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AUTOMATED THEOREM PROVING
IN ELEMENTARY GEOMETRY

ALFREDO FERRO (Catania) - GIOVANNI GALLO (New York)

A survey of the main procedures for automatic theorem proving in
geometry is presented. ' ,

1. Introduction.

One of the most basic tasks in Artificial Intelligence is the
possibility of automatically deciding if a given conclusion follows
necessarily from some premises. This field of research is called Theorem
Proving and has many applications such as Program Correctness,
Logic Programming, Expert Systems, Real-Time Systems, Problem
Solving etc... Automatic Theorem Proving has received a great impulse
in the last 25 years after the pioneering work of H. Wang, J. Gilmore,
M. Davis, H. Putman and J.R. Robinson who invented the mostly used
general purpose theorem proving procedure: the Resolution Principle.
This method has been successfully applied to several computer science
areas [29].
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Non-Resolution theorem proving procedures have been also
designed and experimented for particular mathematical theories.

However the first significant achievement in this direction is
due to Wu Wen Tsun [31] who, in 1978, presented a procedure to
automatically prove statements of Elementary Geometry. Later on a
student of his S.C. Chou in his Ph.D. dissertation at the University
of Texas gives an impressive collection of about 350 elementary
geometry theorems which he was able to prove by Wu’s method. This
evident success stimulated a strong interest in this field and several
new approaches to geometry theorem proving have been developed in
the last five years.

In this paper we survey all of these algorithms. In the first section
we describe an interactive theorem prover which was developed by
Gelernter in 1959. This method is based on the classical euclidean
approach to elementary geometry in the style of modern Prolog-like
theorem provers.

In the remaining sections we describe algebraic theorem provers
all based on the Cartesian Method consisting of transforming a
geometric statement into an equivalent algebraic one via a system
of coordinates. This algebraic counterpart consists of showing that a
given polynomial (the conclusion) belongs to the radical of the ideal
generated by a finite number of polynomials (hypotheses). This kind
of approach is used in the methods of Wu, Kapur-Kutzler-Stifter and
. Carra-Gallo. In Wu’s method an algorithm of J.F. Ritt is used to
solve the above problem. Ritt’s algorithm [25] was originally given
in connection with the calculation of a so called characteristic set: a
basic step in a constructive approach to the problem of factorizing
algebram varieties.

In Kapur- Kutzler- Stifter method the membership problem for
tl_ie radical of an ideal of polynomials is solved by Grobner Bases
calculation using Buchberger’s Algorithm. Finally in Carra-Gallo
method the geometric theorem is proven by computing the dimensions
of the hypothesis variety and of the intersection of this variety with
the thesis variety and comparing them.
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On the other hand it can be proven that any geometric theorem
can be reduced to the verification of a single polynomial identity. This
identity is generally given in an implicit form and can be verified
in several ways. One can try to show that the given polynomi.al has
a very large root as in the proving by example method of J. Hong.
Another more immediate way is to show that the given polynomial
has too many roots [26] [33]. '

Finally we observe that when these methods give rise to
computationally unfeasible computations (and this we expect to
happen in the most interesting cases) then a probabilistic approach
can be used in order to get a «certified» conjecture. Results of J.T.
Schwartz in this direction are described in the final section of the

paper.

1. The Gelernter’s prover.

The first program able to produce a formal proof of statements of
Elementary Geometry was developed in 1959 by H. Gelernter at the
IBM Research Center in New York ([13], [14], [15]). It was one of the
first large program written in FORTRAN (and one of the very few
programs of A.I. implemented in this language). The program used
several different ideas (rewriting rules, reduction strategies, analysis
of symmetries, study of examples, etc...) to obtain proofs of theorems
of elementary geometry. These ideas were largely used in almost all
the subsequent provers.

The program had access to a database of axioms, and of proved
theorems to be used as a reduction operator on the theorems under
consideration. For example to prove that two segments are congruent
the prover could try to prove that the two segments are correspondirig
edges of two congruent triangles. |

This example shows that the program does not alwéys substitute
a complex property by a simpler one, but sometimes it goes into
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the opposite direction. It was than essential for detecting loops of
deductions, to give to the prover a suitable strategy.

For the sake of efficiency it was also crucial to recognize, at
the very early stages of the computation, the possible symmetries of
the problem under consideration and to translate them into syntactic
conditions. This has a significant impact on the size of the problems
that can be realistically studied by the prover.

Sometimes the simple analysis of the given geometrical entities
was mnot enough to produce the requested proof. Some further
constructions had to be carry out. Gelernter’s program included such
a possibility in a sort of interactive dlalogue between the prover and
the user.

The general strategy used by the prover was to start from the
goal statement by generating several subgoals, and then recursively
continue in the same way. The basis of the recursion was achieved
by proving the subgoals using the collection of elementary facts
stored in the database or considering one or more examples, that
were given together with the goal. If later this approach did not
reach a conclusion, or a loop in the deduction was detected then an
appropriate action of the user ought to be specified.

The analysis of the example performed by the prover was, a
fortiori, approximated, and in this part of the execution the features
of the newly born FORTRAN played an essential role. Moreover to
avoid the loss of generality a sufficiently large collection of examples
was supposed to be available to the prover. However this expedient
was not sufficient to avoid the introduction of some arbitrariness in
the proofs.

The importance of the method that has been briefly described
above is principally historical. Many of the ideas and tricks used in
this prototype have been refined and improved in later provers and
have been applied also in different settings. Indeed it is not difficult
to recognize in the primitive reduction strategy outlined above an
ancestor of the techniques used in the more recent PROLOG-like
provers. .
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Many of the problems that this prover had to face were
overcome by the so called algebraic provers that will be presented
in the following sections. For example the problem of analyzing the
symmetries is solved in the algebraic provers by a suitable choice
of the system of coordinates. Algebraic provers, however, have their
own drawbacks too and it seems that an integration of the algebraic
methods and the logical techniques is the most promising direction
for future geometry theorem provers.

2. General aspects of an algebraic prover.

In this section the main ideas and problems of provers based
on algebraic techniques are presented. In the next section a more
detailed account of some specific methods will be given.

The very first step for any algebraic prover is a preliminary
translation of a geometrical statement into polynomial equations and
inequations. At this stage a suitable kind of Geometry (Euclidean,
Riemannian, etc...)is chosen. More precisely one has to point out
the ground field k in which the polynomials take their values and
express, in algebraic terms, the axioms for distances, areas, volumes,
incidence etc...

The construction of the ground field is a very classical problem
and was first studied by Hilbert ([17]). It is one of the principal
motivations of the more recent studies on the so called algebra of
the invariants. It is out of the aim of this paper to discuss this topic.
A very modern and accessible introduction to it is [7], and a more
classical one can be found in [20]. An account of this problem can
also be found in [30].

A more practical aspect of this translation from Geometry to
Algebra is the choice of the system of coordinates. It is in this stage
that it is possible, for an algebraic prover to take advantage of the
symmetries of the problem under consideration.
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One of the possible formulations of the algebraic counter part of
a geometric statement is the following:

Problem 1. Let k be a field and let hi(xy, .. @n), oo b, ., Z0),
t(x1,...,3,) polynomials with coefficients in k, said respectively
hypothesis polynomials and thesis polynomial. It is requested to
determine algorithmically if there exists a polynormal Ax1,. ., Tp)
verifying the following properties:

1) d does not divide t¢;

ii) d is not in the ideal generated by the h;s in the ring
klz1, ..., 2,];

iii) there exist polynomials ¢, ...,g,, and an integer s such that

m
dt = E gihi
=1

Problem 1 can be restated in more geometrical terms as follows:

Problem 1. Let H be an algebraic variety in k", -called
the hypothesis variety, containing all the points representing
the configurations for which the hypothesis holds. Let 7" be the
hypersurface of k" described by the thesis polynomial containing
all the configurations for which the thesis holds. It is requested to
determine algorithmically if some open subset of H (in the sense of
the Zariski topology on k") is contained in T,

These two equivalent formulations of the problem of automated
theorem proving in Elementary Geometry are due to Wu ([32]). He
calls it the problem of the mechanization of Elementary Geometry.
They are the translation in rigorous algebraic terms of the concept
of validity for a geometrical statement as currently accepted. It is
important, in fact, to remark that most Geometry theorems are
valid in the Logic sense only under the assumption of suitable
non-degeneracy conditions.

For example the statement «there exists one and only one circle
circumscribed to a given triangle» is valid only if the word «triangle» is
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used in the strict sense of a non-degenerated triangle, i.e., such that
the vertices do not belong to the same line.

The non-degeneracy conditions are generally not easy to find as
in the example reported above, and hence it is not realistic to require
the user to provide them together with the statement to be proved.
Hence together with the goal of producing a proof of a given theorem
the prover has to determine a set of non-degeneracy conditions. They
are algebraically represented by the polynomial d in Problem 1.

This setting of the problem is not, however, free from difficulties.
It leaves, in fact, some arbitrariness in accepting a theorem as valid
In «some» sense or in rejecting it as false or with not completely
determined hypotheses. This problem is not merely theoretical, indeed
it is possible to find several examples of statements which can be
accepted by one of the provers described below and rejected as false or
incomplete by another one. Moreover there is not a generally accepted
criterion among the researchers in this area (see for example the
remarks in [7] and the final remarks in [4]).

Another more technical difficulty is shown by the following
example: (see [7])

EXAMPLE. Let ABC be a triangle, and let BE be the perpendicular
to the edge AC from B. Suppose the coordinates of these points are
assigned in the following way:

= (0,0); B = (21,0), C = (24, z5); E = (z2, 23).

The hypothesis BFE normal to AC is expressed by the polynomial
h1 = 2124 — T34 — 325 = 0,

The hypothesis «F belongs to the segment AC» is expressed by
the polynomial
hy = 2215 — 374 = 0.

Finally the statement «4BC is isosceles» can be translated into

t=a2%— 2z114 = 0.
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It is easy to verify that Problem 1 in this case has a solution
with d = z17475.

Hence if no attention is paid we obtain the paradoxical conclusion
that the statement «Any triangle is isosceles» is a valid theorem!

This problem can be avoided is several ways. Chou, giving this
example, points out that a possible solution is to examine the
geometrical meaning of the polynomial d. But this cannot be, in
general, done automatically, and it is sometimes a very hard task
also for the user. Other researchers ([4], [5]) give the following
specialization of Problem 1’ as a possible solution:

Problem 2.Let H be an algebraic variety in k", called
the hypothesis variety, containing all the points representing
the configurations for which the hypothesis holds. Let T' be the
hypersurface of k™ described by the thesis polynomial containing
all the configurations for which the thesis holds. It is requested to
determine algorithmically if some irreducible component of H, of
maximal dimension, is contained in 7.

This formulation has the advantage of being completely mecha-
nizable, and has been also successfully generalized (at least from a
theoretical point of view) to Differential Geometry ([5]). On the other
hand under this formulation some statement can be rejected as false
even in the case in which some minor additional check to detect this
anomalous situations is necessary.

A final problem that most of the algebraic provers have to face
is that in the theory of polynomial rings over a real field it does not
exist an equivalent of Hilbert Nullstellensatz which would simplify
remarkably the algorithmic treatment. For this reason some algebraic
provers work only over algebraically closed fields.

This condition can be sometimes misleading since a theorem can
be true over the real field, but false in the complex field.

This causes serious consequences in methods based on the
formulation given in Problem 2 above. Indeed it is possible that
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the irreducible components of maximal dimension mentioned in such
formulation lie entirely in the complex part of the affine space.

Notice that the problem of the ground field is easily avoided
by the «logical» prover, but these are generally not able to cope
with the non-degeneracy conditions. As said above it is unrealistic
to require a complete determination of such conditions by the user.
A solution could be to use deduction rules less strict than the rules
currently employed, but it is no very clear how these rules have to
be formulated.

To solve these technical problems some of the current provers
are strongly interactive. On the other hand this solution seems not to
be theoretically acceptable because of its not completely algorithmic
nature.

3. Wu’s method.

In 1978 Wu WenTsun proposed an algorithm for automated
theorem proving in Geometry based on the elimination procedure
discovered by J.F. Ritt ([25]).

In what follows k will denote an algebraically closed field. A
polynomial f in k[zi,...,z,] is said to be of class ; iff ; is the
maximum index such that f has a positive degree in z;. The class of
the elements of £ is zero. If f is of class 5 the coefficient of the T;
of maximum degree (which is a polynomial in klzi,...,z;—1]) is said
to be the initial of the polynomial f and is denoted by In(f). It is
possible to order the polynomials of k[z, ..., z,] in the following way:
f < g if g is of class greater than f or if  and g are of the same
class 1 and deg, () > deg, (f). f and g are otherwise not comparable.

If f and g are two polynomials of class respectively 7 :and j,
with ¢ < j, or such that i =j and the degree in z; of f is less than
the degree of g, then it is possible, using the Euclid algorithm over
k(z1,...,3_1)[2:] to find polynomials ¢ and r with deg, (1) < deg, (f)
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such that
In(f)*9g=qf +7

with o bounded by deg, (f) — deg, (g9) + 1. The polynomial r is said
the pseudo-remainder of g with respect to f, and it is denoted by
prem(g, f). This operation is called pseudo-division.

A polynomial f is said-to be reduced with respect to another
polynomial g of class i if deg, (f) < deg, (¢g). A set of polynomials
{f1,..., f+} is said to be an ascending set (AS) if r =1 and f; is in k,
or if the following conditions are satisfied:

i) f1 is not in k;
i) class(f1) <class(fy) < ... <class(f);

iii) f; is reduced with respect to f; for all the pairs 4,7 with
I<i<j<r.

It is possible to define a generalization of the operation of
pseudo division of a polynomial g with respect to an ascending set
{f1,..., f+}. By iterating the operation of pseudo division on g the
following formula is produced:

In(f O ... Inf)*g=qafi+...+¢.fr+r

and the polynomial r is called the pseudo remainder of g with respect
to the ascending set {fi,..., fr}-

It is possible to order the set of all the ascending sets. An
ascending set A is said to be of rank less than another ascending set
B if one of the following conditions holds:

1. Going up in the ascending order of indices there exists
an index j such that the j-th polynomial in B is greater,
according to the ordering described before, than the j‘-th-
polynomial in A.

2. All polynomials in B are not comparable with the corre-
sponding elements of A but A has cardinality greater than
B.
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Plainly the relation A ~ B iff A, B are not comparable is an
equivalence relation. The set of equivalence classes is well-ordered by
1. and 2. ([25], [30]). Hence the collection of all ascending sets formed
by polynomials of an ideal I has minimal elements. These minimal
elements are said characteristic sets (CS), of the ideal:

An ascending set {f1,...,f,} is said to be irreducible if every
polynomial f; is irreducible, as polynomial in z;, over the quotient
field of the polynomial ring k[z1,...,2,1/(fi_1,..., f1). This condition
can be tested algorithmically (but no efficient algorithm is known).
The importance of irreducible ascending sets is shown by the following
proposition:

PROPOSITION 1. Let A be a characteristic set for the ideal .
Then A is irreducible if and only if I is prime.

The main properties of characteristic sets are summarized in the

following proposition:

PROPOSITION 2. Let I = (fi,..., f,) be an ideal in k[zi,... z,]
and let {hi,...,hn} be a characteristic set for I. Let J be the ideal
generated by the h;’s and H* the multiplicative set of all the products
of the initials of the h;’s. The following properties hold:

1. JCICJ:H*®;

2. If Z(I) denotes the set of the zeros of the ideal I then it
results:

ZIN\|JZUInthi)) C Z(1) C 2()
1=1

and the inclusions can be strict.

3. If a polynomial f has pseudo remainder zero with respect
to the characteristic set then it belongs to J : H®. If the
characteristic set is irreducible the converse is also true.

4. dim(Z(J : H®)) > n— m.
5. If T is a prime ideal H° NI =0, and then [ = J : .
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It is clear from this proposition that a CS carries enough
information about its ideal only if the ideal is prime. Characteristic
sets are not of easy computation. They can be computed either
from a Grobner basis of the ideal or in a direct way using the
(optimal) algorithm in [11], or [12]. A more direct algorithm due to
Ritt ([25]), and introduced in the authomated theorem proving by
Wu ([30]) is based on successive computations of pseudo remainders.
Unfortunately the set of polynomials produced by this algorithm
generally is not a characteristic set of the assigned ideal, but it
is still useful in automated theorem proving. In fact for these «Wu
sets» proposition 2 above still holds.

An account of the Wu-Ritt algorithm can be found in [25], [30] and
[11]. It is important to remark that in [30] the term «characteristic
set» is applied to any ascending set with the properties listed in
the above proposition 2, but classically this term is reserved only to
minimal ascending sets.

To verify if a given polynomial g is zero over a variety one needs
to have an algorithmic test to check if the ideal of the variety is
prime, and if not to compute a suitable decomposition. In automated
theorem proving one needs simply to verify if g is zero on an open
subset of the variety, therefore the complete decomposition of the
variety in its irreducible components is rarely necessary.

Wu’s method to prove theorems in Geometry, can be now easily
described. Starting from the polynomials representing the hypotheses
one computes a characteristic set or a Wu set of this ideal. The second
step is to compute the pseudo remainder of the thesis polynomial with
respect to this set. If it is zero one can conclude that the theorem
i true under the non-degeneracy conditions given by the initials
of the characteristic set. If the pseudo remainder is not zero, no
conclusion can be taken unless the irreducibility of the characteristic
set is knwon. If this is the case the theorem can be rejected as false.
Otherwise factorization is needed.

Wu’s method has been implemented by Wu and his students in
China and by Chou at Austin, Texas. This last implementation is
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very well documented in [7] and it includes also a part relative to
the factorization of squared polynomials. The theorems verified by
Chou’s prover constitute the largest collections of mechanically proved
theorems available. They represent the more explicit demonstration
of the power and the elegance of Wu’s method for automated theorem
proving.

Finally Wu’s method has been applied successfully to elementary
differential geometry ([32]), by generalizing the Wu-Ritt procedure to
differential algebra. |

4. Methods based on Buchberger’s algorithm and on the
computation of the dimension.

After the success obtained by Wu’s method several researchers
tried to apply Buchberger’s algorithm ([2], [3]) to the problem of
mechanical theorem proving. This algorithm, which computes the so
called Grobner, or standard, bases for an ideal, is the main tool for
the so called Computer Algebra.

Grobner bases have ben applied to many different problems. For
example it is possible to develop a complete decision procedure for
the first order theory of algebraically closed fields entirely based on
Buchberger’s algorithm ([10]) and hence, at least theoretically, it is
possible to prove theorems using Griébner bases.

More specialized approaches have been, however, suggested by
Kutzler and Stifter ([22], [23]), Kapur ([21]), Winkler ([28]) and by
Carra and Gallo ([4]). In this section it will be reported a brief
account of the methods due to Kutzler and Stifter, Kapur, and Carra
and Gallo.

Kutzler and Stifter proposed the following version of the problem
of automated theorem proving in geometry:

Problem 1”. Let I be an ideal in the ring /c[a:l,...,a;,;], and
suppose that I Nk[zy,...,z4] =0, ie., the variables T1,...,T4 are



208 ALFREDO FERRO - GIOVANNI GALLO

independent with respect to I. Given a polynomial ¢ (the conclusion)
it is requested to decide algorithmically if there exists a polynomial
s in k[z1,...,z4] such that gs is in the radical of the ideal I.

The solution proposed by Kutzler and Stifter, called RED-
algorithm, is the following: compute, using Buchberger’s algorithm, a
Grobner basis for the ideal [k(zy,...,z9)[Zg+1,. .-, Zn]. If this extended
ideal is equal to all the ring, it means that the first d variables are
not really independent and another set of independent variables has
to be tried, otherwise one simply reduces g with the rewrite rules
given from the computed Grobner basis. If the result of this reduction
is zero the theorem is confirmed, otherwise is rejected.

This solution has several drawbacks. A guess has to be done for
the set of independent variables, and this can require an exponential
number of tentatives, but generally an analysis of the geometrical
problem under consideration is helpful. Another difficulty is that one
has to carry on a computation on the field k(zi,...,z4), and this
increases the complexity of the method. Finally the RED-algorithm
simply says if there exist a polynomial s, as in problem 1” such that
gs is in I, but it does not give any information about the radical.

On the other hand the RED-algorithm does not make use of the
Hilbert Nullstellensatz, and hence it can be successfully applied to
algebraically non-closed fields.

In order to presenf an interesting variation of the RED-algorithm,
called PRED-algorithm, Kutzler and Stifter introduce the concept of u-
pseudo reduction with respect to some ordering of the monomials. Ic;(g)
denotes the coefficient of [t(g), over the field £ and Im(q) = lc(g)it(g).
Let p,q,r be polynomials in kl[ui,..., %4, Tn ds1,-.-,2Zn). 7 u-pseudo
reduces to p modulo ¢ if the polynomial lcky,,. ) (@r reduces to
p modulo the rewriting rule Im(q) — g — Im(q). It is clear that the
u-pseudo reduction is a kind of simulation, in term of rewrite rules,
of the pseudo reduction in the Wu’s sense, with the extra condition
that the admissible «initials» here are polynomials only in the u;’s.

The PRED-algorithm can be now described as follows: compute
a Grobner basis for the ideal of the hypotheses, with respect to an
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ordering in which the variables u;’s are less than the others. As in
RED the u,’s are guessed independent. If the computed basis contains
a polinomial only in the u;’s another guess for the set of independent
variables is necessary. If not the thesis polynomial, g, is u-pseudo
reduced using the relations in the Grobner basis. The theorem is
confirmed if and only if ¢ u-pseudo reduces to zero.

The advantage of this method is to avoid the computation on the
field of rational functions, but it has the same other drawbacks as the
RED-algorithm. It can be successfully applied also over algebraically
non-closed fields. The approach of Winkler ([28]), which will not be
reported here, tries to avoid the problems of the proposed methods
by considering the problem of testing the radical membership for the
thesis polynomial instead of the simple membership.

Kutzler and Stifter have conduct many experiments with their
algorithms. They compared them also with Wu’s algorithm. From the
statistics they produce it is clear that their method is efficient and
reliable as well as Wu’s method. o

Kapur’s methods use Hilbert Nullstellensatz and the so called
Rabinowitzch’s trick to test the radical membership and, for this
reason they are valid only for algebraically closed fields.

The first method proposed by Kapur assumes that the hypotheses
of the geometrical statement are cdmpletely determined, i.e., the non-
degeneracy conditions are given. Hence the hypotheses are expressed
by polynomial equalities h, =0,..., h,, =0, and by some polynomial
inequalities s;#0, ..., s;#0. This strong assumption leads to a very
simple solution: one has just to test if the thesis polynomial g,
is zero on the zeros of the h;’s which are not zeros of the s;’s.
Using Rabinowitzch’s trick this is done by testing if the ideal
J =1, hpyzis1— 1, zi8. — 1,29 — 1) has zeros, where the z,’s
are new auxiliary variables.

By Hilbert Nullstellensatz one has simply to test if 1 is in the
ideal J. This can be done or by the algorithm of Hermann-Seidenberg
([16], [27]), using the improved bounds of Brownawell ([1D), or using
Buchberger’s algorithm.
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Although the method is very simple and of immediate im-
plementation (if an implementation of Buchberger’s algorithm is
available) it has the following drawbacks. As remarked in Section
2 the non-degeneracy conditions are generally very difficult to be
determined «a priori». Moreover the introduction of many auxiliary
variables increases the running time.

To prove theorems for which the non-degeneracy conditions are
not known Kapur first proves the following simple result:

PROPOSITION 8. Let I = (hy,...,hn) be an ideal and g and p
polynomials such that pg is in the radical of I. Then in any Grobner
basis of the ideal J = (hi,...,hn,29 — 1), with respect to an ordering
in which the auxiliary variable z is the smallest, there is a polynomial
q with the same property of p.

Using the above result Kapur suggests the following procedure:
compute a Grobner basis of the ideal J as in the proposition.
If it is the unit ideal then the theorem holds without any non-
degeneracy condition. Otherwise for every polynomial g, in the
Grobner basis which does not belong to the ideal I of the hypotheses,
test if H; = (h1,...,hm,29; — 1) contains 1.If this is the case
then the theorem is false. Otherwise the theorem holds under the
non-degeneracy condition g;#0.

An intensive comparison of the methods summarized above has
been conducted by Kapur himself and by Chou ([7], [21]).

Finally the method developped by G. Carra and Gallo ([4]) is
based on the computation of the dimension of an algebraic variety
(which can be done by a Grobner basis computation). In contrast
with the other methods of this section it can be generalized also to
Differential Geometry even though no algorithm is known to construct
a complete and confluent system of rewriting rules similar to Grébner
bases ([6]).

This method tries to avoid the difficulties presented by the other
algebraic provers. Indeed they can accept as valid false propositions
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or reject statements which are valid under suitable non-degeneration
hypotheses. |

The only algebraic prover who takes care of this unsoundness
is Wu's method which looks for the geometrical meaning of the
non-degeneracy conditions produced by the prover (i.e., the initials
in the set produced by the Wu-Ritt algorithm) to check if the proof
produced is meaningful or not.

This solution is not completely satisfactory since it requires (com-
putationally very expensive) factorization and an inverse translation
from Algebra to Geometry which is not completely automated yet.

Carra and Gallo distinguish the following validity of a geometrical
statement to refine the formulation given in Section 1, Problem 2.

DEFINITION Suppose that a geometrical statement is translated
into a collection of polynomial equalities and inequalities for the
hypotheses, and one polynomial equality for the thesis. The set of the
points in the configuration space satisfying the hypotheses is called
the hypothesis set, and the set of the points satisfying the thesis is
called thesis set. These set are generally quasi-algebraic set, and have
a decomposition in irreducible components according to the Zariski
topology over the configuration space.

A geometrical statement is said to be generically valid in a strong
sense if all the components of the hypothesis set of maximal dimension
are contained in the thesis set.

A geometrical statement is said to be generically valid if some
component of the hypothesis set of maximal dimension is contained
in the thesis set.

Strong validity, of course, implies validity but the converse is
generally false. An example of a statement which is generically valid
but not in a strong sense is the following:

EXAMPLE Let ABC be a triangle on the plane. Construct on the
edges AC and BC two squares ACDE and BCOFG. Let M be the
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middle point of AB. Then DF is twice the lenght of CM.

The hypotheses define four three-dimensionéi components corre-
sponding to the cases in which the squares are built inside or outside
the triangle. The thesis is true only if both squares are built outside.

Therefore the statement is true only in the generic sense.

It is important to remark that it is generally very difficult to
precise in an algebraic language relations as «inside» or «outside» which
play a fundamental role here.

Chou has noticed, in [7] that it is possible to construct examples
in which the dimension of the subvariety corresponding to degenerate
case is greater than the dimension of the subvariety corresponding
to the really interesting cases. This observation can be overcome by
considering these statements as «incompletely described». Moreover
the definitions of validity above are decidable in a totally mechanical
way and do not require any mathematical expertise to the user.

Carra-Gallo method uses the following property of quasi-algebraic
sets:

PROPOSITION 4. Let V be a quasi-algebraic set in A" defined byr
the polynomial relations:

f1=0,..., fm=0, g=0.
Then V is isomorphic to the variety V' defined in A™! by
fi=0,...,fm=09T-1=0
where T is a new auxiliary variable.

The proposition above allows to reduce the computation of the
dimension of a quasi-algebraic set to the computation of the dimension
of an algebraic set.

. The algorithm to test strong validity of a geometrical statement
can be described in the following way. First compute the dimension
(i.e. the maximal dimension of the irreducible components) of the
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hypothesis set. Then compute the dimension of the set obtained by
intersecting the hypothesis set and the complement of thesis set. If
this second integer is less than the first one then all components of
maximal dimension of the hypothesis set are contained in the thesis
set, and the theorem is valid in the strong sense.

If the thesis is expressed by more than one polynomial then
by multiplying them it is possible to reduce to the preceding case.
However a separate test for each one of them gives information about
which conclusion of the thesis has to be weakened to get a valid
theorem.

The algorithm to test the generic validity is simpler than the
method described above. It just requires to compute the dimension of
the hypothesis set and the dimension of the set obtained from it by
intersection with the thesis set. , |

If the two integers are equal then at least one maximal component
of the hypothesis is contained in the thesis and the theorem is
generically valid.

On the other hand if these two integers are not equal their
difference gives an information on how many additional hypotheses
one has to add to the statement in order to make it valid.

The core of the two methods described above is the computation of
the dimension of an algebraic set. In 1987, when Carra and Gallo first
proposed their algorithms, two methos were known: the computation
of the Hilbert polynomial of an ideal, and the analysis of a boolean
matrix built from a Grébner basis of an ideal. Both methods have the
same worst case complexity than the computation of Grébner bases,
which is doubly exponential in the number of variables.

More recently it has been proved by several authors ([24], [9])
that the dimension can be calculated by simply exponential algorithms
based on suitable versions of Hilbert Nullstellensatz (see [1], [11]).
No study it is known about the average complexity of these methods.
An experimentation of the Carra-Gallo method has been done at the
University of Catania and a report about it is in preparation.
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Since algorithmic methods to compute the dimension of algebraic
differential ideals are known ([6]) it has been possible to generalize
these methods to the case of elementary differential geometry ([5]).
The complexity of the available algorithms is however too high, and
this generalization has just theoretical interest.

As for the algebraic case, one has to give a precise definition
of when a differential geometry statement is considered valid. It is
possible to proceed as above, but in the differential case one has to
take care of the possibility that an irreducible differential algebraic
set can contain another differential algebraic set, which is irreducible
and of the same dimension. This justifies the following definition.

DEFINITION
i) Thesis follows in a generic strong sense of type 1 (gsl) from
hypothesis if the differential algebraic set defined by the
thesis contains all the irreducible components of maximal
dimension of the hypothesis set.

it) Thesis follows in a generic sense of type 1 (g1) from hypothesis
if the differential algebraic set defined by the thesis contains
some irreducible component of maximal dimension of the
hypothesis set. |

iti) Thesis follows in a generic strong sense of type 2 (gs2) from
hypothesis if the differential algebraic set defined by the
thesis contains, for all the irreducible components of maximal
dimension of the hypothesis set, an irreducible subset of the
same dimension.

iv) Thesis follows in a generic sense of type 2, (g2) from hypothesis
if the differential algebraic set defined by the thesis contains,
for some of the irreducible components of maximal dimension
of the hypothesis set, an irreducible subset of the same
dimension.

Using the same techniques described in the algebraic case (i.e.
the computation of the dimensions of the hypothesis set, of the
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intersection of the hypothesis set with the complement of the thesis,
and the intersection of the hypothesis set with the thesis set) it is
possible to decide if a given statement is not valid according to any
of the above definitions. If this is not the case then it is possible to
check if the statement is valid according to definition i).

Nothing is known about the computational complexity of this
method.

5. Proving by example.

One of the most peculiar characteristic of the Gelernter’s prover,
as reported in section 1, is the use of diagrams, i.e, ultimately, of
examples, to decide some property that was out of the logical power
of the prover.

Jiawei Hong ([18]) has proposed a prover which uses the same
approach but in a more rigorous mathematically justified sense.
Hong’s «proving by example» method was originally designed to
prove theorems for which hypotheses and thesis are expressible by
polynomial equations, with degree at most two in each variable.
Later Hong discovered a method to prove inequalities over the real
numbers for a large class of functions, including polynomials ([18]).
In this paper we will give an account only of the first algorithm.

Hong formalizes the class of geometrical statements that can
be proved by his prover as follows. Any geometrical statement is
composed by three basic elements:

— the choice of a finite number, say s, of arbitrary points;

— a sequence of constructions carried out starting from the
initial points;

— an assertion about the equality of some of the points

constructed in the previous steps.

Algebraically this leads to the introduction of 2s independent
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variables and of r variables which are dependent over the others,
according to some polynomial relations. Hong assumes that the new
points are constructed only by intersecting lines connecting two points
and circles centered at one point and containing another point. This
implies that the generated polynomial relations have degree at most
two in each variable. Another consequence of these premises is that
the polynomial relations have the form of a triangular system of the
following kind:

f](ul,...,U2s,:171) = O.

fr_l(ul,...,uzs,ml,...,acr_l‘) =0

frur, ... u2s, 1,00, Tye1, Tr) =0

'To prove a theorem means to test if one or more polynomials are
zero on the (generic) zeros of the variety defined by the equations
above. Hong precises the adjective generic as follows.

Starting from the equations above one can (at least in theory)
solve them in sequence, in such a way that the values taken by the
z;’s are functions of the values taken by the u;’s (the parameters).
In particular considering the bounds assumed on the degrees one is
able to write down an explicit formula for such functions.

For each choice of the parameters, it is possible to build a tree
in the following way. The root is a vertex labelled by the 2s-tuple of
the values chosen for the u;’s. It has one, two, or no children, if f
has one, two, zero or infinite solutions respectively as equation in zi;
If a solution can be computed (assuming that one is able to perform
exact real arithmetic) it will label the newly created node. The same
procedure applies recursively to the successive levels of the tree. If a
node has no children it is labelled by an X (degenerate case). If the
tree has nodes at the r-th level (i.e., it is possible to complete the
construction) then for each of these node one has a complete set of
values for the u;’s and the z,’s and then it is posisble to test the
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thesis for this 2s + r-tuple of real numbers. An appropriate label is
assigned to these terminal nodes if the thesis is true for them or not.

It is clear that the analysis of the tree gives all the informations
one needs about the theorem in consideration (non-degeneracy
conditions, validity, special cases, etc...). It is remarkable that the
strucutre of the tree is independent of the decomposition in irreducible
components of the hypothesis variety.

The trees constructed above are isomorphic for almost all choices
of the parameters, and Hong proves the following result:

PROPOSITION 5. There exists a polynomial t(uy, ..., uss) such that

for any 2s-tuple (v, ...,v25) one of the following two facts is true:
) t(vi,...,v25) =05
i) the tree constructed starting from the values (vy,...,vs,) is

1somorphic to the tree constructed by any other 2s-tuple which
is not a solution of the polynomial t.

The degree of the polynomial t can be computed from the degrees
of polynomials in the hypothesis.

According to the above theorem it is possible to say that a choice
of parameters is generic when it is not solution of the polynomial t¢.
Thus if one is able to pick up an example satisfying such condition
then the theorem can be proved by just verifying that example.

This idea gives an effective algorithm if one specifies how to
realize a generic choice and how to cope with the problem raised by
real arithmetic.

To solve the first problem Hong introduces the concept of generic
basis for a variety. Let P(i,p,t,v) be the set of all the polynomials
in kluy,...,uzs,21,...,2;] with total degree less than p, sum of the
absolute values of the coefficients less than ¢, and degree in each of
the variables less than v. The 2s-tuple (ui, ..., us,) is said a basis for
the point (uy,...,uzs, T1,...,3;).

The 2s-tuple (u1,...,u) is said a generic basis for the variety
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A, with respect to P(i,p,t,v) if the following property holds: for any
polynomial f in P(i,p,t,v) and any irreducible component of A4, f is
zero over this component if and only if it has a zero whose basis is
(ul,...,uzs). _

As a consequence of the above theorem Hong is able to give an
explicit construction of the generic basis of the hypothesis variety.
Suppose that the construction starts with s arbitrary points, and
takes ¢ steps. Let p = c? and t = p¥ with ¢ an absolute constant. Then

z1 = pt;
22 = (pt)"*P;

23 = (pt) PP

2 251
Zps = (pt>1+p+p +..4p .

i1s a generic basis for the variety determined by the hypotheses.

One has just to analyze the example built starting from this
parameters to prove the theorem.

The last difficulty to be considered is how to work with real
numbers, which require infinite precision, using just an approximate
arithmetic? To answer this question Hong proves the following «gap

theorem»:

PROPOSITION 6. Let {an} be a sequence of real numbers each
one obtained from the preceding ones and from a finite number of
parameters bounded by a constant M, by means of the operations of
sum, product, division and square root computation. Then either a; is
zero or its absolute value is greater than M~¢, where c is a constant
depending only on the number of the parameters.

As a consequence of the theorem the precision one needs to test
a geometrical statement as above is of ¢ digits, where d is some
constant. Using this bound Hong is able to prove that his method
has a parallel complexity of O(logh(kls)), where h an k are constants.
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Hong’s method is very original and elegant, but it presents some
difficulties. The size of the constant involved in the algorithm seems to
be very large (since it must keep into account the extreme instability
of the roots of a polynomial as a function of the coefficients), moreover
no complete implementation of the method has been reported, even
though Hong claims that some new theorems have been proved by this
algorithm. Finally the method seems not immediately extensible to
the general case where the hypothesis can be expressed by arbitrary
polynomials.

6. The probabilistic approach.

From what has been so far described the task of automatic
theorem proving in Geometry appear to be computationally very
expensive. It is therefore natural to ask for probabilistic algorithms.
This approach will not give in general complete answers about
the validity of a theorem, but it will at least classify it as a
«certified» conjecture with a given high probability.

Altough probabilistic algorithms have been recently widely
developed for several areas of Computer Science, not very much is
known about the use of probabilistic algorithms in geometry theorem
proving. The only method described in the literature is given by J.T.
Schwartz [26].

His approach is based on an observation of P.J. Davis [8] who
notes that geometric theorems can always be reduced to a single
algebraic identity. This is for example an immediate consequence of
both Wu’s and Hong’s methods.

Two main tasks arise:

a) Finding efficiently the algebraic identity f = 0 which is
equivalent to the theorem to be proved.

b) Verifying that algebraic identity f = 0.
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~ There are many methods to perform a) but there is no study on
the efficiency of various strategies.

So we will concentrate on task b). This can either be performed
by explicitely calculating the polynomial £, simplifying it and showing
that it is zero. This is done in Wu’s method. On the other hand in
Hong’s method f is not explicitely calculated but an extimation of
the maximum size of the roots of the polynomial f is found. In this
approach one tries to prove that f = 0 by showing that f is zero on
a point which exceeds the maximum allowed size.

A third method, [26] [33] consists of proving that f has too many
roots by evaluating it on sufficiently many points using Hong’s Gap
theorem. A

Schwartz suggests a probabilistic approach to geometry theorem
proving by giving probabilistic algorithms for checking polynomial
identities. \

First he considers the case of integer arithmetic and notices that
the following fact holds [26].

PROPOSITION 7. Let f(z1,...,,) with coefficients in a field k be
a polynomial which is not identically zero. Let I be a subset of k such
that the number |I| of elements of I is greater than 2deg(f). Then in
the set I" =1 x I x ... x I the polynomial f has at most |I|*/2 roots.

This suggests the following probabilistic test to check f = 0:

(i) Chose I such that |I| > 2deg(f)

(i1) Let m be an integer such that 2™ is small enough (for
example m = 100)

(iii) Select m elements in /™ at random.

(iv) If any of these elements is not a root of f then f # 0.
Otherwise if they are all zeros of f then f = 0 with
probability 1 —2—™,

If the polynomial f is given in an implicit form then finding
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its explicit expression could be very expensive. In this case the
probabilistic approach could be useful.

For example Schawrtz notes that if f is the Vandermonde
determinant over say 100 variables the total degree is about 5000
and (hopeless) simplification by expansion will generate about 2590
terms!

Using the above probabilistic test in order to guarantee an
accuracy of 107'% one needs to run about 60 random tests on an
ipercube of IN'% of side 250.000. This will involve no more than 108
arithmetic operations which can be performed in a few minutes.

In order to keep the size of the coefficients low one can use
modular arithmetic.

Another, more challenging, approach is to use real arithmetic to
verify f = 0. In the case of polynomials in one variable Schwartz is
able to give a probabilistic algorithm based on the following fact: (see

[26]).

PROPOSITION 8. (Kayeka-Okada-Fekete-Szegd) Let f(z) be a
polynomial with integer coefficients which is not identically zero on
the reals. Then the measure of the set {z € R| |f(z)| < 1} is not greater
than 4.

This result suggests the following real probabilistic test:
(i) Choose an interval I of measure greater than 8.

(ii) Let m be an integer such that 2™ is small enough.

(iii) Select m elements randomly in I.

(iv) If any of these elements makes |f| greater than zero then

FZ0.

Otherwise if they are all zeros (within the precision of the
calculation) then f = 0 with probability 1 —27™.

Unfortunately Schwartz is not able to give an analogous test for
multivariate polynomials.
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Finally it is worth noticing that sometimes it is not immediate
to reduce a geometrical theorem to a single identity.

One can then try to reduce the theorem to an implication fi=0
and f, =0 = f =0 with no more than two hypotheses and degree
at most 4. In this case one can use the above probabilistic tests in
connection with the classical elimination theory of Kronecker, to test
if the various resultants are identically zero (see [30]).

In conclusion we can say that this probabilistic approach seems
to be very promising but must be subject to more deep investigation.
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