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AUTOMATED DEDUCTION IN TOPOLOGY:
TWO DIFFERENT APPROACHES

VINCENZO CUTELLO (Catania, New York)

Two approaches to theorem proving in Topology are described and
some research problems in the field are given .

1. Introduction.

In this paper we will survey some results (and related problems)
concerning the mechanization of proofs of theorems in General
Topology. |

In particular, we will briefly describe two approaches to the
problem that have been recently proposed. Both of them, though,
in principle, very valuable, suffer from feasibility #nd theoretical
problems, and might (and should) be considerably improved. To this
end, we will propose some research problems.

In the appendix, we will describe a theorem proving system that
has been used in one of the methods we are going to introduce.

For all the basic notions of set theory and mechanical theorem
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proving we will refer to [11] and [81], respectively.

2. Basic Topology Deﬁnitiqns.

Let us introduce now the basic concepts of General Topology. For
a complete discussion of the subject see for instance [12].

A Topology T on'a set X can be defined in three équivalent
ways. Namely, in terms of ’

e neighborhood sets;
e open sets;

e closed sets.
We follow the second option.

DEFINITION 21. The pair (X,T), where X is a nonempty set, is
a topological space if T is a family of subsets of X, which will be
called open sets, such that

e the intersection of any two members of I is a member of T;

e the union of the members of each subfamily of T is a member of
T; |

§x=UO.

oecT

It is easily seen that X and §} are open sets.

DEFINITION 2.2. A set C C X is said to be closed if there exists
an open set O such that C = X\O.

A set U C X is said to be a neighborhood of a point © € X if
there exists an open set O such that x € O C U. |

EXAMPLE 2.1. A trivial topology for a nonempty set X is the one
given by 7 = {0, X }. Such a topology is called indiscrete.
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At the other extreme is the topology given by T =powerset(X).
This is called the discrete topology. |

As we already mentioned, the topology of a topological space can
be described in terms of neighborhoods of points. In order to give a
definition of open and closed sets in terms of neighborhoods we need
the following definition.

DEFINITION 2.3. A point z is an accumulation point of a subset
A of a topological space (X ,T) if and only if every neighborhood of x
contains points of A other than z. |

The following theorems, then, hold.

THEOREM 2.1. A subset of a topological space is closed if and
only if it contains the set of its accumulation points. |

THEOREM 2.2. The union of a set and the set of its accumulation
points (closure of the set) is a closed set. |

The closure of a set, 1ntroduced in the last theorem, satisfies the
followmg definition.

DEFINITION 2.4. (Kuratowski closure axioms) A closure operator
" is an operator which assigns to each subset A of X a subset A of X
in such a way that the followzng statements are satisfied.

@ 0 =90.

(b) For each A, A C A.

(c) For each A,@ = A.

(d) For each A, B,AUB=AUB. n
Several basic notions of general topology can be formulated in

terms of the closure operator.
Namely, if we write A’ = X\ A4, we have that:

o Int(A) =ps (A’) (the interior of A);
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Ext(A) =pe (A') (the exterior of A);
o O(A) =per A\ Int(A) (the boundary of A).

Also, the following topological predicates are expressible:
o open(A) =per A =Int(A) (A is an open set);
e closed(A) =ps A=A (A is a closed set);
o open domain(A) =pes A =Int(A) (A is an open domain);
e neighborhood(A,a) =pe a € Int(A) (A is a neighborhood of a);
e dense(A) =ps A =1 (A is dense in the space 1);
e co dense(A) =per dense(A') (A is co_dense in the space 1);

o nowhere dense(A) =pe co dense(A) (A is nowhere dense in the
space 1).

It should be noted that since the definition of open or closed set
can be given in terms of the closure operator, the notion of topology
can be also given in terms of the closure operator.

We conclude this section with the following definitions.

DEFINITION 2.5. If (X ,T) is a topological space and B is a
subfamily of T then B is a base for the topology T if and only if for
each v € X and for each neighborhood U of x there exists a member
V of B such that x € V C U. . |

If (X,T) is a topological space and ¥ C X we may construct a
topology v for Y, which is called relative topology, by defining V' as
the family of all intersection of members of 7 with Y.

DEFINITION 2.6. A topological space (X ,T) is connected if and
only if X is not the union of two nonempty, disjoint and closed subsets
of X.

Analogously, if Y C X, then Y is connected if the topological
space with the relative topology is connected, or equivalently, if do not
exist two nonempty, disjoint and closed sets in the topology (X ,T)
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whose union contains Y. ‘ |

DEFINITION 2.7. A topological space (X ,T) is compact if and
only if each open cover(!) has a finite subcover. |

Using the De Morgan formulas on complements, we have the
following characterization of compactness in terms of closed sets.

THEOREM 2.3. A topological space (X,T) is compact if and only
if each family of closed sets which has the ﬁnzte intersection property (%)
has a nonempty intersection. ]

DEFINITION 2.8. Let (X, T) and (9, V) be two topological spaces.
Let f be a function from X to 7.

(@) f is said to be continuous if and only if the inverse image of an
open set in " is an open set in X.

(b) f is said to be closed [resp. open] if and only if the image of a
closed set [reps. open set] in X is a closed set [resp. open set] in

. |

3. The Resolution-Based Method.

In this section we will review the work done to present a
first-order formulation of point-set topology, in order to automatically
prove theorems using a resolution-paramodulation based theorem
prover system. For a full discussion see [15].

Let us first show a sorted first-order formulation of some of the
definitions given in the previous section.

(') An open cover is a family of open sets 4 such that X = U O. The cover

' 0eAa |

is finite if the family 4 is finite.
(%) The finite intersection property requires that each finite subfamily of a fa-

mily 4 has a nonempty intersection. :
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The implicit rule that we will use is that lower case letter
symbols, e.g. u,v,w, 7, y, z, represent points, whereas symbols starting
with A, B,C,U,V,W,X,Y, 7, represent sets and symbols starting with
F G, H,S, T represent family of sets.

e The union of the members of a family F' (which we will indicate
with sigma(F")) is given by the formula

VEVYy (u € sigma(F) < A { ZEEAFA }>

e The intersection of the members of a family F' (which we will
indicate with pi(F") is given by the formula

VEVu(u € pi(F) - YA(AE F —u € A))

e So the definition of topological space can be given as

sigma(T) C XA
PeTAXETA
VXVT |top space(X, T« VYVZY €eTNZ €T - (Y NZ) € TN

VE(F CT —sigma(F) e T)

e Predicates for open and closed sets have a very simple definition

top_space(X, TN })

' X
YUVXNVT <open(U,X, T) «» { UeT

and

VUVXNT <closed(U,X, T) & { top_space(X, TN })

open(X — U, X, T

e The definition of neighborhood is the following ()

(®) In[15] the neighborhood of y is defined as an open set that contains y.
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top_space(X, THA

YUVYyYVXVYT |neighborhood(U,y, X,T) «+3A open(4, X, Tll/\ ACUA
‘ ye

e The interior of a set

YYVXVTVu
top_space(X, TYANY C XA }>

nterior (Y, X, T
<u€merwr(, : )H{QV(UQV/\VQY/\OPM (V,X,T))

e The closure of a set

VYVXVTVu
top_space(X, TYANY C XA })

(u € closure (Y, X, T) {VV(Y C VAclosed (V,X,T) - u € V)

To the list of formulas given above, must be added all the
formulas concerning the set theory concepts used, as for instance C, \.

Moreover, since in the language there are three sorts of variables,
namely points, sets and collections of sets, in any refutation process
unification of variables of different types must be avoided.

In [15] three solutions are proposed for this problem.

e Include type literals for the different types. So any formula Vz¢
where z is, for instance, a set variable, should be rewritten as
Va(set(z) — ¢), whereas, any formula of kind Jz¢ where z is, for
instance, a point variable, should be rewritten as Jz(point(z) A ¢)
(called relativization of quantifiers).

e Put type functions around terms. So for instance, literals of kind
open(z) should be rewritten as open (set(x))..

e Use implicit typing, i.e. the position of each argument determines
its type. A type is associated with each constant and function
symbol, and a type is associated with each argument position of
each predicate and function symbol.
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Since the first solution does not assure that unwanted unifications
do not happen and the second solution appears to be too expensive
because of the extra type functions, the last solution is followed.

In order to make things work, the membership relation is
partitioned into two relations. Namely, el p(z, y) which says that z is
a point that belongs to the set y and el s(z,y) which says that z is a
set that belongs to the collection y.

Analogously, the binary predicates subsets and subsetc are
introduced, meaning respectively set inclusion and collection inclusion.

Here follows a complete list of the set theoretic predicates that
are needed for this approach.

€ el _p(point,set), el s(set,collection);

= eq p(point, point), eq s(set,set), eq c(collection,collection);

C subset _s(set,set), subset_c(collection,collection);
disjoint disjoint_s(set,set), disjoint_c(collection,collection);

U Union _s(set,set), Union_c(collection,collection);

N inter s(set,set), inter c(collection,collection);

\ rel_comp_s(set,set), rel_comp_c(collection,collection);

§ 0_s (empty set), 0_c (empty collection).

Once these new predicates are introduced, first order formulas
to handle them must be introduced as well. For instance, several
properties of the equality relations, such as reflexivity, transitivity,

symmetry and substitutivity must be stated. All these first-order
formulas must then the transformed into clausal form.

For instance, the clausal representation of the first order formula
defining a topological space is the following:

1 -top_space (x,vT) | eq s{sigma(vT),x).

2 -top_space (x,VvT) | el_s(0_s,VvT) .

3 -top_space (x,vT) | el_s(x,VvT) .

4 ~top_space (x,vT) | —el_s(y,vT) | -el_s(z,vT) |
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el s (inter_.s (yv,z),vT).

5 —top_space (x,vT) | -subset_c (vF,vT) |
-el s (sigma.(vF) ,VT) .

6 top_space(x,vT) | —eq.s(sigma (vT),x) |el_s(0_s,vT) |

 —el.s(x,vT) | el.s(£3(x,vT),vT |

subset ¢ (£f5(x,VvT),VvT).

7 top_space (x,VT) | —eq s (sigma (vT),x) |el_s(0.s,vT) |
-el_s(x,vT) | el s(£3(x,vT),vT]|

-el s(sigma (f5(x,vT)),VvT).

8 top_space(x,vT) | ~eqs (sigma (vT),x) |el_s(0_s,vT) |
-el s (x,vT) | el s(f4(x,vT),vT |
subset ¢ (£5(x,vT),VvT) .

9 top_space(x,vT) | —eq.s (sigma(vT),x) |el_s(0_s,vT) |
-el s (x,vT) | el_s(f4(x,vT),VvT |
—el s (sigma (£5 (xb,vT) )y, vT) .

10 top_space (x,vT) | -eqs (sigma (vT),x) |el_s(0_s,vT) |
-el s(x,vT) | el_s(inter_s(f3(x,vT),
f4(x,vT)),vT) l subset ¢ (£f5(x,vT),vT).

11 top_space (x,vT) | ~eqs (sigma (vT),x) |el_s(0_s,vT) |

~el_s(x,vT) | el_s(inter_s(f3(x,vT),

£f4(x,vT)),vT) | -el_s(sigma (f5(x,vT),vT)
where, variables start with a symbol in [u,v,w,z,vy,z] and the
symbols f1,f2,...,91,92... are Skolem functions.

The final result is a huge number of clauses that the system
must handle and which make this approach inadequate. To confirm
what we have just stated, in [15] an example is shown of a proof of
the theorem:

The topology generated by a basis gives rise to a
topological space.

Such a theorem, very simple from a conceptual point of view,
is proved in five steps, and for each step hundreds of clauses are
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generated 4

3.1. What should be done.

Let us now remark what we think should be done in order to
make the above described approach more effective.

e Much of the work that any theorem prover system must do in
its refutation process, is concerned with set theoretic constructs.
So, if the problem of finding an inference rule that plays for set
theoretic constructs, the same role that paramodulation plays for
equality was solved (see [16]), this approach will greatly increase
its effectiveness.

e Since paramodulation cannot be used in this case, because three
different equality operators, namely =pint, =set> =collection, are to be
considered, a modified version of the inference rule that allows
one to deal with different sorts of variables might be very useful.

e Finally, a local search strategy is strongly needed. Indeed, the
number of clauses in the set of axioms is very large, nevertheless,
in the majority of the cases only a few of them are needed to

~ prove a given theorem.(’) So, given a theorem, the system should
be able to weigh the clauses in such a way to involve in the
refutation process first the clauses that are more likely to be
effective. "

4. A Decision Procedure.

In this section, we describe a different approach to the problem of

4 We recall here that the system used by the authors of the described work is
OTTER, see the last section for a brief description.

(®) For instance, to prove that the intersection of two neighborhood of a point
T is also a neighborhood of z, one only needs to consider that the intersection of

two open sets is an open set and thatif A C Band C C Dthen ANC C BND.
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automated deduction in Topology. We will refer to the work described
in [6]. The result in this paper is strongly related to a large amount
of work, done in the last few years, in the field of Computable Set
Theory, (see, for instance, [9], [11], [5], [14], [2], [7], [4], [3]).

As we will see in more details, the work to be described is based
on the result obtained in [10], of which the above mentioned papers,
are extensions.

4.1. Two and Multi Level Syllogistic and the satisfiability problem.

By Two Level Syllogistic (2LS) we mean the unquantified
languages, obtained as propositional closure of the atoms:

e X =Y ULJZ;
e X =Y\Z;

o X =Y NI,

e 1 C X;

e X ={z}

where, capital letters indicate set variables and small letters indicate
element variables.

By Multi Level Syllogistic (MLS) we mean the generalization
of the above theory, where all the variables simply represent set
variables, i.e. the elements of a set are themselves set. The decidability
of the first theory was studied in [10] while in [9] the decidability of
the Multi Level Syllogistic is shown.

By decidable theory we mean that there exists an algorithm that,
given any formula ¢(z1,z2,...,3,) of the theory, checks in a finite
amount of time, whether or not there exists a model that satisfies
the formula(®). In this case, we will also say that the given theory
has a solvable satisfiability problem. :

(®) In other words, both the sets of satisfiable and unsatisfiable formulas of the
given theory are recursively enumerable.
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Notice that for each formula ¢(z1,z2,...,2,), with free variables
z1,...,T,, the following are equivalent:
o #(x1,...,x,) is satisfiable;

e (z1)...(Fzn)é(zy, ..., T,) is valid;
o ~(Vz1)...(Vz,)—¢(zy,...,T,) is valid.

Therefore, any satisfiability test for an unquantified theory,
provides a validity test for the universal and the existential closures
of the formulas in the theory.

4.2. The theory L >,

The solvability of the satisfiability problem for the two theories
cited above, helps to solve the satisfiability problem for a syllogistic
extended with the Kuratowski topological closure operator -, continuous
and closed maps between topological spaces, along with the operations
of point evaluation, set image,'and inverse set image, in the case of
a syntactic non circularity property, that we will describe in what
follows.

The theory £ 2 is a two level multi-sorted language with
functions. For each positive integer n (whose intented meaning is to
denote a particular topological space) we have

e two denumerable sequence of variables (z{?,..., x%") ,...,y(()”) e

y™ ... (denoting individual variables);

e two denumerable sequence of variables (X () yeo, X }(1") . ’Yo(n), o
Yh(n) ,...) (denoting set variables);

e the constants 0 and 1™ denoting respectively the empty set
and the universe of the topological space denoted by #;

e the unary operators '™ and ~™ denoting respectively the set
complementation (with respect to the universe 1) and the
Kuratowski closure operator;
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The usual binary operators U,N,\ and the binary predicates
=, C,€ are also available, along with the propositional connectives
-, A\, V, —, «. Finally, for each pair of integers (n, m) two denumerable

f(nym)

sequences of variables are available. They are of type f; (denoting

a continuous function from the topological space n to the topological
(n,m)

space m) and g, (denoting a closed function from the topological
space n to the topological space m).

DEFINITION 4.1. For each n
e each individual variable of sort n is an individual term of sort n;

for any m and any individual term t™ of sort n fOm™ (™),

g(”’m) t™) are individual terms of sort m;
e each set variable of sort n and 1™, 0™ qre set terms of sort n;

if Tl(”), T;,f") are set terms of sort m then Tl(") U Tz("), T 1(") N T,
T 1(”) \T(n), (Tl(n) Y ,Tl(”) are set terms of sort n

o for each m ( f(m’n))“l[Tl(n> ], g™ [Tl(n)] are set terms of sort n. M

Formulae of £%* are propositional combinations of atoms

P =40, P er?,
=157, 1" C1y?,

(n) L

where ¢;",t5 (m)

are individual terms of sort n and Tl(”), , "~ are set
terms of sort n, for some natural number n.

By using a simple normalization process, it is immediate to see
that the satisfiability problem for formulas of £ 2% can be reduced
to the satisfiability problem for conjunctions of literals of type

T =y, T#Y, y = f(=z),
1 y=g(), z€lX, X =0,

X=1 X=fY] Y=g[X],

X=Y, X=YUZ X=Y\Z,

where z,y stand for individual variables, f and ¢ for a continuous
and a closed map variable respectively, and X, Y for set variables.
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Let us see in more detail, what we mean by satisfiability of
formulas of £ 2,

DEFINITION 4.2. A topological assignment M is any interpretation
of the constants and variables of L2 such that

o M1™ is a non empty set endowed with a topology ™™ and MO®™
s the empty set.

e For each individual variable z™ Mz™ ¢ M1®,
e For each set variable X™ MX® C p1™,
o '™ js interpreted as the set complementation in M 1™,

o ™ s interpreted as the Kuratowski closure for the topological
space (M1 7)),

e U,N,\ are interpreted as the usual set binary operators.

o Mf®™™ [resp. M g™ ] is a continuous [resp. closed] map from
the topological space (M1™, ™) into the topological space
(M 1) m)y, |

DEFINITION 4.3. A formula ¢ of L% is topologically satisfiable,
if there exists a topological assignment M such that M ¢ is true.

A formula ¢ of L% js topologically valid, if M¢ is true for all
the topological assignments M. ||

We have already mentioned a non-circularity property to hold
for formulas of L %°. More precisely, let ¢ be a formula of £ 2.
Let Ny = {ig,%1,...,1,} be the set of sorts of all individual and set
variables. We associate to ¢ the graph Gy = (Ny, E4) where there is
an edge in Ey 1, = 1; if and only if either ¢ contains some occurrences
of a continuos map variable of sort (i;,4,) or some occurrences of a
closed map variables of sort (is, 1¢).

DEFINITION 4.4. We say that a formula ¢ of £L%* is acyclic if its
associated graph is acyclic. |
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Notice that the decidability of the theory £ > is obtained by
means of a reduction process, that starting from an acyclic conjunction
of type (1), eliminates all the map constructs and the closure operator
constructs reducing the satisfiability problem for acyclic formulas of
L > to the satisfiability problem for formulas of two-level syllogistic
(see [6] for all the details).

We have then the following lemma.

LEMMA 4.1. Given any acyclic formula ¢ of the theory L >, it
is possible to build, in a finite amount of time, a formula ¢* of the
theory 2LS such that ¢ is satisfiable if and only if ¢* is satisfiable.l

The above lemma, combined with the solvability of the satisfiability
problem for the 2LS gives the following theorem.

THEOREM 4.1. The class of acyclic formulas in the language L >
has a solvable satisfiability problem. ||

4.3. Examples.

In section 2 we have seen how many constructs of topology can
be expressed in terms of the Kuratowski’s closure operator; then
they can be expressed in the language £ 2%, In particular, since the
class of acyclic formulas of £ 2> is closed under negation, we have
that the validity of the following statements can be checked by the
satisfiability test for the acyclic formulas of £ 2°°;

(a) the intersection of two open domains is an open domain;
(b) the union of two open domains need not be an open domain;

(c) if A and B are open domains, then

ACB— ACB;

(d ¢ =0, and for all A and B
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(Kuratowski’s closure axioms);
(e) if A is co-dense and B is nowhere dense, then AU B is co-dense;
(f) the union of two co-dense sets is not necessarily a co-dense set;

(g) for all subsets A of a topological space U,

Int(A) U 6(A) U Int(A)) = U;

(h) for each continuous map f and each set B,

FHIne(B)] C Int(f [ BY);

(i) for all A,
' Int(A) C Ext(Ext(A));

(j) every continuous map is locally continuous, i.e., for all z, if B is
a neighborhood of f(z), then f~![B] is a neighborhood of z.

4.4. Complexity and future work.

The satisfiability problem for the two-level syllogistic (or multi-
level syllogistic) is AL P -complete. It turns out then that the
satisfiability problem for the theory £%% is A{®-hard. The algorithm
described in [6] has a prohibitive complexity. Namely, if 4 is the
length of the longest path in the associated graph of a formula o,
then the cited algorithm decides the satisfiability of the formula ¢ in

e

where n is the total number of variables in the formula and the length
- of the exponential stack is h + 1. Nevertheless, we strongly believe
that such algorithm can be improved so as to work in polynomial

time

time in most cases.

Such improvement might be realized by endowing the algorithm
with tests that are able to check quickly if some basic set theoretical
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properties and axioms are falsified by any model that should satisfy
a given formula(’).

Along with these implementation details, from a theoretical point
of view, mush work is still to be done. Here we try to sketch some
possible future research problems:

e the acyclicity condition should be eliminated. This implies the
search for an algorithm able to recognize the existence (and
eventually able to build) topological spaces with an infinite
number of closed (and then open) sets.

e In [6], the decidability of the theory £ 2 extended with the
predicate accumulation point(z, X) (with the intended meaning
is an accumulation point for the set X) and the operator Der(X)
(i.e. the set of all accumulation point of X), is conjectured but
not proved.

e Even more interesting is the extension of £ 2% with predicates
connected(X) and compact(X) (with obvious intended meanings).
Since connected(X) and compact(X ) imply a universal quantifi-
cation over the open and closed sets, we expect the decidability
of such extensions (if decidable) to be harder to obtain than the
solutions to the open problems above cited.

5. Appendix: The Otter System.

OTTER (Other Techniques for Theorem-proving and Effective
- Research) is a resolution-style, non interactive theorem proving
system recently designed and implemented at the Argonne National
Laboratory, Mathematics and Computer Science Division (see [13] for
a complete description of the system).

OTTER includes the inference rules binary resolution, hyperreso-

(") For instance, many of the two-level or multi-level syllogistic formulas are
unsatisfiable because the Axiom of Foundation would not be valid in any model.
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lution, UR-resolution, and binary paramodulation. Some of its other
abilities are conversion from first-order formulas to clauses, forward
and back subsumption, factoring, weighting, answer literals, term
ordering, forward and back demodulation, and evaluable functions
and predicates. OTTER is coded in C, and it is portable to a wide
~ variety of computers.

It is to be noted that the user decides which inference rules
should be adopted, which sets options to control the processing of
inferred clauses, which input formulas or clauses are to be in the
initial set of support, and which equalities are to be demodulators.

A typical input file for OTTER is the following:

oe

set (flag name) . set a flag, asmany flags as wanted

oe

assign (parameter_name, assign an integer to a parameter

integer).

oL

list (axioms) . read axioms in clause form

end of list.

o0

it ends the list of given axioms

o

list (sos) read set of support in clause form

oe

end of list. it ends the list of sos

oo

list (demodulators). read demodulators in clause form

e

‘end of 1ist. it ends the list of demodulators

OTTER can be given also axioms and set of support in formula form.

EXAMPLE 5.1. The following two lists of axioms are equivalent.
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The first is in clausal form,

list (axioms) .
(x=x) .

end of list

A A A e 0 op

whereas the following is in formula form

formula_list (axioms) .
(all a (a=a)).
(all a (f{e,a)=a)).

(all a f(g(a),a)=e)).

(all a all b all ¢

(f(f(a,b),c)=f(a,f(b,c)))).

(all a all b all ¢

((f(c,a)=f(c,b))->(a=b))).

(all a all b all ¢
((£(a,c) = f(b,c))->(a=b))).

end of list

o O do do

oo

oe

reflexivity

left identity

left inverse
associativity

left cancellation
right cancellation
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reflexivity
left identity
left inverse

associativity

left cancellation

right cancellation

The main loop for inferring and processing clauses and searching.

for a refutation is

While (sos is not empty and no refutation has been found)

1.

Let given_clause be the first clause in sos;

2. Move given_ clause from sos to axioms;

3.

Infer and process new clauses using the inference rules

in effect; each new clause must have the given_clause

as one of its parents and members of axioms as its

other parents;

tests are appended to sos;

End of while loop.

new clauses that pass the retention
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5.1. An example.

We show now how OTTER works on the following input file.

This file contains the axioms of a group where f represents

oo

the product

o°

of two elements and g gives the inverse of an element.

o\®

The product satisfies the special property that f(x,x)=x

for all x.

o

The goal is to prove that the product is commutative; i.e.

the group is

o

abelian.

set (para_from) .

set (para_into) .

set (para_from left).

set (para_from_right).
set (para from vars) .

set (para_into vars).

set (dynamic_demod_all) .

list (axioms) .
(x=x) .
(f(e,x)=x).

% (f(x,e)=x).
(f(g(x),x)=e}.

% (f(x,g(x)=e).
(f(x,x)=x).

end of list

reflexivity
left identity
right identity
left inverse
right inverse

o ° 0 o0 @ oP

special property

list (sos).

o°

In order to speed up the refutation process, the associa-

tivity property

o0

of £ is put in the set of support.

oL

Also, the right identity and inverse property are forced

not to be used.
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% In the following a,b (as well as e in the above clauses)

are skolem

0,

% constants.

(£(x,y),2)=£(x,f(y,z))).
(E(a,b)!=f(b,a)).

associativity.

%
%

Denial of the commutativity
property of f
end of 1ist

Here is the refutation produced by OTTER

2 (fe,x)=x).

3 (f(g(x),x)=e).

4 (f(x,x)=x).

S (E(E(x,y),2)=f(x,£f(y,z))).

6 (f(a,b)!=f(b,a)).

19 [para_into,2,6] (f(e,f(b,a))!=f(a,b)).

192 [para_into,4,5] (£(£(x,y),y)=F(x,y)).

193 [new demod, 192] (E(E(x,y),y)=£(x,y)).

254 [para_into,3,192] (f(g(x),x)=f(e,x)).

255 [new_demod, 254] (f(g(x),x)=f(e,x)).

263 [para_into, 3,192,demod, 255,193] (f(e,x)=e).
264 [new_ demod, 263] (f (e, x)=e).

265 [para_into,2,192,demod, 193, 264] (£ (x,y)=e).
266 [new_demod, 265] (f(x,y)=e).

267 [para_into,2,192,demod, 266,266] (x=e).

268 [para_from, 192,19,demod, 266,266,266,266,266] (el=e).
269 [binary, 268,267].
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