which there is
a rank jump. This is given by an increasing sequence of integers

O=rp<ri <...<re=m,
with the understanding that
ract < 1,02 < To ¢ rank(Fa_1) < rank(f,).

It is also useful to introduce the map R : {l,...,n} — {1,... ¢}
such that
R(j) =a whenever r,_; < j < r,.

Then it can be shown the following theorem.

THEOREM 2.8. ((15]) A formula Q) of MLS plus, <, < is injectively
satisfiable if and only if there exist: |
(1) a set Il = {7r1,.‘..,7rn} of places of Q);

(ii) a mapping x — w° from the variables of () into II;
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(1it) @ sequence of integers 0 =19 < 11 < ... < 1. =n and a
nondecreasing surjective map R :{1,...,n} — {0,1,... ¢}
such that:

(@) no two variables in Q) are Il-equivalent;
(b) n" is a place at z, for all T in Q;

(¢) rrj)»-1 < J < TRy forall j=1,....m

(d) if mj(y) =1 and n¥ =, then R(j) < R();

(e) if yiy, < yi, [resp. yi, < y;,] is in Q, then
max{R(t) : m(y;,) = 1} < max{R() : m(y;,) = 1}

[resp. max{R(t) : m¢(y;,) = 1} < max{R({) : m(y;,) = 1}]. |

The decidability of MLS plus < is an immediate consequ'ence of
the fact that the conditions of Theorem 2.8 are effectively verifiable.

The theory MLS plus < has been variously generalized. In [15] a
decision procedure is given for the extension of MLS in which terms
of type rank(z) can be freely combined together with the other set
theoretic constructs. Since

s<t iff rank(s) € rank(t),

MLS plus < can be embedded in MLS plus rank; see also [13] for a
quantified theory involving the operator rank(z).

Also related to the notion of rank are the operators pred. and
pred. defined respectively by

pred_(s) = {t : rank(t) < rank(s)}
pred(s) = {t : rank(t) < rank(s_)}

(see [64]).
[13] proves the decidability of the theory MLS plus pred.. Since
s < t if and only if s Epred_(t), this theory embodies MLS plus <. In
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the same paper it is also proved the decidability of the theory MLS
plus < and singleton. Both such results are generalized and combined
in [11] where it is shown that MLS with singleton, pred., pred., and
the predicate Finite is decidable. It is also argued that decidability
is not disrupted even if the additional predicate which says that a
set is hereditarily finite (i.e., it has rank less than w = {0,12,...}) is
allowed. |

Notice that the presence of the singleton operator complicates
matters quite a bit. Indeed, starting from the empty set (which is
expressible in MLS by the formula yo = yo\yo) the singleton operator
allows to build in a finite number of steps sets ¢t of a given fixed
rank. This implies that every set s whose rank is bounded in the
formula by any set ¢ of fixed rank can vary only in a finite collection
of sets, a priori determinable.

The above discussion is formalized by the notion of trapped place.
For instance, in the case of MLS plus <, <, {-} the following notion
of admissible set of trapped places is introduced.

DEFINITION 2.9. An admissible set of trapped places :is any
subset T of Il such that for all pla¢es 7 in Il and for all variables

v,y in Qi

o 7(y) =1,

o {m :mi(y)=1}C T,

o cither y={y'}isin Q,ory<y isin Q, ory<y isin Q
then me T.

Given an admiséible set of trapped places T, a variable y occurring
in Q is said to be trapped (with respect to T) if {m; : mj(y) =1} C 7.

Then Theorem 2.8 takes the form

THEOREM 2.10. ([13]) Let Q) be a normalized conjunction of MLSS
plus <, < containing the literal yo = yo\yo. Let V = {yo,...,ym} be the
set of variables occurring in ). Then () is injectively satisfiable if and
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only if there exist:
(1) a set Il ={my,...,m,} of places of Q such that my is a place at yy;

(it) a positive integer k < n such that T = {m,...,m;} is a set of
admissible trapped places, and for which there exists a positive
integer h < m such that exactly the variables vyo,...,y, are
trapped;

(iti) nonempty pairwise disjoint hereditarily finite sets 75, 0<j <k,
of rank lower than m+1 such that the assignment My, = U Ty

mi(yi)=1
is an injective model for the subset of Q) involving only trapped

variables;

(iv) a mapping x +— ©° from V into I1 (for simplicity, we define also a
function F: {0,... , m} — {0,...,n} such that F(i)=j if n% = )

(v) a sequence of integers:rmo =k < r1 < ... < 1, =n and a
nondecreasing surjective function R : {k+1,...,n} — {1,... ¢}
such that:

(a) no two variables in P are Il-equivalent;

(b) 7¥i(=mpu) is a place at y;, for all 0 < i < m;

(c) if y; and w; are trapped and My € T; then 7% = m;;

(d) if j >k (i.e. if w; is nontrapped) then TR(G)-1 < J < TRGY

(e) if mi(y;) =1 then R(j) < R(F(1)).
Forall 1€ {h+1,...,m} we put

" = max{R() : m(y;) = 1}.

Then we have
@D if yi, < yi, 18 in Q and y;, is nontrapped, then i1 < 15
) if yi, < yi, 1S in Q and y;, is nonirapped, then 17 < 15
(h) if yi, ={yi,} s in Q and y;, is nontrapped, then

(h1) w2 (y;) =1;
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(ho) if my#m¥2, then m;(y;,) =0, j € {0,...,n};

(h3) if F(i) = F(iz), then i =1y, for all i € {0,... ,m} (ie, 7% is a
place only at the variable y;,);

(he) R(F(ip)) = 1% +1. | u

Notice that sets #, relative to trapped places m; can not contain
«individuals», but have to range over a finite collection of sets of
«low» rank. This makes the search for a model very inefficient since
one can not define all sets 7 in a uniform manner but has to
exhaustively search the space of all possibilities.

We conclude this section by mentioning that the extension of
MLS with singleton and both rank and cardinality comparison has
also been proved decidable in [10]. The decision method combines
the techniques outlined in Section 2.3 for cardinality constructs with
those described in the present section.

2.5. MLS with the general union operator.

In this section we show how the ideas introduced in Section 1.1
can be be generalized in such a way as to establish the decidability of
the unquantified theory MLSU obtained from MLS by also allowing an
unrestricted number of occurrences of the general union operator Un, |
where Un(s) stands for the union of all elements of s (see Appendix).
As usual, we can limit ourselves to considering only formulae Q of
MLSU which are conjunctions of literals having one of the types
(€,=) (as in MLS) and literals of the type

Un) u = Un(y).

Assume that a set Il = {w,...,m,} of places of Q is given, and
also suppose that an ordering < among variables of Q is fixed. The
heuristic technique used in order to find conditions which are both
necessary and sufficient for Q to be injectively satisfiable resembles
that used in the MLS case. That is, we use an instantintion algorithm
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of the type described in Section 1.1 with an intialization phase and
an €-phase, and we look for conditions which guarantee the correct
output from such an algorithm.

A first condition is suggested by the following observation.
Assume that 7%(y) = 1 for variables z and y for which there is a
clause v = Un(y) in Q. Then since Mz ¢ 7%, it follows, by 7*(y) =1
above, that when the instantiation algorithm terminates, we must
have Mz € My. In order for Mu = Un{My) to hold we must therefore
have Mz C Mu, which is ensured as long as for every place 7 € II
such that w(z) = 1, we have n(u) = 1. Thus a first obviously necessary
condition is:

(*) if for a variable z in () we have %r”(y) =1, with v = Un(y) a
clause in @), then for every place w € I1, n(z) = 1 implies w(u) = 1.

The remaining conditions necessary for satisfiability can be
derived by closer analysis of the initialization- and &-phases. A first
problem si how to find values 7#© such that the «temporary» assignment

Mz = U 7@ satisfies all conjuncts in @ which do not involve the

a(x)=1
membership relation €. For this, we begin with a set of places in which

individuals can be put without exercising any special care (except
that certain rank restrictions must be satisfied). Then we proliferate
individuals in such a way as to initialize the sets 7 appropriately.

It turns out that all inclusion relationships Un U | C U T,
| m(y)=1 m(u)=1
where u = Un(y) occurs in @, can be forced by the first part of the

initialization phase (proper initialization). A subsequent stabilization
subphase then turns these inclusions into equalities. During the
c-phase, every insertion of a set Mz into #° can disrupt inclusion

relationships of the type U w C. U 7 |, where u = Un(y) occurs
m(u)=1 m(y)=1
in ( (the reverses of these inclusions are maintained because of

property (*)). To cure this problem, it is only necessary for each
substep of the c-phase to be followed by a stabilization subphase.
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For the various stabilization phases that we have just sketched
to function properly some relation among places is required. This
suggests the following definition which associates a graph with the
conjunction ¢ and its set IT of places.

DEFINITION 2.11. Given a conjunction Q and a set I1 of places
of Q as above, the Ugraph G of Q, Il is the graph whose set of nodes
is 11, plus one additional node Q, and whose edges are as follows:

(1) a directed edge connects m to Q if and only if n(y) =0 for every
variable y for which u = Unly) is in Q (intuitively this means
that clauses u =Un(y) of Q tell us nothing about the set Un(#),
which allows the proper initialization phase to start with such
places);

(it) otherwise, a directed edge connects the place o to the place
B if and only if B(u) =1 for all clauses u = Un(y) such that
a(y) =1 (intuitively, the nodes 8 such that o — B is an edge of G
represent all the sets 3 in which elements of Un(7) can appear.
Indeed, let y,,,...,y; be all variables y such that u = Unly) is
in Q and a(y) =1, so that & C My, U...My,. It follows that
Unla) C Muy, U...u Mu;,, t.e. Un&) is contained in the union of
all sets f3 such that o — B is an edge of G). u

In the graph just introduced we can distinguish three kinds of
nodes. Those from which there is a directed path which reaches Q
are called safe. A node is called trapped if every sufficiently long path
from it eventually reaches a node from which no edge branches off
(null node). Finally a node is cyclic if it is neither safe nor trapped.
Intuitively, trapped places are those places whose elements are subject
to severe restrictions. Consider for example the following formula:

Unlz) =0 & Un(y) =z & Unlz) =y & 1 = {.

It is easy to see that in any set of places of the formula above, all
places are trapped. It is also evident that variables z, y, z can assume
just a few values; this «semantic» fact reflects the «syntactic» fact that
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we have justed noted. Trapped places are dealt with by observing
that such places can be assigned only sets. having rank at most one
more than the maximum length of a longest path forward from each
of them to a null node. Therefore only a finite number of possible
choices must be checked in order to determine the value 7 to associate
with such a 7. On the other hand it turns out that each nontrapped
place 7w can be assigned an infinite 7. This fact simplifies a lot the
initialization phase, since the «individuals» which we place into 7
initially easily propagate along the Ugraph via singletons or pairs.
A rough description of the first initialization phase is as follows
(for simplicity we only consider the case in which no trapped place.
exists). First of all infinitely many individuals are associated with
every place 7 of Q such that 7 — Q is an edge of the graph G.
Then any safe place can iteratively be given an infinite supply of
elements by drawing elements from its descendants and forming their
singletons. The same technique can also be used to initialize cyclic
places, -once we observe that the null node 7y must lie on a cycle
which can be given elements by successive formation of singletons
of the empty set § (which is assigned to 7g) and that the null node
must be reachable along edges of G from every other node (by the
regularity axiom of set theory; see Appendix). This observation, which
in substance gives us a second condition for the satisfiability of Q,
guarantees that proper initialization can be accomplished successfully.
Once this phase is completed, all literals of type (=) are correctly
modeled; however for literals « = Un(y) in @ all we can say is that

un| |J ) c | ®

m(y)=1 m(u)=1

To get equalities in place of these inclusions, the following
stabilization phase is then performed. For each element p which has
been put into 7 and for every clause u = Un(y) such that n(u) =1 (i.e.,
intuitively, 7 C Mu), an element A is found such that after inserting
A into 7 no inclusion of the type above is disrupted. Then the pair
{p, A} is inserted in a place 8 such that 8 — 7 is an edge of the

Ugraph G. We refrain from stating the conditions which guarantee
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that such a stabilization phase can actually take place, since they are
quite involved. The interested reader can find a complete description
of them in [22].

As observed earlier, a stabilization process is also needed in the
€-phase. Overall, the instantiation algorithm for MLSU therefore has

the form
For every place n let

Initialization { o= 7O
Stabilize

Following the order < of variables z in Q do

€ —phase 7=t U{ Mz} <where Mz = U 7‘r>
m(z)=1
Stabilize

2.6. MLS with the powerset operator.

The decidability problem for MLS extended by the powerset
operator pow (where pow(s) = {t|t C s}) can be easily reduced to
the satisfiability problem for conjunctions @ of clauses in MLS and
clauses of the type

(pow) p = pow(q).

In the preceding section it was convenient to introduce a graph
structure among places of (). In the present case we will see that
what is needed instead is a relation between sets of places and places.

We begin with some general considerations on the powerset
operator. Let si,s2,...,3, be nonempty disjoint sets. Then we have

pow(siUsyU...Us,) = U pow*(A),
Ag{sl,sz,...,sn}

where pow*(A) stands for the set of those subsets of U s which

SEA
have nonempty intersection with every element of A. The validity

of the formula above can be easily verified by observing that every
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element on the right-hand side of the equality above is a subset
of siUsy UsyU...Us,. On the other hand, if ¢ is an element
of pow(s;Usy,U...Usy,), then ¢t €pow*(4:), where A; = {s;|s; Nt=0,
i =1,...,n}. Hence, if p =pow(q) is a powerset clause in (), and
ai,...,qp are places on such that a;(q) =...=(q) =1, there must
exist places f,..., B such that Bi(p) =...= Bi(p) = 1, and such that
elements of pow*(ai,...,a&;) can lie in B; U...U B only. We indicate
this relationship by writing {a1,...,a} — B, for each i =1,... k.
(The symbolism used suggests the idea of a «flow» from the places
a1,...,q; to the place B;). In order to be more precise, we give the
following exact definition.

DEFINITION 2.12. A nonempty set {«i,...,a;} of places of @Q is
called a (Q-node if there is a powerset clause p =pow(q) in Q such that
aji(g)=1, forall j =1,...,L

If A is a Q-node, then a place B is called a target of A if for every
powerset clause p =pow(q) we have B(p) =1 if and only if aq) =1 for
all o € A

A place B is called initial if it is not the target of any Q-node A.
(Intuitively, initial places are those places which are not constrained
by powerset clauses. It is then reasonable to start initialization from
these places.) : |

A first condition for () to be satisfiable follows immediately from
the following con51derat10n If s =pow(t), then u € s 1f and only if
v C t. In terms of places, this translates as follows:

«if p =pow(q) is a clause in @, then #*(p) =1 if and only if for

every place n such that n(z) = 1, we have #(g) = L»

This condition assures that during the ¢-phase, insertion of Mz

in 7* will not disrupt any inclusion of the type U 7w C pow U T,
' m(p)=1 m(g)=1
for any powers~t clause p =pow(q) in Q.
In order to force equalities in place of the above inclusions, a

stabilization phase is needed each time a new variable z of Q is
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processed during the €-phase. Such a stabilization will proceed in a
manner defined by certain special edges of the type {ai,...,a;} — B.
(These special edges are those edges whose target is a «set» of
maximum rank; this idea guarantees against circularity).

In this case stabilization steps are easy to describe; they just
consist of assignments of the form

B = pow*(ai, coo @\ U q,

{a1,. 00} >y

where {«ay,...,} — (B is a special edge.

The initialization phase can be described roughly as follows.
Since initial places are not restricted by any powerset clause, we can
initialize them freely using a sufficiently large number of individuals.
Moreover the empty set can be assigned to the place g (for simplicity,
it is convenient to assume that §§ is a variable occurring in ( which
stands for the empty set). At this point proliferation of elements
can start. This will continue until each place has been assigned at

least one element. More specifically, for each Q-node {a,...,q},
with &,..., & nonempty, elements in pow*(a, ..., &)\ U ~ are
{a1,ou}—y

opportunely distributed among all its targets ~. [21] states conditions
which ensure that the initialization and subsequent stabilization
phases can execute properly.

Note, finally, that it can be proved that if m is the number of
different variables occurring in Q, then @ is satisfiable if and only if
Q has a model of rank at most 22" *+m+2 4+ 1.

It is interesting to contrast this last result with the fact that
there are formulae of MLS theory extended by the general union
operator which admit only infinite models. For example, the formula
z#0 & z C Un(z) is not finitely satisfiable, even though the assignment
Mz = {0o,01,...}, where §o =0 and @,.1 = {@,}, for n=0,1,..., clearly
satisfiest it.

We close this section by noticing that the extension with also
the singleton operator has been shown decidable in [6,8]. Roughly



152 DOMENICO CANTONE

speaking, it is shown that a formula @ of MLS plus powerset
and singleton is injectively satisfiable if and only if a certain
nondeterministic association procedure can produce a canonical model
of ) in time bounded by a doubly exponential expression in the
number m of variables occurring in Q.

To show the necessity of such condition, an existing model M* of
Q 1s used as an oracle to instantiate a computation of the association
procedure. Again, matters are complicated by the presence of singleton
clauses, which cause some of the places to be considered as trapped.
Trapped places are handled by maintaining a one-one partial map
from the elements of the canonical model under construction into the
elements of the oracle model. Such a map is intended to guide a
correct instantiation of the association algorithm.

At each step of a computation of the association algorithm, the
rank of any set can increase at most by one. Therefore, it follows as
a by-product that any formula Q of MLS plus powerset and singleton
is injectively satisfiable if and only if it has a model of rank doubly
exponential in the number of variables in Q.

2.7. MLS with map constructs.

Next we consider two approaches to extend MLS with map
constructs. The first, adopted in [37,4], consists in introducing a
new sort of variables denoting (multivalued) maps, whereas in the
second one, used in [29], a uﬁique sort of variables is employed, i.e.
everything is a set (recall that maps can be represented as sets of
ordered pairs). '

The language considered in [37] admits in addition to the usual
MLS constructs the following atomic formulae

zy, = flyl, zps = Df, Trr = R,

Ypo1 = f~lz], SINGLEVALUED(f), ONE-ONE(f)
where zy, zpf, o Ry Yp stand for set variables, f denotes a
map variable, D and R are respectively the domain and the range
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operators, and f[y], 7 ![z] denote respectively the direct and inverse
image.

Notice that we have
y=f el »yC Df&flyl=2NRf & fIDf\ylNz=0.

Thus literals of type y = f~![z] can be easily eliminated. To
eliminate also literals of type z 7 = flyvl, zpr = Df, zpy = Rf from
a given formula @ one can proceed by forming all sets of type
yil N yéz N...N yfc", for each map variable f, with i; € {0,1}, where
v1,92,..., Y, are all the variables appearing on the right-hand side of
literals of the form z = f[y] in @, and where yf‘ stands for either
yiNapys if i, =0, or for zpys\y, if 5, = 1. Also, for each f one introduces
the new variables s;,4, ;, denoting the term f [y;;1 N y;;z N...N y,i"] and
adds the following formulae to Q:

yil N y; N...N y,i” =0 < Sitigedy = 0

mfg’. = U Sitig..0k

ij=1

TRf = U Sitin. ik

and deletes all literals of type zy, = flyl, zps = Df, zrs = Rf. If Q is
the resulting formula, then one can prove the following theorem

THEOREM 2.13. ([37]) Q is satisfiable if and only if Q satisfiable.
N

It is also easy to eliminate from () 'literals of the form
SINGLEVALUED (f) and ONE-ONE (f) thus reducing the satisfiability
problem for MLS with map constructs to that for MLS. Cardinality

constructs of the type considered in 2.3 can be also combined with
the two-sorted language above still maintaining decidability (cf. [37]).

In [29], the map related notions such as domain, inverse,
singlevalued, etc. are permitted to apply to any variable. Specifically,
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the theory considered is the propositional closure of the set-theoretic
clauses of the forms

d = Df, PAIR-IN(z,y, f), INV(f, ), SINGLEVALUED()

in addition to MLS clauses. The intended meaning of the operator
D and predicates PAIR-IN, INV, SINGLEVALUED is as follows. For
every set f, let pairs(f) be the collection of all ordered pairs [p, q]
present in f. Then Df denotes the set {z : [z,y] € pairs(f), for
some y}; the predicate PAIR-IN(z,y, f) is true if and only if [z,y] €
pairs(f); INV(f,g) is true if and only if {[p,q] : [¢,p] € pairs (N} =
pairs(g); the predicate SINGLEVALUED( f) is true if and only if for
all [p,ql, [, ¢'] in pairs(f) if p = p' then ¢ = ¢’. Observe that according
to such interpretations, a set f admits a whole class of inverses g,
ie., (pairs(f))~1 U S, for every set S such that pairs (S) = 0.

The set representation of an ordered pair is not central for the
decidability result in question. The one adopted in [29] is

[p,q]l = {{O) {p}}> {2’ {Q}}};

where the integers 0 and 2 stand for the set-theoretic representation
of the ordinals 0 and 2, i.e. § and {@,{0}} respectively.

Notice that in the two-sorted language of [37], constructs like

fl = f2Uf3’ fl = fZ\f?n T & fls fl € f2’ PAIR'IN (a;ay)f)a etC.,
where f1, o, f3 are function variables and z,y are set variables, are

forbidden, whereas they are allowed in [29].
Other constructs expressible in the language are the following:
e r=Rf, where Rf = {q: [p, q] €pairs(f), for some p};

¢ RESTR(g, f, z), which denotes (Vp)(Vg)([p,q] € g «> (Ip,q] € fAp €
T));

o y=flz], y=fzl;
o INJECTIVE(f), which denotes (Vp)(Vp')(Vq)(p, q] € fALY, q €
f—p=p).
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Notice that the term pairs(z), which allows to characterize maps
in- their standard representation (i.e. as sets of ordered pairs), is
not expressible in the language under discussion. The main difficulty
in permitting also occurrences of such terms is that their presence
would allow. to express the singleton operator too, and therefore the
typical pathology of trapped places (see Section 2.4) would have to
be taken into account. At this stage, it is not clear how to combine
the techniques developed for trapped places with the quite intricate
construction described in [29].

In [29] it is proved that a formula () of MLS plus map constructs
is injectively satisfiable if and only if there exist some maps and
relations, whose domains and ranges are finite and effectively
determinable from (), satisfying some eleven conditions which for
simplicity are omitted here. In addition it is shown that when such
conditions are satisfied, then it is possible to describe a construction
process which build a skeletal model of () (or a model graph; cf. [49]).

A skeletal model of () is a well-founded, quasi-extensional directed
graph G associated with () admitting a representation which in turn
determines an injective model for (). More precisely.

DEFINITION 2.14. A directed graph G = (N, E) with nodes N and
edges E is said to be well-founded if it has no infinite descending

chain. _
A directed graph G = (N, E) is said to be quasi-extensional if for
all vi,v2 € N,

{ueN:u=uvnisinE}={u€N:u=uvyisin E}=)
implies vy = vy. ||

DEFINITION 2.15. A function R defined on the set N of nodes of
a well-founded graph G = (N, E) and with values on a class of sets is
called a representation of G if for all vi,v, € N

(i) R(U1) = R(’Uz) implies V1 = U,
(i) R(v1) € R(vy) if and only if vi = v, is in E. | [ |
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Typically, a representation of a well-founded graph G = (N, E) is
constructed inductively starting with a map I from N into a universe
- of sets as follows

4) R(w)={R():uv=vis in B} U I(v).

The elements of I(v) (when nonempty) are the so-called individuals.

To see how this approach is a generalization of the instantiation
techniques discussed in the previous sections, we show how to build
a skeletal model for a formula Q of MLS for which a set of places

II1={n,...,m,} and an ordering < of the variables in Q) satisfying
conditions (a) and (b) of Theorem 2.3 are given.
We put A

N = pow(Il) U I,
with INpowdD = @ and |I1;]| = |I|. Moreover, let . : [T — II; be a

one-one map. Then F consists of the following edges:

(a) the edge {7 : m(z) =1} => A is in F for each variable z in Q and
each A C IT such that 7% € A;

(b) the edge «(m) == A is in E for each 7 € Il and A C Il such that
7w e I1.
It is then easily seen that G = (NV,E) is a well-founded
quasi-extensional graph. Moreover, if we put

{{n+1,i}} ifv=uy
I(w) =
@ ifUEN\Hl,

where vy, ..., v, is an enumeration of I1;, it turns out that (4) defines
a representation of the graph G. A model M for Q can then be
obtained by putting

Mz = R({m: n(z)=1})

(see Section 2.1).

This approach, which is quite redundant for the simple MLS case,
allows to set a clear distinction between the initialization phase and
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the stabilization phase or ¢-phase. The initialization phase consists
in choicing the map I(v), whereas the stabilization phase is the
core of the construction process which actually builds the internal
structure of the skeletal model. Moreover, the construction process
can be stated nondeterministically, since at the stage of defining the
skeletal model one does not need to be specific on the nature of the
elements involved during the stabilization phase.

2.8 MLS with the unary intersection.

Another important set-theoretic operator which has been consi-
dered very recently in the field of Computable Set Theory.is the
unary intersection [, defined by

ﬂs={u:u€tforallt€s}.

In [12] it is shown that the theory MLSSRI obtained by extending
MLS with singleton, rank comparison, and unary intersection is
decidable.

To simplify the statement of the satisfiability conditions, we give
the following definitions.

Let Q be a normalized conjunction of MLSSRI, i.e., a conjunction
of literals of the following types

(=) i =y; Uy, ¥i = yj\Uk
D vi={y}
(<, <D i <y, 0 <Yy
(P wvi=( v

whose distinct variables are V = {y1,v2,...,Um}-
Let [1={m,...,m,} be a set of places for Q.

DEFINITION 2.16. We say that a place w; € 1 is a singleton place
if there exist y,, y: such that y, = {y} is in Q and m(ys) = 1. We
denote by SING the set of singleton places. o
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In the following we will identify variables y, and places m; with
their indices s and 1, respectively.

To each variable y, we associate the set of places
M(ys) = {1 : m(ys) = 1}.

Also, given a map F : {1,2,...,m} - {1,2,...,n}, to each place
m; we associate the set of variables

V(m) = {s: F(s) =1}.

Finally, given an increasing sequence of integers ro =0 < r; <
... < 7, =mn, we introduce the map R : {1,...,n} - {1,...,1} defined
by

(5 R@=min{h :7, 1 <i< Th}
and also pﬁt
(6) s*=max{R(j) : j € I(y,)},

for each s € V.

The presence of the singleton operator lead us to introduce the
following notion of trapped places.

DEFINITION 2.17. An admissible set of trapped places (with
respect to a set of places Il, a map F, and an increasing sequence of
integers ro=0<r; < ... < T =mn) is any subset T of 11 such that:

(@ if i € T, then i' € T, for all i € {1,...,7re}; and
(@) if 1 €SING and I(y,) C T for all s € V() then i € T.

A place ; is said to be trapped if i € T. A variable y, is said to
be trapped if T1(y,) C 7. N

The logical Weighf of clauses of types y, = (Nv: and of type
y+ = {ys} is taken into consideration in the following definition.
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DEFINITION 2.18. The I-graph G of @ is the graph having Il as
set of nodes and such that m; — 7; is an edge of G whenever either

(@) there is a literal ys =(\y: in Q such that m(ys) =1 and m;(y:) = 1,
or

(b) there is a literal yy={ys} in Q such that m(ys)=1 and m;(y:)=1. W

The satisfiability conditions for MLSSRI formulae in normal form
are stated in the following theorem.

THEOREM 2.19. ([12]) Let () be a normalized conjunction of
MLSSRI. Let V ={y1,...,yn} be the collection of variables occurring
in Q. Then Q) is injectively satisfiable if and only if there exist a set of
places 1= {m,...,m}, a map F:{l,...,m} — {1,...,n}, a sequence
ro=0<r <...< 1 =mn and an admissible set of trapped places
T ={1,...,r4,} CII such that:

(1) no two variables in () are Il-equivalent;

(2) there exist nonempty, pairwise disjoint hereditarily finite sets
of rank not greater than hi, Ty Ty such that, defined

My; = U 7, then M is a model for the clauses in Q involving
ms(yi)=1
only trapped variables and such that if My; € #; then F(i) = j;

(3) if mi(ys) =1 then R(j) < R(F(s)), where R is defined in (5);

(4) if ys = {y:} is in Q then:
4.1) (ys) =1={7rp},
4.2) F~Y(F@®)) = {t}, and
(4.3) R(F@)) =t*+1, where * is defined in (6);

(B) if ys <y [resp. ys < yed is in Q then s* < t* [resp. s* < t*];

(6) if ys =[\y: is in Q then
(6.1) I1(y,)=0,
(6.2) if m(ys) =1 and wpu(y;) =1 for some u € {1,...,m} then
ﬂi(yu) = 1)
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(6.3) if mi(ys) =1 and nj(y;) =1 then R@) < R()),
(6.4) if I1(y;) CSING, then if m(y,) =1 for all O < u < m such that
Trw)(y) = 1, then m(ys) = 1.
(7) Let G be the I-graph of Q. Then, if () contains the conjunct
y; = (N y: and there is an i € I such that m; — m; for all j & I(y;)
then m(y,) = 1. |

The structure of the I-graph is exploited during the instantiation
of a model for (), assuming that the hypotheses of Theorem 2.19
are all satisfied. Specifically, suppose that there exist I, F, o =0<
r1<...<mr=n,and T ={1,...,7r,} such that conditions (1)-(7) are
satisfied.

Put
v = E || +m+2n+1
ﬂgET

and let
Lm0, 1., y+ 86 +20\{i)
I = {0, L...,v+SON{7}
fz' = {{L’,Z} 2 E L}

where

: R®) ifi<m
S@G) = {
R —n) otherwise.

Then the following procedure instantiate a model for Q.

PROC Buil-model;
FOR 7:=1 TO »n DO
L;:=0
END_FOR
FOR + € T DO
FOR z € m; DO
Propagate (2, m;)
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END_FOR
END_FOR
FOR 1:=1TO ry, DO
O =
END._FOR
FOR 7 =7y, +1 TO n DO
IF (z € SING) THEN DO nothing
ELSE IF (L(1) = ¢) THEN
0 = {fi, fn+‘i}
ELSE
Ji =L ULG)
Jwi = [ori U LG)
o; = {Ji, Joui }
END_IF
END_IF
FOR s € V(m;) DO
(*) My, = U of

i (ys)=1

END_FOR
o; =0 U{Mys :s € V(m)}
FOR 2z € 5; DO
Propagate (z,m;)
END_FOR
END_FOR
END_PROC

The code of the procedure Propagate is given below
PROC Propagate;
FOR each j € IT\(7U SING) DO
IF m; — m; is in G THEN
LG) = L(G) U {2}
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END_IF
END.FOR
END.PROC

Then, it turns out that the assignment M defined in line (¥)
is a model for (). Moreover, it follows from such a construction that
every satisfiable formula () of MLSSRI always possesses a model
whose rank is finite and bounded by a number depending solely on
the length of QQ and a priori determinable.

2.9. MLS with a choice operator 7.

A choice operator n is a map from the von Neumann universe
V of all sets into itself such that ns € s, for every nonempty set s.

By no means such a property characterizes univocally a choice
function 7, thus, for decidability purposes, it is necessary to consider
also additional conditions. For this reason we require that for every
nonémpty set s, ns must be the minimum of s with respect to a
given well-ordering < of all sets. Furthermoré, we require that for a
well-ordering of all sets to be admissible, it must satisfy the following

axioms:
1. rank(z) <rank(y) — z < y (monotonicity);
2. for all finite sets z,y,
w-<z/++rnEXCz\y)-<In3X(y\m)
(antilexicographicity);
3. if z is finite, then z < y for all infinite sets y such that rank(y) =

rank(z).

[46, 16] describe well-orderings of 1/ satisfying axioms 1-3, thus
showing their consistency.

Notice that axioms 1-3 are not powerful enough to characterize
univocally a well-ordering of all sets, so that we have still an entire
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class of choice functions. This indefiniteness leads to various different
satisfiability notions (cf. [46]).

Let C denote a privileged version of the choice operator n. Then
a formula () is said

o weakly satisfiable, if () admits a K -model for some version K of
s

e strongly satisfiable, if () admits a K-model for every version K
of n;

e uniformly satisfiable, if ) admits a C-model which is also a

K -model for every version K of 7.

The results we will review here refer to the strong satisfiability
notion, with respect to well-orderings of all sets satisfying axioms 1-3
(and possibly others). |

The finite satisfiability problem for MLS extended with 7 has
been solved in [35]. In the same paper, it is also shown that
the ordinary satisfiability problem for conjunctions of unquantified.
formulae involving Cnly = and € (i.e., when the operators U and \
are dropped from the MLS constructs) is solvable. Both such results
have been subsequently extended in [49] where occurrences of the
singleton operator are allowed. The main result is the following
reflection principle:

THEOREM 2.20. ([49]) Given n, there is an effectively computable
function h(n) such that for every n-tuple al,v. .., Gy Of finite sets, there
are hereditarily finite sets a*{,...',a;j of rank less than h(n) such that
every propositional combination of atoms of type

x=yUz, z=y\z, T=NY, TECy, Z:{y}

with n free variables which is satisfied by ai,...,an LS also satisfied
by aji,...,al. ; |

Clearly, the preceding theorem implies the decidabﬂity of MLS
plus 7 and singleton with respect to finite satisfiability.
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In the same paper it is also proved another reflection result
which, in view of Theorem 2.20, allows to establish the decidability
of the ordinary satisfiability problem for propositional combinations

of atoms of type
(7) =y, s €y, z={y}, z=ny, z=90.

Specifically, it is proved.

THEOREM 2.21. ([49]) Given an n-tuple ai,...,a, of sets, there

are finite sets a},...,al such that every propositional combination of
atoms of type (7) with n free variables which is satisfied by ay,...,an
is also satisfied by al,...,al. |

It appears that axioms 1-3 are not sufficient to guarantee the
solvability of the strong ordinary satisfiability problem for fragments
of set theory which involve at least @, 7, €, C, =. For this reason,
[33] and [18, 19] introduce new axioms which force the well-orderings
to be «random», in the following sense.

For simplicity, we consider the case of the theory MLS plus
singleton and choice function. Consider the formula

(8) y#0 & n{=z,y}#y & 2 = y U {0}

(where n{z,y}#y simply expresses z < y). By putting
4a. yU {0} < y, for every infinite set y such that 0 ¢ y;
4b. y < y U {0}, for every set y such that § &€ y;

it is easy to see that the two groups of axioms 1-3,4a and 1-3,4b
are both consistent. Therefore, we can conclude that there are
well-orderings satisfying axioms 1-3 and in which (8) is satisfiable
and well-orderings axioms 1-3 in which (8) is unsatisfiable. This
amounts to say that MLS plus {-} and n is not decidable, at least
with respect to the strong satisfiability problem, when only axioms

1-3 are assumed,
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Much the same argument could be carried out by substituting
in (8) the set {§#} by any fixed hereditarily finite set. Thus MLS plus
{-},n is also undecidable with respect to axioms 1-3,4a (and 1-3,4b
t00).

What is needed is an axiom which postulates the «randomness» of
any admissible well-ordering, i.e. a property which falsifies any possible
axiom of type 4a or 4b. From this it then would follow the strong
satisfiability of any formula which is not «manifestly» contradictory,
where a formula is manifestly contradictory if it contradicts one of
the axioms of set theory or one of the axioms 1-3.

Such an approach has been pursued in [33] and [18, 19].
More precisely, [33] introduces the combinatorial notion of ordered
€ —{}—graph and postulates that every ordered € —{}—graph can
be n-realized (we refrain from giving here the exact definitions of
ordered € —{}—graphs and n-realizations; the interested reader can
refer to [33]). The axioms assumed on < are only:

e Yz — Yy <1,

e < is antilexicographic.

Then it proves that any formula @ of MLS plus {.}, 7 is satisfiable
if and only if it is possible to effectively associate to () certain finite
objects (among which an ordered € —{}—graph) satisfying suitable
combinatorial conditions.

The papers [18, 19] are concerned with the decision problem for
MLS with {-},n and the predicates Finite(r) and rank comparison
rz < y (standing for rank(z) < rank(y)). The axiom 8 is further
strengthened as follows.

3. If rank(z) < rank(y), z is h-infinite, and y is k-infinite, then 7 < Y
whenever h < k, where a set z is called g-infinite if ¢ is the least
integer for which there exists a sequence z, € Tg-1 € ... ET1 € 30
with 2o = ¢ and z, finite.

Then the notion of syllogistic diagram is introduced (extending
that of ordered € —{}—hraph), and again it is postulated that every
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syllogistic diagram is realizable (see [18, 19] for details). In addition,
it is shown that any formula () in the above language can be
effectively decomposed in a formula of the type

) Gz1) ...z ) Q1 V... V Q)

where the variables 1, ..., 2, do rot occur in @) and every @, involves
only variables in @Q in addition to z,...,z,, and such that

a. Q; & Q; is unsatisfiable, for every i#j, 4,7 =1,...,m;
b. Q; is satisfiable, for every 1 =1,..., m;

c. () is equisatisfiable with (9).

In other words, the formulae Qi,...,Q, allow to partition the
models of () and to describe them in the same language in which @
is written (see also [23,27]; cf. Section 2.2).

It would be very interesting to see whether there are alternative
formulations of the «andomness» axiom which are elementarily
expressible (like axioms 1-3,3' , for instance).

We close this section by mentioning a semi-decision result with
respect to the finite satisfiability problem for a quite broad class of
set-theoretic formulae involving the choice function 7. In [16] it is
shown that every safe formula in the language MLS extended with
{-}, pow, x (cartesian product), and 7 is finitely satisfiable if and
only if it is hereditarily finitely satisfiable, where a formula is safe
according to the following definition.

DEFINITION 2.22. A safe formula is an unquantified formula in
which every term t is either safe or of the form ns, with s safe.

Safe terms are recursively constructed as follows:
(D @ is a safe term;
(ID) each variable y is a safe term;

(IID) if s, t are safe terms, then so are (sNt), (nsNt), tNns), (s\t),
(s\nt), (s Ut), pow(s), (s x t);
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(IV) if so,s1,...,8q are safe terms, and t; is either s; or ns;, 1=0,1,... ¢,
then
{to,t1,...,t.} and n{so, s1,..., 4}

are safe terms. N

As a by product, one obtains a semidecision procedure & la
Herbrand for the finite satisfiability problem for safe formulae.

3. Quantified theories.

In this section we consider prenex formulae of the form
Q1Q2 ... Qnp, Where

(1) p is a boolean combination of literals of type z € y and z = y;

(2) either all @; are of the form Jy; € z; or every Q; is of the
form Vy; € z;, i.e. all quantifiers are restricted and there is no
quantifier alternation,;

(3) no z; is a y;, for any ¢,7 =1,...,n, i.e. nesting of bound variables
if forbidden.

We refer to conjunctions of such formulae as (V)y-simple prenex
formulae (in short, (V)p-s.p. formulae).

After considering formulae of this class, a further subsection is
devoted to the classical Behmann theory, i.e. the family of arbitrarily
quantified set-theoretic formulae not involving the membership
relation € (see [2], and [51]). Finally three additional results
concerning complete classes of formulae are reviewed (see [39], [40],
and [55])).

3.1. The theory of (V)p-s.p. formulae.

Let T" be any unquantified theory for which there is a satisfiability
algorithm. Let ¢ be a propositional combination of prenex formulae
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of type Q1Q2...Qnp, Wwhere n > 0 and Q; is either (Vz;) or (3z;), and
p 1s an unquantified formula of 7. The following algorithm, based on
elimination of quantifiers, is a semidecision procedure for this class
of formulae (cf. [4]).

1. Bring ¢ into disjunctive normal form, i.e. rewrite it as a
disjunction gV 1 V...V ¢, where each ¢; is a conjunction of
prenex formulae.

2. Ifforeach1=0,1,...,m the procedure TEST (¢;) described below
returns «unsatisfiable», then return «unsatisfiable». Otherwise,
return «ambiguous».

The procedure TEST (i) applies to conjunctions 1) of prenex
formulae with matrix in 7.

Procedure TEST ().
1. Let @ be the set of all free variables and constants in 1.

2. While there exists a formula of type (3z)q(z) in 1, replace it by
q(25), where z, is a newly introduced variable, and put

D :=PU{2,}.

3. If no quantifier is left in 1), then apply the satisfiability algorithm
available for the quantifier-free theory T' to which 1 belongs, and
return the result of this test.

4. Otherwise, nondeterministically choose some universally quan-
tified formula (Vz)q(z) in ¢ and replace it by the conjunction

&zE(Dq(Z)-
5. Go to Step 2.

The above algorithm is sound but not complete in general. It
becomes complete for certain restricted classes of formulae. As shown
in [4], this is the case when the underlying quantifier-free theory T
is the theory 77 in the language consisting of individual variables
and the relations =, €, and the prenex constituents satisfy properties
(2), (3) stated at the beginning of this section.
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The same statement holds in the extended case in which the
underlying theory T is the extension T, obtained from 77 by also

allowing:

(a) two new constants N and O which must be interpreted as the
set of intergers and the set of all accessible ordinals, respectively;

(b) a new infinity f,¢,h,... of map variables, and also a domain
operator D.
A variety of constructs can be expressed in this theory. Some
examples are:

tCy =per (V2 € 2)(2 €y)
z={y} =pes y €& (Vz € 1)(z =)
z is an (accessible) ordinal =p.¢s 'z € O

7 is a set of integers =pey (Vz € z)(z € N)

F=9 Zpes Df=Dg&(Vz € Df)(f(2) = g(2))
fis a t-uple =p.f Df €N
f is one-to-one =p.y (Vz € Df)Vy € Df)
(z2y — f(2)=f ().

Interesting elementary theorems which can be expressed in this
decidable theory are:
e the successor of any ordinal is an ordinal,;
e there are no ordinals between an ordinal and its successor;
e any two ordinals are comparable.
Finally, we mention that even in the presence of alternating

quantifiers, a simple variant of the algorithm described above often
teminates successfully. For example, the following statement

«If 7 is a limit ordinal, then z = Un(z)»,
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(where a limit ordinal is an ordinal having no immediate predecessors)
can be proved by applying the algorithm above with a bit of
backtracking. | ‘

Conditions (1), (2), and (3) have been recently loosened in various
ways still maintaining decidability.

A class of formulae in which restricted forms of nestings of
variables are permitted has been studied in [49]. Following [49], we
give

DEFINITION 3.1. A (V)o-prenex formula ¢ is in normal form if
the matrix of each conjunct in ¢ is a disjunction of literals.

Given a normal form (Y)o-p. formula ¢ and a variable z, we say
that z is nested in ¢ at level | if for some x,y, 0, ..., 2,1 the sequence
of quantifiers

“ (Vo € )V € 1) ... (V211 € 31-2)(V2 € /1)
occurs in a conjunct of . , ||

We denote by (V)a ; the class of all (V)o-p. formulae ¢ in normal
form such that every nested variable in ¢ has level not greater than
[+1 and can occur only in negative literals (of the matrix of the
conjunct in which it is nested). (V)E, ,formulae are also called nested
negative (V)p-p. formulae of level I.

The decidability of the class (V)E, ; 18 an immediate consequence
of the following strong reflection principle over the hereditarily finite
sets for the class (Mg - '

THEOREM 3.2. ([49]) Given nand |, it can be effectively determined
an integer h(n,l) such that for any n-tuple of sets ay,...,a, there are
hereditarily finite sets ai,...,ay of rank less than h(n,l) such that

)y ¥ nt

every (\%)a iformula satisfied by ay, ..., a, is also satisfied by at,...,ar

Since sets of bounded finite rank are only finitely many, an
exhaustive search among assignments of rank less than h(n, ) allows
to establish the satisfiability of any given nested negative formula of
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level [ with n free variables.

Other generalizations of the decidability of the class of (V)o-s.p.
formulae consist in extending the language of the basic unquantified
theory Ty.

In [13] it is shown that the finite satisfiability problem for
(¥)g-s.p. formulae admitting also the rank operator is decidable. We
mention only that yet another variant of trappedness is introduced
to solve the decision problem for such a class of formulae.

Of the same flavor is the decidability result concerning (V)g-s.p.
formulae extended with the predicate Finite (z), contained in [9].
Such result, which plainly refers to ordinary satisfiability, has been
obtained under the syntactic restrictions that the predicate Finite
can apply only to free variables and that the relations z = y and z=y
never applies to pairs of bound variables z, y.

The same paper describes also a procedure for the elimination
of quantifiers from set-theoretic formulae, which, under certain
conditions, allows to lift to the quantified case most of the decidability
results for classes of quantifier-free set-theoretic formulae of the kind
seen in Section 2. "

Specifically, let £ be a language for set theory which includes,
among others, the constant @, the set operators U,N,\,{-}, and the
set predicates =, €.

DEFINITION 3.3. A formula ¢ in L is called O-flat if each
quantified variable z in @ appears only within atoms of type

z=t or xEt,
where all the variables occurring in t are free. ||

[9] describes how given a 0-flat formula ¢ of L one can effectively
construct a quantifier-free formula ¢ of £ such that

bzr (¢ < ).

Therefore if the class of quantifier-free formulae in the language
L is decidable, so is the class of quantified 0-flat formulae of L.
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We close this section by mentioning a very interesting open
problem.

Is the class of (V)o-prenex formulae decidable if condition (3)
which forbids nesting of variables is dropped?

In Section 5 we will discuss some undecidability results concerning
theories closely related to such a class of formuale.

3.2. Behmann theory and some extensions.

In a famous 1922 paper, Behmann exhibits an effective procedure
for calculating the truth value of any formula quantified over sets
and involving only Boolean connectives &,V,—, —, <, set inclusion
and inequality, the set cardinality operator | - |, integer constants,
and inequalities’ (cf. [2]). This result is extended in [51], which gives
an algorithm that decides the combination of Behmann theory with
Presburger arithmetic (PB-theory) (see [50], cf. also [31]).

Two kinds of variables can occur in PB-theory: set variables
and integer variables. Set variables range in the class of all finite
sets; integer variables range in the set N of natural integers. Union,
intersection, and set difference are the only set operators allowed.
Also allowed are a cardinality operator and ordinary arithmetic
addition among integer variables. Besides equality, set inclusion is
the only relation in PB-theory.

The decision method described in [51] for PB-theory is based
on elimination of quantifiers. First of all it can be shown that one
can limit oneself to considering only prenex formulae of the type
Q1Q2...Qnp, where each Q; is either (3z) or (Vz), with z either a
set variable or an integer variable, and where p is a quantifier-free
conjunction of literals of PB-theory. Elimination of quantifiers over
integer variables proceeds as usual via the introduction of suitable
congruence relations. In order to eliminate quantifiers over set
variables, for each part of the Venn diagram of the set variables in
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the formula, one introduces a new integer variable, which stands for
the cardinality of the corresponding part of the Venn diagram. Then
set relations involving the quantified set variables are eliminated by
adding suitable arithmetic relations on the newly introduced integer
variables. The reason why set variables can be eliminated in favor of
integer variables lies on the fact that in PB-theory formulae of the
type z € y or z ¢ y cannot be expressed. This implies that no set can
have elements having a proper individuality, and consequently the
main characteristic of a set in this context is its cardinality.

The same set of formulae is still decidable even if set variables
are allowed to range over the full von Neumann universe and
integer variables are interpreted more generally as cardinal numbers
(TPB-theory). Much the same technique applies in this case, but here
one relies on Tarski’s result about the decidability of the theory
of cardinal numbers with addition (cf. [63]) rather than on the
decidability of Presburger arithmetic.

Note that [51] also shows how much the same algorithm can
serve to instantiate existentially quantified variables, thus solving
the problem of set theoretic instantiation in this special case; this is
an important issue in mechanical theorem proving (cf. [52]).

An interesting example of a formula belonging to both PB-theory
and TPB-theory is

V2)(Vllz Cy & |z] = |y) — z=y)].

This formula, which is true as a PB-formula, is false in
TPB-theory, since infinite sets can have equipollent proper subsets.

Further generalizations considered in [51] concern the instan-
tiation problem in presence also of map variables f. More precisely,
the map constructs admitted are of type f[FE], with E any valid set
expression, and of type Df, which denotes the domain of f.
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3.3. Three complete families of quantified formulae in set theory.

In the paper [30], Ehrenfeucht introduces the notion of an
«N-game » played by two players with structures Aj; and A, for an
unquantified predicate language . An N -game consists in a sequence
of N moves. In the i-th move, player 1 chooses an element in the
structure A;, with [; € {1,2}, and player 2 chooses an element in
the structure Asz_j.. At the end of the game a1, a12,...,a1y have been
picked, in that order, from A; and a1, a2,...,azy from A,. Player 2
wins if after this game the correspondence

a11 <> ay

@12 <> a2

Qin <> Q2N

1S an isomorphism of these sequences with respect to the relations
defined in L. That is, player 2 wins it for every quantifier free formula
F(CEl, T2y een, CL'N) in L, F(au, a12,..., alN) is true in A1 if and only if
Faa1,a22,...,azy) is true in A4,. Ehrenfeucht’s main theorem is

THEOREM 3.4. ([30]) If there is a closed formula in [ with N
quantifiers which is satisfied by structure A and not by structure B,
then player 1 has a winning strategy in an N-game. n

An important application of Ehrenfeucht’s theorem is the following

THEOREM 3.5. ([40]) The language of all 3-quantifier closed
prenex formulae in set theory involving both ¢ and = is decidable. R

The proof proceeds by showing that in a 3-game played with
any two models for set theory, player 2 has a winning strategy. By
Ehrenfeucht’s theorem this implies that every sentence with three
quantifiers is either true or false in all models of set theory. But
then it follows from Godel’s completeness theorem that for every
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such sentence ¢, either ¢ or —p is a theorem. Since in an axiomatic
theory, theorems can be enumerated, dovetailing gives a procedure
for establishing whether or not a 3-quantifier sentence in set theory
is a theorem. Observe that the decision algorithm suggested by the
proof above is not elementary recursive.

Another result by Gogol is the following

THEOREM 3.6. ([39]) All closed sentences of standard Zermelo-
Fraenkel theory of the form (Vz1) Vz2)...(Vx,) Azne1) S(x1, T2, ..., Tpi1),
where S(x1,x2,...,Tn1) IS @ quantifier-free formula and may contain
the predicates = and &, are decidable. |

As before, in view of the preceding completeness result, it follows
that the validity problem for the closed V,3-formulae is solvable, by
way of the enumerafcion algorithm. "

Notice, also, that the satisfiability problem for MLSS (cf.
Section 2.1) can be reduced to the validity problem for closed V,3-
formulae, as the following argument shows. Preliminarily, observe
that the satisfiability problem for MLSS is immediately reducible to
the satisfiability problem for conjunctions of atoms of the following
three types-

z=yUz, z=y\z, z={y}.

So, let ¢1&...&¢g, be such a conjunction, involving only the
variables =zi,...,z,. Let w be a variable not occurring in any of
the ¢;. Each conjunct ¢; can be easily rewritten as (Vw) ¢}, with ¢!
involving only the variables in ¢;, the variable w, the set relators
=, €, and the propositional connectives. For instance, z = {y} can be
rewritten as (Vw) (y € z & (w € z — w = y)). Thus, by using the
standard quantifier manipulation rules, it follows that ¢; &...&q, is
equivalent to (Vw) (¢} &...&q.), so that it follows that ¢; &...& g, is
satisfiable if and only if the formula

(10) Gz1)... Gzn) Vw) (1 &... & q,)

is true in some model of ZF. At this point, it is enough to observe
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that the negation of (10) is a closed V,,3-formula of the type considered
in Gogol’s theorem.

The previous considerations suggest an alternative decision
method for MLSS, namely enumeration of ZF theorems. It must be
stressed, however, that the decision procedure given in [36] (and
furtherly optimized in [27]) is far more efficient.

Gogol’'s result [39] generalizes an earlier theorem of Ville’s (cf.
[65]) on the completeness of the purely existential set-theoretic
formulae in the language £ consisting of @, {-}, U, €,=, with respect
to the theory of sets with the following axioms:

(I) axioms for equality;

(II) extensionality;

(D) (Vz) (z ¢ @) (axiom for empty set); ;

(IV) (vz) (Vy) (Vu) (u € zUy < u € sV u € y) (axiom for binary union);
(V) (Vz) (Vu) (u € {z} <> u = 1) (axiom for singleton);

(VI,) =Cz1)...Oz,)(z1 € 12& ... & 2,1 € T, &z, € z1), for each inte-
ger n > 1 (regularity axiom in the weak form).

Ville’s completeness result is proved by using model-theoretic
arguments.

4. Some applications.

The decidability results and proof techniques presented in the
preceding sections have also been used to find other decidability
results in domains different from pure set theory. In this section we
will briefly review three decidable theories which have been shown
decidable either by explicit reduction to already known decidable
fragments of set theory or by employing techniques similar to the ones
discussed previously. More specifically, we will consider a fragment of
general topology (cf. [25, 26]), a theory of directed graph (cf. [44, 45]),
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and a theory of partially ordered sets with monotone functions (cf.
[20]). In all three cases, explicit quantification is forbidden.

4.1. Topological syllogistic.

The basic constituents of the two-level multi-sorted language
with functions £2° considered in [25, 26] are:

(a) for each m, the constants 0™ and 1™, designating respectively
the empty set and the support of the n-th topological space;

(b) for each n, two denumerable sequences of variables:

— individual variables :n(()"),a:(ln),..‘.,y(()”),y@,..., etc., ranging

over elements of 1™,
— set variables X(()”)X§">,...,§/b(") ,Yl("),..., etc., ranging over
subsets of 1™

(c) the operators ~™ (topological closure), '™ (set complementation),
U, \;

(d) for each pair (n,m) of natural numbers, two denumerable

sequences of function variables:

— fl("’m) , 2(”’"‘) , -, denoting continuous maps from 1™ into 1™,

(n,m) _(n,m)

~ g1 9 ..., denoting closed maps from 1™ into 1(™
(e) the standard relators =, ¢, C;

(f) the propositional connectives -, &, V, —, +, and parentheses.

Terms (of sort m) of £ 2% are individual and set variables,
constants, and compound terms of the form T\ UT®™, 7 n T

TONTS?, (7Y, T, ) (™), (fom)=Lrim ], omm (7] where
Tl("), Tz("), T3(m) are set terms, t™ is an individual term, and
hmm stands for a continuous or closed map variable. (Notice that

b

the inverse image operator can be applied only to continuous map
variables, whereas the direct image operator can be applied only to
closed map variables.)
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Finally, the formulae of £ 2> are propositional combination of
atoms of the forms
=i, P Tl
ro =1, T 1l

The semantics of the language £ 2 is defined in the most
natural way.

To each formula p of £ 2>, we associate a graph G, = (N, Ep),
where N, = {io,%1,...,1x} is the set of all sorts of individual and set
variables present in p and where the edge i; = i, is in E, if and only
if p contains either some occurrence of a continuous map variable of
sort (i,1;), or some occurrence of a closed map variable of sort (i, i5).
Then p is said to be acyclic if its associated graph G, is acyclic.

In [25, 26], it is shown that the topological satisfiability
problem for acyclic formulae of £ 2 can be reduced to the ordinary
satisfiability problem for a restricted subclass of formulae of MLS,
namely those in which the longest chain of €,¢ has length 1 and
such that no variable on the left-hand side of a membership relation
can appear in terms of type z Uy or z\y (these are the so-called
two-level syllogistic (2LS) formulae; cf. [34]). More specifically, it is
exhibited a procedure which eliminates topological and map constructs
from acyclic formulae p of £ 2> by suitably introducing some 2LS
formulae which possibly involve new variables. Literals containing
variables relative to topological spaces which correspond to the leaves
of the graph G, are processed first. New topological and set-theoretic
constraints are propagated along the edges of G,. Subsequently,
topological spaces corresponding to nodes of increasing height are
dealt with. The acyclicity of G, assures that such a process will
terminate. On termination, all topological and map constructs are
eliminated and a formula p** of 2LS is obtained such that p is
topologically satisfiable if and only if p** is ordinarily satisfiable.

The language £ >* is quite expressive. In fact, most of the
elementary concepts and properties that can be typically found in
the first chapters of introductory textbooks on general topology are
expressible as acyclic formulae. For instance,
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Int (A) =pes (A') (the interior of A);
o 0(A) =pes A\ Int (A) (the boundary of A);

e open (A) =pey A =Int(A) (A is an open set);
e closed (A) = Def A= A (A is a closed set);

e open-domain (A) =p.y A= Int (A) (A is an open domain; see
[42]);

e open-domain (A) & open-domain (B) — open-domain (AN B);
e open-domain (A) & open-domain (B) &— open-domain (AU B);
e open-domain (A)& open-domain (B) —» (AC B~ ACB);

e ctc.

4.2. Graph Theory.
The language of directed graph theory considered in [44, 45]

contains besides the usual propositional connectives

(a) vertex variables vy, V2,

(b) edge variables eq,e,,...;

(c) graph variables G1,G,,. . ;

(d) the constant § (denoting the empty graph);

(e) the set bperators U, N;

() the unary operators head(e) and tail(e) (which return the head
and tail vertices of the edge e, respectively);

(g) the constructors edge(vi,vs), vertexgraph(v), and edgegraph(e)
(edge(vy,v2) returns the directed edge having the vertices w;
and v, as head and tail, respectively; vertexgraph(v) returns
the singleton graph having as unique element the vertex U;
edgegraph(e) returns the graph whose only elements are the edge
e and its endpoints).
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Notice that explicit quantification is not allowed.

An example of a valid well-formed formula in the above language
is
vertexgraph(vy) U (G1 N Ga) =

= edgegraph(edge(vy, v3)) — v; € G1 NG & (v1 = v2 V v1 = v3).

Given a conjunction S of the theory of directed graphs, [45]
describes a decision procedure roughly consisting of the following
steps (initially it is assumed that no set constructor of type (g) occurs
in S): |

1. eliminate compound terms by using new variables of the
appropriate type;

2. form the transitive closure of = among vertex variables;

3. infer all possible edge equalities e; = e, from conjuncts of type
vy =head(e;) & v =head(e) & vy = tail(e;) & vy =tail(ez) occurring
in S;

4. form the transitive closure of = among edge and graph variables;

5. infer all possible membership relations from clauses in S of type
G1 =G, UGs and Gy = G5 NG5 and membership clauses in S;

6. check for explicit contradictions (of form vy#vy, or v1 € G1 & v ¢
G, ete.);

7. for each vertex variable v seek a singleton model of the set of
literals {G=0 : v € G occurs in S}U{G =0:v ¢ G occurs in S}
and literals of type G1=G2UG3 and G =G, NG3 in S

8. for each edge variable e seek a singleton model of the set of
literals {G#0 : e € G occurs in S}U{G =0 :e ¢ G occurs in
S} and literals of type v =head(e), v =tail(e), G1 = G, U G3, and
Gi=G2NG3 in S

9. for each clause of type G1#G> in S seek a singleton model for the
conjunction of G1#G, with all clauses in S of type G1 = G2 U G,
and Gi =G, NG3 in S
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10. declare S unsatisfiable if either an explicit contradiction is found
or one of steps 7, 8, 9 fails.

It is to notice that step 6 corresponds to the search of a set of
places of S, whereas steps 7, 8, 9 correspond to the search of places
of S at (vertex and edge) variables (cf. Definition 2.2 and subsequent
paragraph). 4

Edge and graph constructors of type (g) are dealt with much in
the same way as the singleton operator in the MLS context (see the
paragraph preceding Theorem 2.5). For instance, if =vertexgraph(v)
occurs in S, then the conjunction

&w ocecurs in S(w % GVws= 'U)&&e occurs in 5’(6 % G)

is added to S, and special care is taken during the instantiation of
G, in order that G will not get any spurious element (different from
v). Analogously if G =edgegraph(e) occurs in S.

4.3. Theory of partially ordered sets.

We close this section by reviewing one of the results contained
in [20], namely the decidability problem for the unquantified theory
POSMF of partially ordered sets with (monotone) functions.

The symbols of the language POSMF are
e individual variables z,y, z, .. ;
o function variables f,g,h,...;
-e the relators =, <;

e the predicates up(f), down(f) (denoting respectively that f
is monotone nondecreasing in the first case, and monotone
nonincreasing in the second case);

e the propositional connectives.

The formulae of POSMF are the propositional combinations of
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atoms of the following five types

<y, =y, = f(y), up(f), down(f),

where z,y stand for individual variables and f stands for a function
variable.

In [20] it is assumed that the domain of any interpretation of
POSMF must be a partially ordered set (D, <) such that

(1) for every t,u € D there are s,v € D such that s <t,s < u, t < v,
and u < v hold,

(1) < is antisymmetric, i.e., if s <t and t < s then s =t.

(Notice that if we strengthen (i) by requiring that every two
elements in D must have a least upper bound and a greatest lower
bound, then D is a lattice).

The literal up(f) (resp. down(f)) is true in an interpretation M of
POSMF with domain D if the function M f : D — D is nondecreasing
(resp. nonincreasing). The satisfiability problem for POSMF can then
be easily reduced to the satisfiability problem for MLS by the following
procedure.

Let ) be a conjunction of literals of type:

r<y, LUy, T=y, T2y, T = f(y),
up(f), down(f), -wup(f), —down(f).

1. For every clause in Q) of type —up(f) (resp. ~down(f)) introduce
four new individual variables z1, 7, y1,y2> and add the formula

v1=faN&y = fz)& iz &z < & yp < 11 & 17y
(resp. y1 = f@) & y2 = flo) & m#Em & 31 < 22 & y1 < yo & y1#yn).

2. For every pair of clauses of Q of the form z = 7(y), s’ = f(¢),
add the formula y =¢' — z = «'.

3. For every triple of clauses of ) of the form up(f) (resp. down(f)),
z = f(y), 2 = f(¥), add the formula y < ¢ — 2 < &' (resp.
y<y — 3 <)
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4. For every pair of variables z,z’ in () add the clause
1<t &r <z—oz=1"

5. Drop from @ all clauses involving function variables.

6. Replace each occurrence of the relator < by C, regarding all
individual variables as set variables.

Let Q' be the formula so obtained. We have then the following
result:

THEOREM 4.1. ([20]) Q is satisfiable by a partyally ordered model
enjoying properties (i) and (it) above if and only if Q' is satisfiable by
a set model. |

5. Undecidability results.

The problem of finding undecidable classes of set-theoretic
formulae is also of great relevance to the field of Computable
Set Theory, since every undecidability result better delineates the
boundary between what can be mechanized and the undecidable.

It is well known that Zermelo-Fraenkel set theory is undecidable,
since Peano’s arithmetic can be immediately reduced to it (cf. [24]).
In view of the still open problem concerining the decidability of the
(V)o-p. formulae when nested variables are allowed (see Section 3.1),
it is interesting to consider other restricted classes of formulae in
which limited alternations of quantifiers are permitted. This has
been first done in [48], where it has been shown that the class of
(V3V)o-formulae has an unsolvable satisfiability problem. We recall
that a formula is of type (V3V), if it is the conjuntion of restricted
prenex formulae with at most two quantifier alternations.

The result in [48] is based on Godel’s incompleteness theorem
and holds for any reasonable set theory, such as one which contains
the theory T ho consisting of the following four axioms:
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1. Empty set: (Qy)(Vz)(x ¢ y). i.e. there exists an empty set.

2. Extensionality: (Vz)Vy)(Vz)(z € £ «+» 2z € y) <> z = y)), i.e. two
sets coincide if and only if they have the same elements.

3. One Element Addition Principle: Vz)(Vy)@z2)Vw)w € z « (w €
z V w=y)), i.e; if z and y are set, so is z U {y}.

4. One Element Subtraction Principle: Vz)(Vy)Jz)Vw)(w € z <
(w € z Vw=y)), i.e. if z and y are sets, so is z\{y}.

Because of the extreme simplicity of the theory Th¢, an alternative
way to encode syntactic objects and proof-theory predicates has been
developed in [48]. Matters are also furtherly complicated by the fact
that only (V3aV)o-formulae can be used in the coding process.

Such an undecidability result has been subsequently improved in
[14], at least with respect to the compexity of the class of formulae
involved. Indeed, [14] proves that the class of (V3)g-formulae is
undecidable with respect to extensions of Z ' set theory, by exhibiting
an effective encoding procedure which allows to associate to any
polynomial Diophantine equation D a (V3)o-formulae ¢p such that
D has integer solutions if and only if pp is satisfiable (say, in the
standard model of ZF set theory). Thus the undecidability of the
(VI)o-formulae follows at once from the unsolvability of Hilbert’s tenth
problem (cf. [43]).

_ Moré‘precisely, from the unsolvability of Hilbert’s tenth problem,
it follows easily that there can be no algorithm to test whether a
system of integral equations of the following types

=
E=n+¢
E=mn-¢
=k

(where &,7,( are integer variables and k is an integer constant) has
a solution.

So, let £={Z;,...,%,} be a system of equations of the above
types, in which no variable can have multiple oc_cuf‘rence within the
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same equation X;, 1 =1,...,n To each integer variable ¢ in £ we
associate n distinct set variables a;é, ..., z¢. Then we put:

00 =pes &g iyt Te N3l =0 & & 5|t | = |71 ]

|zé| = |m§7l if % ds of type £ =1
L |zt | = |z, Uay| if X is of type £ =n+(
Pi =Def lzg| = |z;, x x| if Z; is of type {=n-¢
|zt | = || if %; is of type £ = k,
for +=1,...,n, where we are assuming that any constant k£ has the

standard von Neumann recursive representation {0,1,2,...}.

- Finally, we put
Ore1 =pes &¢ Finite (z}).

Let o5 =per &¥; ;. Then it is plain that the system X has an
integral solution if and only if the formula s is satisfiable. Thus,
the collection of formulae in the language of s has an unsolvable
satisfiability problem. It is not hard to see that ¢y is expressible
in the language MLS extended by the cartesian product x and
the cardinality comparison predicate only, since both the singleton
operator and the predicate Finite(x) are expressible in this language.
Therefore we have:

THEOREM 5.1. ([14]) The satisfiability problem for MLS extended
by the cartesian product and cardinality comparison is unsolvable. B

(Note in this connection that it is not known whether the theory
MLS plus x is decidable). _
| By using (V3)p-formulae, one can easily express all literals
of MLSS plus x. Moreover, any literal of the form |z| < |y| is
equisatisfiable with the formula injective(f,z,y) saying that there
exists an injective map f form z into y, which can promptly be
expressed by (V3)p-formuale (see [14]).

It remains only to eliminate literals of type Finite(z). For
this, the most immediate way would be through the formula
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=0V (2 € 2&|z\{z}| < |z|). But it is not clear whether the relation
|z| < |y| can be expressed by (v3)o-formulae. For instance, the formula
(Vf) (minjective(f, z,y)) has two quantifier alternations. Hence, if one
wants to maintain low the complexity of the formulae involved in a
set-theoretic formulation of Hilbert’s tenth problem, an alternative
formalization of literals Finite(z) must be devised.

The approach taken in [14] consists in expressing the set
w={0,1,2,...} and then use the simple formula |z] < 2] &z € w. to
express the predicate Finite(x). Using (V3)o-formulae, the set w can
be characterized as the unique infinite limit ordinal that can be
partitioned into two sets Z;, Z; such that there are maps f : Zg — 7,
g : 721 — Zy for which

e s € f(s), for all s € Z,,
o tCgt), for all t € 2y,
e flZ0] = Z:\{0}, and

* 9[Z1] = Zo\{0}.

It turns out that all such conditions can be formalized by
(Vd)o-formulae, thereby showing that the class of (V3)o-formulae has
an unsolvable satisfiability problem.

In view of the above undecidability results, the decision problem
for the class of (V)o-formulae assumes greater importance, since
its solution would settle the decision problem for the hierarchy of
restricted set-theoretic formulae based on quantifier alternations.



A SURVEY OF COMPUTABLE SET THEORY ( 187

A Appendix.

The results discussed in the preceding sections can be formalized

in Zermelo-Fraenkel set theory, whose axioms are listed below (cf.

[41]).

L

II1.

I1I.

VI.
VIIL

VIII

Axiom of Extensionality. If X and Y have the same elements,
then X =Y.

Axiom of Pairing. For any a and b there exists a set {a,b}

“that contains exactly o and b. (If o = b, then the set {a} is

called a singleton).

Axiom Schema of Separation. If ¢ is a predicate (with
parameter p), then for any X and p there exists a set
Y ={u € X : p(u,p)} that contains all the u € X that have
the property .

Axiom of Union. For any X there exists a set ¥ = Un(X),
the union of all elements of X (Un(X) = {z: 2z € w for some
w e X}).

Power Set Axiom. For any X there exists a set Y =pow(X),
the set of all subsets of X (pow(X)={Z :Z C X}).

Axiom of Infinity. There exists an infinite set.

Axiom Scheme of Replacement. If F' is a function, then for
every X there exists a set Y = F[X]={F(z):z € X}.

Axiom of Regularity. Every nonempty set has an €-minimal
element. (In particular chains of the type zo € z1 € ... €
T, € o are not allowed).

Axiom of Choice. Every family of nonempty sets has a choice
function.

By using the aximos of separation and powerset, one can infer
the existence of the cartesian product X x Y of two sets, X,Y, defined
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by
X xY ={z€ powpow(XUY)): 3z € X)Ey € YV)(z = {{z},{z,y} D},

where the ordered pairs [z, y] have been encoded following Kuratowski,

1e. [z,y] = {{z}, {=z, yID}.

A.1. Ordinals and Cardinals.

A set T is transitive if T Cpow(T). A set is an ordinal number if
it is transitive and well ordered by €.

A few properties of ordinals are:
(a) 0=90 is an ordinal.
(b) If @ is an ordinal and B € a, then 3 is an ordinal too.
(¢) If @, B are ordinals and o C 3, then «a € 8.
(d) If «, B are ordinals, then either oo C 3 or B C a.

If =B +1, then « is a successor ordinal, otherwise « is a limit
ordinal.

An ordinal « is called a cardinal number if |aj#|8| for all 8 < a,
i.e. if the ordinal « is not equipollent to any smaller ordinal B. (We
remind that |X| denotes the class of all sets which can be put in a
one-to-one correspondence with X).

The arithmetic of finite cardinal numbers is equivalent to the
well known arithmetic of natural integers. Instead, if o and/or B are
infinite cardinals, then o+ 8 =« - 8 = max(a, A).

A.2. Transinite Induction and the von Neumann Universe.

THEOREM A.1l. (Transfinite induction) Let C be a class of ordinals
and assume that

(1) Oc€cC,
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(ii) if « € C then a+1€ C,

(iii) if « is a nonzero limit ordinal and B € C for all B < o, then
aeC.

Then C is the class of all ordinals Ord.

Using transfinite induction we put

V=0
Vsl = pow(q/a)

Vo=|J Vpif  is a limit ordinal.

B<a

Then the von Neumann universe is the class ¥ = U Vo
a€O0rd

The axiom of regularity implies that every set z is in some 7/,.
Then we may define the rank of z:

rank(z) =1_east o such that z € V1.

The following facts hold:
(@) Vo ={z:rank(z) < a}.
(b) If z € y, then rank(z) <rank(y).
(¢) rank(w) = « if and only if « is an ordinal.

(d) rank(z) = sup{rank(z) +1: z € z} (and therefore in particular
rank({z}) =rank(z) + 1).

(e) If x C y, then rank(z) <rank(y).
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