«.E MATEMATICHE»
Vol. XLIII (1988) - Fasc. I, pp. 247-294

LOGIC PROGRAMMING EXTENSIONS
OF HORN CLAUSE LOGIC

RON SIGAL (Catania) (*)

1. Introduction.

Logic programming is now firmly established as an alternative
programming paradigm, distinct and arguably superior to the still
dominant imperative style of, for instance, the Algol family of
languages. The concept of a logic programming language is not
precisely defined, but it is generally understood to be characterized
by '

1. a declarative nature, i.e. programs describe the desired
results of a computation rather than prescribe the steps of
a computation; and

2. foundation in some well understood logical system, e.g.,
first-order logic, whose model theory provides a meaning

(*) This paper was written while the author was a Visiting Professor supported
by the Italian National Research Council (CNR). Current address: Department

of Mathematics, Yale University, New Haven, CT 06520, USA.

248 RON SIGAL

for programs and whose proof theory characterizes their
computations.

By usage and historical development logic programming has come to
have more specific connotations.

3. Historical roots in clausal theorem proving based on resolution
have brought forth the relational style of programming, in
which the objects of computation are sets and relations, with
functions playing a distinctly secondary role.

4. The need for computational efficiency has led to syntactical
restrictions, in particular, to the language of Horn clauses,
where the loss of expressive power is compensated by a
breakthrough in interpreter efficiency.

5. This same .restriction to Horn clauses has led, perhaps
serendipitously, to the elegant model theoretic property that
the meanings of programs can be characterized, up to a
point, by a single canonical model, the mirimal Herbrand
model over ground terms.

Recent years have seen an evolution -away from the restriction of
logic programming to the domain of relations, an evolution toward the
recognition of the first-class role of functions. This suggests that the
classical notion of logic programming is more aptly named «relational
programming», freeing the term «logic programming» for the more
expansive terrain of functional programming, relational programming,
and various integrations of the two.

On the other hand, the practical and theoretical charms of Horn
~clause logic are quite alluring, being a major source of the success of
logic programming. There is a broad (though perhaps not universal)
sense that they should be preserved as much as possible in the
experimental definition of new languages and families of languages,
and the extent to which they are is often taken, or given, as a
criterion of the success of a design.

In this article we will survey some proposals for logic programming
languages and language features, taking the point of view that these

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 249

may be considered (as, indeed, they are frequently presented) as
extensions of Horn clause logic. Loosely speaking we can identify two
kinds of extensions: logical and algebraic. These are neither precise
nor mutually exclusive categories, but by logical extensions we mean
the inclusion of language features found in richer logical systems, such
as negation and sorts. By algebraic extensions we mean equipping a
language with features that support reasoning in a particular model
or class of models with a richer structure than the term models.

The article is organized as follows. In section 2 we present the
basic definitions and basic results for first-order and Horn clause
logic. In the following four sections we discuss extensions of Horn
clause logic by means of negation, function definitions, equality, and
constraints. Most of the material in section 2 and 3 can be found
in [17]. The material on functions and equality comes largely from
[2] and [12] respectively, both of which appear in [9]. An alternative
source for the material in section 2 and 5 is [18].

2. First-order logic and Horn clause logic.

Two of the main branches of mathematical logic are model
theory and proof theory. Model theory is concerned with giving a
mathematical characterization of what it means for a statement to be
true, and proof theory is about formal, syntactic methods for discovering
which statements are true. In the study of programming languages
we have a similar distinction between declarative or denotational
semantics, which assigns meanings to programs independent of
any particular computational system, and operational or procedural
semantics, which associates programs with computations. Logic
programming languages, as the name implies, have roots in both logic
and programming languages, and their declarative and operational
semantics are (often) based on model theory and proof theory.

In the first three parts of this section we introduce first-order

and Horn clause languages, and discuss the standard treatments
of (section 2) declarative and (section 3) operational semantics. In

250 RON SIGAL

the fourth part we look at an alternative approach to declarative
semantics.

2.1. First-order and Horn clause languages.

Each first-order language is characterized by an alphabet, or
first-order signature, £ = (¥,?P ar), where

e ¥ is a countable (possibly infinite) set of function symbols;
e P is a countable (possibly infinite) set of predicate symbols;

e ar: FU P — Nat, where Nat is the set of natural numbers.

We also assume the availability of a countably infinite set 7/ of
variable symbols, independent of Z.

We define the following sets of syntactic objects relative to
signature X. The set of Z-terms over X C v/, denoted T Mx(X),
consists of '

eallveX

e all f(t1,...,t,), where f € ¥, ar(f) = n and
t1,. ., tn € T Ms(X).

TMx(V) is the set of XZ-terms and will be denoted T'Ms. T Mx(@) is
the set of ground %-terms and will be denoted GTy. Z-terms f ¢ 7,
where ar(f) =0, are 2-constants. Atomic X-formulas, or Z-atoms, over
X C Y are

e all p(ty,...,tn), where p € %, ar(p) = m, and
t1,...,tn € TMs(X).

The set of Z-formulas over X C V¥, denoted FMs(X), consists of all
e 2-atoms over X;
o (~ F), where F € FMs(X);
e (FV@G), where F,G € FMs(X);
o (FAQG), where F,G € FMx(X);
o (Vz)F, where z € V and F' € FMx(X);

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 251

e (dz)F, where z € ¥ and F € FMs(X).

FMs(V) is the set of Z-formulas, FMxz(®) is the set of ground
2-formulas, and they will be denoted F'Ms and G'Fs respectively. The
pair (T'Msz, F'Ms) is the first-order language over X. Any subset of
F My is a first-order Z-theory.

We let (F' «+) abbreviate (F'V ~ &) and let (F « &) abbreviate
((F +— G)N(G « F)), where F, G are X-formulas. V and A are
associative, so parentheses will be omitted when no confusion results.
Z-expressions are either Z-terms or Z-formulas. If F is a Z-expression,
then var(F) C 7 denotes the set of all variables that occur in E.

Negated Z-atoms are of the form ~ A, where A is a X-atom.
2-literals are X-atoms or negated X-atoms. The set of Z-clauses,
denoted CLgy, is the subset of F' My consisting of all Z-formulas of
the form (L; V...V L,), where L,,..., L, are X-literals. We adopt the
following special representation for X-clauses. Let a X-clause C be
partitioned into

{AilAi is a Z-atom in C, 1 =1,...,m}U
{~ Bi| ~ B; is a negated S-atom in C, i = L...,m}.
Then C can be represented

Al\/,,,‘\/An1 (—Blf\.../\Bm,

or, more succinctly,
Al,...,Am <—Bl,...,Bn2.

Ay, ..., Ay is the head of C, and By,..., B, is the tail of C. The set
of Horn ZX-clauses, denoted HCs, is the subset of CLys consisting of
all Z-clauses with one of the following forms, where n > O:

o A «—
o A—By,...,B,
o — By,..., B,

®

252 RON SIGAL

which are called, respectively, X-facts, X-rules, X-goals, and the empty
clause. The pair (T'My, HCs) is the Horn clause language over X,
and any subset of HCy is a Horn clause X-theory.

X-program statements are X-facts and X-goals, and Horn clause
Y-programs are finite sets {C,...,C,} of Z-program statements,
frequently written o

Cs

Cn

Thus, Horn clause Z-programs are a particular kind of finite -theory.

When a particular signature ¥ is assumed we will sometimes
refer simply to atoms, formulas, theories, literals, clauses; facts,
rules, goals, and Horn clause programs. Also, throughout this section,
program means Horn clause program.

2.2. Declarative semantics.

Intuitively programs represent assertions held to be true (in some
intended domain), and goals are questions about the nature of that
domain. Programming is the art of accurately describing the intended
domain, and computation is the process of answering questions about
the domain.

Horn clause programs inherit immediately a model theoretic
semantics from first-order logic. Let ¥ be some fixed signature. A
2-pre-interpretation is a pair (D, u), where

e the domain D is a set of objects, and

e 4 is a map defined on ¥ such that u(f) : D™ — D, for f € 7,
ar(f) =mn,
where D" denotes the n-ary cartesian product of D. A Z-interpretation

based on Z-pre-interpretation (D,) is a pair (D, u U u'), where

o ;' is a map defined on P such that p'(p) C D", for p € P,
ar(p) = n.

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 253

Let I = (D,u) be a Z-pre-interpretation. A variable assignment
into I is any map « : V' — D, and the term assignment as : T Ms — D
is the extension of « defined

a(t) iftiszec ¥

az(t) =

p(Nas(t), ..., as(ty)) iftis f(t,..., 1)
Since ay is the unique extension of o with respect to X (and I) we
will often simply refer to o when X is understood. If X C ¥ is such
that a(z) =z for all z € Y\ X, we will sometimes write o : X D to
indicate that fact, not excluding thereby the possibility that a(z) =z
forany z € X. If o : ¥V — D is an assignment, and z € YV and d € D,
then o% : ¥ — D is the assignment

d if y is z
ag(y) = {

a(y) otherwise,

and if X C 7 then q)x is the assignment

a(z) ifre X
o x(z) = {

T otherwise.

The 3-ary satisfaction relation F on Z-interpretations I = (D, u),
assignments o : V/ — D, and Z-formulas (or Z-theories) is defined as
follows. Let p(ty,...,t,) be a Z-atom, F', G be Z-formulas, and F be a
'Z—theory. Then ’

I,akEpl,. .. ty) iff <a2(t1),...,az(tn)> € u(p)
IaE~pQ,... tn) Y (asC),...,;ass) € up)

ILaFVG iff ,aForl,akG
IL,agFAG iff ,apFandI,akEG
I,aE Go)F iff there exists d € D such that I, o% F
I,aENo)F iff forallde D I,afEF
" I,aEF » iff ,aFforallFeF

The binary satisfaction relation | on ZXZ-interpretations I and
Y-formulas F' (or Z-theories F) is defined

IEF iff I,af F for all assignments «: ¥ — D
IEF iff IgFforallFeF

254 : RON SIGAL

If I & F we say I satisfies F, or F is true in I. For 2-interpretation
I and Z-theory F, if [EF then I is a model of F. If F has a model
then it is satisfiable; otherwise it is unsatisfiable. For X-formula G,
if I FF implies I G for all Z-interpretations I, then G is a logical
consequence of F, denoted F k @.

Clauses are formulas, so the definition of satisfaction of clauses
is given a fortiori by the above definition, but we write it out anyway.
Let A1,...,A,, Bi,..., By be atoms, let C be a clause, and let C be
a set of clauses. Then

LaEAL,...,A, «— iff [,afA;for somei=1,...,n
I,a e~ By,...,B, iff I,of~ B, for somei=1,...,m
I,aF Ai,...,A, « By,...,B,, iff IL,akEA;,...,A, «— or

I,a |« By,..., By,

IakC iff I,afCforallCeC

IEC iff I, C for all assignments
a:V—-D

IEC iff ITrRCforallCeC.

The first important result to note is that for the language of clauses
over signature £ we can restrict our attention to interpretations over a
single canonical domain, namely, GTs. The T M 5(X)-pre-interpretation
is the X-pre-interpretation (T'Mz(X),u) such that u satisfies

:U‘(f)(tla"‘)tn) =f(t1;"°;tn) for all

feF,ar(f)=mn, andt; € TMx(X),i=1,...,n,

and a T Ms(X)-interpretation is any Z-interpretation based on
(T Ms(X), u). A, Herbrand X-interpretation is any GTx-interpretation.
In this context GTy is often called the Herbrand universe of ¥ and
denoted Us. The Herbrand base of ¥, denoted By, is defined

Bz={p(t1,...,tn)lp6T,CZT(p):TL, and t; € GT%, 1=1,...,n},

and since the behavior of functions in Herbrand T-interpretations is
completely determined by X, each particular Herbrand 2-interpretation
can be identified with a subset of By, and vice versa. If] is an

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 255

Herbrand Z-interpretation, F is a X-theory, and I F, then [is an
Herbrand model of F.

THEOREM 1. Let C be a set of Z-clauses. Then C has a model if
and only if it has an Herbrand model.

For programs we can go further and restrict our attention to a
single canonical model. Since each program P implicitly determines
a unique signature, according to the function and predicate symbols
that appear in P, we will sometimes refer to the Herbrand universe
Up and base Bp of program P, and to Herbrand interpretations for
and models of P.

THEOREM 2. (Model intersection property) Let P be a program
and {M;} be a non-empty set of Herbrand models of P. Then N{M;}
is also an Herbrand model of P.

Since, as it is easy to verify, a program P always has Bp as a
model, the set of Herbrand models of P is always non-empty, and so
the minimal Herbrand model of P, defined as

Mp =N{M|M is an Herbrand model of P},
always exists, and we have
THEOREM 3. Let P be a program and A an atom in Bp. Then

PEAifand only if A€ Mp.

In Theorem 3 we have, for ground atoms, a model theoretic
characterization of the meaning of a program, namely, its minimal
Herbrand model. Although the minimal Herbrand model is defined
nonconstructively, it can also be given a constructive characterization.
First we need some more definitions.

Let (I'Ms,u) be the T Ms-pre-interpretation. A X-substitution
is a variable assignment 0 : ¥/ — T'Ms such that for some finite
subset X C Y, 6(z) = z for all z € ¥\ X. Because of this restriction a

256 RON SIGAL

Z-substitution is often represented explicitly as a set {z1/t1, ...y zn/ta},
where 0(z;) =t;, i=1,...,n and {z1,...,7,} is exactly the set of
variables on which 6 does not act as the identity map. The identity
substitution acts as the identity map on all z € V. A X-substitution
6 can be extended to the term assignment 05 : T My — T My in the
usual way, and again we will generally refer simply to §. We will
write the application of 6 to term ¢ in postfix form, i.e., t6 means
6(t). We will also use the shorthand notation

p(ty, ..., t,)0 abbreviates p(t10,...,t,0)
~p(ty, ..., t,)0 abbreviates ~ p(t0,...,t,0)
(A1,.., A, B, ..., B,,)8 abbreviates A0, ..., A.0—B10, ..., B,,0
Co abbreviates {C0|C ¢ C}

where p(t1,...,¢,) is an atom, Aj,..., A, « Bi,..., By is a clause,

and C is a set of clauses. If E is a term, a literal, or a clause,
then Ef is an instance of E, and if no variables occur in Ef® then
it is a ground instance of E. A Z-substitution ¢ : V — Q7% is a
ground substitution, and a Z-substitution 6 : ¥ — 7/ is a renaming
substitution. If E is a term, a literal, or a clause, and 0 is a renaming
substitution {z1/y1,...,2n/ys} such that {y;,...,y,} N X =@ for some
X C ¥V, then E¢ is a variant of E away from X. The composition of
two Z-substitutions 9, o, denoted # o o or simply 6o, is defined

(@ oo)=og(z8) forall z e V.

Now, for program P the transformation function Tp :2Br _, 2Br
where 227 is the power set of Bp, ie., the set of all Herbrand
interpretations of P, is defined '

Tr(I)={A € Bp|A« By, ..., B, is a ground instance of a clause in P,
and B; € I,i=1,...,n}.
TpviS monotonic and continuous on 227, and if we define
Tp 70 =90
TeT1B+1=Tp(Tp T B

Tp 1A =[JTp 14, Xlimit ordinal,
B<A

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 257

then we have (by results in [24]) that Tp T w is the least fixpoint of
Tp, denoted [fp(Tp), and in particular we have

THEOREM 4. Let P be a program. Then Mp = 1fp(Tp)=Tp T w.

Theorem 4 gives us a constructive characterization of the
minimal model semantics of program P, but it is inadequate for the
implementation of a programming language since it gives us only a
naive enumeration of Mp. For a practical operational semantics we
turn to the resolution method.

2.3. Operational semantics.

As we noted in the introduction to this section, we want
to supplement the non-constructive definition of the meaning of
theories (including programs) with a mechanical system, or calculus,
for discovering the logical consequences of those theories. In logic
we work with proof systems, which allow the construction, either
by hand or automatically by computer, of proofs, syntactic objects
intended to certify that a formula is a logical consequence of a
theory. The important thing is that this certification be correct. We
usually formalize two aspects of correctness: soundness, meaning that
certified formulas are indeed logical consequences, and completeness,
meaning that all logical consequences can be certified. For example,
let S be a proof system for first-order languages, and let F f—3 F
denote that a proof of formula F' from theory F can be constructed
in S. Then $ is sound if '

FFs FimpliesF E F,
and it is complete if
F | F implies F ¢ F

Resolution, introduced in [19], is a family of proof systems for
first-order logic, all of which are sound (when defined correctly) and
some of which are complete. Naturally they work for Horn clause logic

258 RON SIGAL

as well. However, we want more than a proof system: we will show
that resolution can be adapted to give an operational characterization
of Horn clause logic as a programming language. In this context
our notions of soundness and completeness must take account of the
desired characteristics of a programming language. These ideas will
be made precise in this subsection.

Resolution is a milestone in a line of research into general syntactic
automated theorem proving methods based on ideas introduced by J.
Herbrand in 1930. These methods have in common the characteristic
of reasoning over Herbrand interpretations, as justified by Theorem
1 and

THEOREM 5. (Herbrand’s Theorem) A set C of clauses is
unsatisfiable if and only if there is a finite unsatisfiable set C' of
ground instances of clauses in C.-

The main ideas in this branch of automated theorem proving are
the following.

1. These are generally refutation methods. That is, to show
that a first-order formula F is a logical consequence of a set
C of clauses, we take the clause form of the negation of F,
call it ~ F', and try to show that CU{~ F'} is unsatisfiable.
This accounts for the statement of Herbrand’s Theorem in a
negative form.

2. By Theorem 1 unsatisfiability is equivalent to unsatifiability
in Herbrand interpretations, and the right hand side of
Herbrand’s Theorem gives us the necessary leverage in
making this test by purely syntactic means. Given a finite
subset C' of Z-clauses C, any assignment « : var(C) — GTs
is by definition a ground substitution, and vice versa. Model
theoretically, Herbrand’s Theorem tells us to look for an
assignment « such that for any Herbrand interpretation
I = (GTs,p) we have I,a ¢ C. In other words, the
constraints placed by C’ on the relations assigned by 1 to the
predicate symbols in C' are set-theoretically contradictory.

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 259

Syntactically, an assignment into G'T is a ground substitution
6, and contradictory constraints on the relations are reflected
in the propositional unsatisfiability of C'6.

The trick, then, is to find the right finite subset C' of clauses and
the right ground substitution , which (if they exist) can be done, at
great expense, by enumeration. The significance of resolution is the
directness with which it hunts down C’ and 6. There are two key
ideas.

3. Contradictions depend on contradictory literals. The sugge-
sted heuristic, then, is to look for clauses with literals
p(t1,...,ty) and ~ p(uy,...,u,), and try to find a substitution
that will make them contradictory. This idea can already be,
found in [8].

4. It is not necessary to actually present a ground substitution
that yields a contradiction: it suffices to show that one
exists. For example, given literals p(z) and ~ p(f(y)), the
substitution {z/f(y)} applied to p(z) is such that any
further instantiation to ground literals will produce a ground
contradiction. The advantage of working with non-ground
substitutions can be seen in the example of clauses (p(z)V ¢(z))
and (~ p(f(¥)V ~ q(f(b))). If we start out with the ground
substitution {z/f(a),y/a}, for example, we are on the wrong
track, but if we start with {z/#(y)} we can go on to construct
{z/f(y),y/b}, which yields a contradiction.

The tool used in resolution to implement idea (4) is unification.
Until further notice, -equality between pairs of X-terms s, t, denoted
s =t, means that they are identical. A unifier of two Z-terms s, ¢ is a
Z-substitution ¢ such that sf =t0. Z-terms s, t, are unifiable if they
have a unifier. We now define an ordering < on X-substitutions. Two
2-substitutions 6, o are equal on W C ¥/, denoted 0 = o[W], if 26 = zo
for all x € W, and 6 is more general than o on W C v, denoted
o < 9[W], if there is a Z-substitution § such that o = 5[IW]. A unifier
0 of s, t-is a most general unifier (mgu) if o < flvar(s)Uvar(t)] for all

260 RON SIGAL
unifiers o of s, t.

THEOREM 6. Let s, t be two terms, and 0, o.two mgu’s of s, t.
Then 0 = oplvar(s) Uvar(t)] for some renaming substitution p.

By Theorem 6 the mgu of two unifiable terms s, ¢ is unique (with
respect to its action on var(s)Uvar(t)) up to renaming. An algorithm
which finds mgu’s of terms is a unification algorithm, of which many
have been given. See, for example, [15].

For atoms p(ty,...,t,) and q(uy,..., uy), we will say «p(tr,...,tp)
~and q(ui,...,uy) are unifiable» to abbreviate the conditions

1. p and ¢ are the same predicate symbol;
2. m=mn

3. there is a substitution § which unifies t;, u;, i = 1,...,m,

and we will write p(t,...,t,)0 = q(uy,...,un)0 to indicate that
conditions (1) - (3) are satisfied and that 0 satisfies (3).

Many versions of resolution have been proposed, varying in
efficiency and completeness. We will present SI D-resolution, the
standard version for Horn clause logic, which is incomplete in general
but complete for Horn clauses. S D-resolution begins with a program
and a goal, and constructs a sequence of goals, each derived from
the previous one, attempting to generate the empty goal <+, often
written .

A computation rule R is a function which selects an atom from
a goal. Let P be a program, G a goal, and R a computation rule.
Then an SI D-derivation from P U {G} via R is a (possibly infinite)
sequence of triples [Gy, x,], [G1, C1,61], [G2, s, 6,],... such that

1. Gy is G and * is an arbitrary symbol;
R A |
2. Ci,1=1,2,... is a variant away from U var(G;) of a clause
7=0
in P;

3. 6;,i=1,2,... is an mgu of the head of C; and the atom in

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC - 261

G;_1 selected by R;

4. for 1 = 1,2,..., if Gi—l is Al,...,Am, and 01; is A «
Bi,...,Bn, and A; is the atom in G;_; selected by R, then
G¢ is (é—— Al,..‘.,A]‘_l,Bl,...,Bn,AjH,...,Am)Q,‘.

An SLD-refutation of PU{G} via R is a finite SLD-derivation
from P U {G} via R in which the last goal is . The SLD success
set of a program P, denoted SS(P), is

{A € Bp| there exists an SLD-refutation of P U {«+ A} via R
for some computation rule R}.

The SLD success set of program P characterizes, for ground atoms,
the operational semantics of P, and we have the following equivalence.

THEOREM 7. Let P be a program. Then SS(P)= Mp.

Theorem 7 reassures us that SL D-resolution behaves well with
respect to ground atoms. However, it does not tell us very much about
S L D-resolution as the basis of a computational system. The reason
is that in a relational programming language, unlike a functional
language, the only useful information we can extract is in the
arguments of atoms, and if we were limited to asking about the truth
of ground atoms, we would be forced to supply all of the information
in advance, guessing an answer, in effect, and asking if it is correct.

In fact, S L D-resolution, in constructing a sequence of substitutions
in a derivation, constructs answers as it seeks a refutation. We have
two formal notions to capture this idea. Let P be a X-program and
G a Y-goal «— Aj,..., A,. A substitution 9 :var(G) — T Ms is a correct
answer substitution for PU{G} if P E A10 A ... AN A0, Let [Go, %,],
[G1,C1,01],...,[Gn, Ch, 6,] be a refutation of PU{G} via R, for some
computation rule E. Then f10...00,,, ..
substitution for P U {G}, and we have

1s an R-computed answer

THEOREM 8. (Soundness and completeness of S D-resolution)
Let P be a program, G a goal, and R a computation rule.

1. If 0 is an R-computed answer substitution for P U{G}, then

262 RON SIGAL

it is a correct answer substitution for P U {G}.

2. If 0 is a correct answer substitution for P U {G), then there
is an R-computed answer substitution o for PU{G} and a
substitution ~ such that 6 = oy[var(G).

In other words, we can pose queries in the form of non-ground
goals, and SLD-resolution will return the most general correct
substitution. Theorem 8 characterizes the role of SI D-resolution
in supplying the operational semantics of Horn clause logic as a
programming language.

2.4. S-interpretations.

We should note that in extending the semantics to account for
answer substitutions, we have left behind the elegance we found in the
minimal Herbrand model semantics. In both cases the philosophical
position is that the semantics of a program is determined by truth
in all of its models. It happens that, for ground atoms, truth in
all models coincides with truth in the minimal Herbrand model; for
non-ground atoms it turns out otherwise. For example, int(z) is true
in the minimal Herbrand model of the program P

int(0) «
int(s(z)) « int(x)

but the identity substitution is not a correct answer substitution, and
therefore not a R-computed answer substitution, because there are
models of P in which int(z) is not true.

If we hold that Horn clause programs should be seen as computing
in the domain of the minimal Herbrand model, then SI D-resolution
is certainly incomplete. To retain completeness we must consider
more than the minimal Herbrand model, but, in fact, we need not
surrender the existence of a natural canonical model. In [10] there
is suggested the expedient of replacing the Herbrand universe with
a domain based on non-ground terms. We define the binary relation
~, on XZ-terms as follows. s ~, t, for Z-terms s, t, if there exists

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 263

a renaming substitution ¢ such that sf =1t. ~, is an equivalence
relation, and our new «Herbrand» domain, denoted Uy, is the quotient
structure

Us =TMz/n, = {[t]]t € T Mz},

where [t], is the equivalence class of ¢ in T'My with respect to ~,.
An Herbrand S-interpretation for £ = (¥, P ar) is a pair (Ug,u) such
that u satisfies

,Ul(f)([tl]'r; ceey [tnly) = [f(tl; . ;tn)]m for

feF, ar(f)=nt; € T Ms, 7;=1,...,n.

As with ordinary Herbrand interpretations, Herbrand S-interpretations
for X can be identified with subsets of the Herbrand S-base for T

Bs = {p(t1l,...,[t.])|p € P,ar(p) =n,t; € TMz,1=1,...,n}.

However, for a non-ground atom, say p(z), it is useful to let p([z],) € I
imply that I also satisfies p([zf],) for any substitution 6, so that
I = {p([z])} and I = {p([z],), p([al,)} both satisfy the same atoms.
In this case an interpretation (Ug,p) that satisfies some non-ground
atom can be identified with more that one subset of BY. Therefore,
we define an S-interpretation for X to be any subset of By.

Now, S-satisfaction of clauses in an Herbrand S-int’efpfetation
I C B} is defined

I kg ply,...,ts) iff there exist p([uily,...,[un],) € I and
X-substitution o such that
wo=t;, 1=1,...,n
1,0 Es A+« By,...,B, iff I|g B0 for all 1 =1,... n implies
I Fs A6 ‘

I FsAeB,...,By iff I,o0fFg A« By,...,B,
for all Z-substitutions o
I s P iff I g C for each clause C € P

where p(t1,...,ts), 4, Bi,..., B, are X-atoms, P is a X-program, and
0 is a Z-substitution. If] g P then I is an S-model of P.

264 ' .RON SIGAL
Let P be a X-program and I an arbitrary model of P. Then

Is ={p(lt1ly, ..., [ta]r) € U | I E p(t1,...,tn)}
is clearly an S-model of P such that for any atom A
Is Fs Aif and only if I | A,

and so

I s A for all S-models I of P implies Is g A for all models I of P
implies I E A for all models I of P

implies P EA.

On the other hand, let I be an S-model of P, and A an atom. It
follows from the definition of g that

I s A implies I g A6 for every substitution 6,
and in fact, given the existence of the identity substitution,
(1D I s Aif and only if I g A6 for every substitution 6.

For substitution ¢ : © — T' Mz we define the assignment 6, : ¥V — U
as [t]0x, = [t0],. Now, a set I C By, together with the relation kg,
determines a unique interpretation I' = (U¥,u) such that, for any
substitution 6 : ¥V — T M5,

I ks A9 if and only if ', 6, k A,
so that, by @), |

I s Aif and only if I’ 0, E A, for every substitution 6 : ¥ — T'Ms.

But any assignment « : ¥ — U} is 0, for some 6 : ¥V — T Ms,

and so we have
I Es Aif and only if I' E A.

Therefore,

PEA implies IEA for all models I of P
implies I' A for all S-models I of P
~ implies [Fg A for all S-models I of P,

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 265

and putting the two chains of implications together we get

(2) Pk Aif and only if I g A for all S-models I of P.

It is shown in [10] that every program P has a minimal
S-model M ;§ , defined, however, by a construction more complex than
intersection. M g has the property that, for any atom A,

ME Es Aif and only if I g A for all S-models I of P,

so that by (2),
ME Eg Aif and only if P k£ A

and we have

THEOREM 9. Let P be a program and G a goal «— A;,...,A,.
Then substitution 0 is a correct answer substitution for P U {G} if
and only if M5 Eg {A10,..., A6}

Theorem 9 tells us that minimal S-models supply canonical models
that also characterize correct answer substitutions. More specifically,
it is shown in [10] that M g exactly characterizes R-computed answer
substitutions.

THEOREM 10. Let P be a program and G a goal «— Aj,...,A,.
Then substitution § is an R-computed answer substitution for P U {G}
if and only if there exist A},..., Al € Mﬁ such that 0" is an mgu of
(A1, ..., An) and (A),...,AL), and 0 = 0'[var(Q)].

At this point the philosophical question remains: Does the
minimal S-model semantics sensibly reflect how the programmer
thinks about programs? Indeed, it seems that it does, for two reasons.

First, the behavior one typically expects from queries put to an
interpreter is to return ground substitutions. For example, when one
writes the program P ' |

int(0) « plus(0,y, y) « int(y)
int(s(z)) < int(z) plus(s(z),y, s(2)) « int(z,y, 2),

266 RON SIGAL

one uses the predicate plus to do arithmetic. Proving (Vz)plus(0, z, z),
which holds in the minimal Herbrand model but not in all models
of P, lies more in the realm of theorem proving (in the theory
of arithmetic) than in programming. For P the minimal S-model
coincides with the minimal Herbrand model, and they both satisfy
exactly the desired ground atoms. Furthermore, the minimal S-model,
though not the minimal Herbrand model, indicates that all of the
correct answer substitutions are ground.

On the other hand, writing programs which generate partially
determined, i.e., non-ground, substitutions in the course of computation
is an intrinsic aspect of logic programming. When one write the
one-line program ()

head(cons(z, (),) «—
one is probably not so much interested in
3) @ E head(cons(z,nil),z)
as in

@ E head(cons(a, nil),a)

where «a» is a constant, but (3) is necessary for head to work with
arbitrary lists. Now consider the program £:

int(0) «

int(s(z)) «int(x)

head(cons(z, (), z) «+

tail(cons(z, 1), 1) «

gen(0, z, nil) «

gen(s(n), T, cons(z,l)) «gen(n, z,)

gen n heads(l, n, h) «—gen(n, z, h), head(l, z)

Again one is probably not so much interested in

@) RE gen;n_heads(cons(:z;, nil), s(s(0))), cons(z, cons(z,nil))

as in

R E gen_n heads(cons(a, nil), s(s(0))), cons(a, cons(a,nil))

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 267

but (4) is important operationally, at least with a left-to-right
computation rule, because if gen were constrained to generate ground
lists the computation of gen n heads would require searching through
the ground lists in the gen relation to find one whose elements satisfy
head.

The point is that there are times when one wants non-ground
substitutions, and one programs them. explicitly. In this case they
show up in the minimal S-model, but not in the minimal Herbrand
model.

3. Negation.

One of the most serious deficiencies, and most widely pursued
extensions, of Horn clause logic is the ability to express negation.
The problem is that if we add a negative literal to the body of a
Horn clause, we immediately leave the realm of Horn clause logic
and risk the loss of its many advantages. For example, if we add
the negative literal ~ C to the body of A « B, then the result
A «— B, ~ C is equivalent to AV C « B. Of course we could fall back
on ordinary first-order semantics and on forms of resolution complete
for first-order logic, but we will have forsaken a sensible programming
language for general purpose theorem proving. The usual approach,
rather, is to try to add negation while preserving as much as possible
the benefits of Horn clause logic:

The first thing to notice is that a negative X-literal ~ A can
never be a logical consequence of a X-program P because Bs is
always a model of PU{A}. One alternative, originally proposed in the
field of databases, is to use the Closed World Assumption: if P KA
then infer ~ A. The Closed World Assumptlon 1S a non-monotonic
inference rule in the sense that it is possible to have Pimply ~ A
and P U @ not imply ~ A4, in particular if joining Q to P allows the
refutation of P UQ U {« A}. The problem with the Closed World
Assumption is that it is in general not computable because of the
undecidability of the P E A relation for Horn Clause logic. The

268 RON SIGAL

best we can do in practice is to approximate it, and the most
straightforward approximation is simply to run S L D-resolution on
PU{« A} and hope that it fails in a finite amount of time, in which
case ~ A may be inferred. This inference rule is called negation as
failure.

Historically, then, the approach to negation began with an
operational concept, which was later given a fixpoint and model
theoretic characterization. We will proceed similarly in this exposition.

Let R be a computation rule, P a program, and G a goal. A
derivation from P U {G} via R is failed if it is finite and if the atom
selected by R from the last goal does not unify with the head of any
clause in P. PU{G} has a finitely failed SLD R-search space if

1. there are a finite number of SL D-derivations from P U {G}
via K, and

2. each of them is failed.

A € Bp is in the SLD finite failure set of P if P U {«+ A}c has a
finitely failed SLD R-search space for some computation rule R.

The fixpoint characterization of the SL D finite failure set of P
is straightforward. With 7T as defined in section 2.2, we define

Tp 10 =Bp

TPlIB'i'l:Tp(Tplﬁ)

Tp | X =()Tr | B, X\ alimit ordinal,
B<A

and we have

THEOREM 11. Let P be a program and let A € B,. Then A is in
the SLD finite failure set of P if and only if A€ Bp\Tp | w.

The definition of SL D finite failure set requires only the existence
of some computation rule R, which could vary according to program
and goal. However, there is a class of computation rules which always
work. A computation rule R is fair if for every SL D-derivation D
via R, either 1) D is failed, or 2) for every goal G; in D, for every

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 269

atom A in G;, A (or some instantiation of A) is eventually selected
by R at some step j > 1.

THEOREM 12. Let R be a fair computation rule, P be a program,
and A € Bp. Then A is in the SLD finite failure set of P if and only
if PU{« A} has a finitely failed R-search space.

The model theoretic characterization of the SI D finite failure set
of a program is less obvious since, as noted above, it never happens
that P |~ A. -We need to leave the confines of Horn clause logic,
transforming P into a first-order statement which says explicitly that
the heads of clauses are true if and only if the bodies are true. Since
the heads of more than one clause defining the same predicate may
unify with a given atom, we need to exercise a bit of care in doing
the transformation. We illustrate with an example. If P is

p(z, f(y)) +

p(g(),y) + ¢(z,y, 2)

q(f(z),y,2) « q(z,y,2),7(2)
then we transform it first to

p(21,32) + (Fz,9)71 =T A 32 = f(Y)

p(@1,22) « (Fz,y,2)71 = 9(@) A 22 = y A q(=, 9, 2)

4(x3, T4, 35) «— (37,9,2)23 = f(@) AT =y Az5 = 2 A gz, y, 2) Ar(2)
and then to

(Y21, 2)p(z1, 72) > (T2,)31 = 7 A 32 = F(y))
V(@z,y,2)z1 =g(x) Ay =y A gz, y, 2))]

AN(Vz3, 24, 25)9(23, T4, 75) > Fz,y,2)13 = F@ A T4 =y Azs =2
Ng(z,y,z) A r(z)]
ANV zg) ~ r(z6).

The last conjunct (Vze) ~ r(z6) is added because r is not defined
in P. Now we have introduced the « = » predicate symbol, which
is intended to be interpreted as equality, so we need to add a set

270 RON SIGAL

of equality axioms, which vary according to the signature of the
program. For X = (¥, P,ar) the equality axioms are

D f(z1,...,2.)#29W1,...,ym) for each pair of distinct f,g € ¥,
with ar(f)=n> 0, ar(g) =m > 0,

2) t#z for each t € TMs with an
occurrence of variable x

3) f@1,. 22 (Y1, Un) — T12YL VoLV T #Yy
for each f € F, ar(f)=n

4) =1
S5) fzy,...,z0)=fWi,ee ,¥n) — T1=Y1A...ANTp = Yn
for each f € F, ar(f)=n

6) (p(a;l"“,mn)‘—p(yly-"yyn))(—zl=y1/\~-/\$n=yn
for each p € P, ar(p) =mn, and
also for =.

The completion of Z-program P, denoted comp(P), is the transformed
version of P together with the equality axioms for Z.

THEOREM 13. (Soundness and completeness of negation as
failure) Let P be a program, G a goal, and R a fair computation
rule. Then P U {G} has a finitely failed SLD R-search space if and
“only if comp(P) E G.

The model theoretic characterization of the finite failure set is
an immediate corollary.

COROLLARY 14. Let P be a program and A € Bp. Then A is in
the SLD finite failure set of P if and only if comp(P) E~ A.

At this point we have a satisfactory characterization of negation,
and we are ready to add negative literals to clauses and try to
éompute with the extended class of programs.

Let X be a signature. A general X-program clause is a clause of
the form A « Li,...,L,, where A is a X-atom and L;,...,L,, n> 0,
are X-literals. A general Z-program is a finite set of general X-program
clauses. A general X-goal is a clause of the form «— Li,..., L,, where
Li,...,Ls, n> 0, are X-literals. The completion of a general program
is given by the same transformation as for Horn clause programs.

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 271

Theorem 13 tells us that if a literal ~ A, possibly non-ground, is
a logical consequence of program P, then we can use SL D-resolution
to determine that fact. However, it tells us nothing about the answer
substitutions generated by SLD-resolution, and it is precisely here
that we find a serious source of trouble in computing with negation.
For example, if P consists of the single clause p(a) <, then for any
ground or non-ground goal « p(t) such that ¢ does not unify with q,
S'L D-resolution fails finitely and we can derive ~ p(t). On the other
hand, if ¢t is a variable, say z, when we submit the goal « p(z),
S LD-resolution succeeds with the answer substitution {z/a}, leaving
us to conclude, correctly, that ~ p(z) is not a logical consequence of
comp(P). However, we do not get back the information that for any
non-variable term t other than a, comp(P) F~ p(t). Now, if we add
q(b) «+ to the program and consider the goal « ~ p(z), q(z), and if
we select the literal ~ p(z) first, we find that p(z) succeeds, ~ p(z)
fails, and the entire goal fails, even though {z/b} is a correct answer
substitution. In other words, we have lost completeness with respect
to answer substitutions. More seriously, the loss of completeness even
jeopardizes soundness, because if we add the clauses

(%) <~ p(z), 9(z)

s(x) «—n~ r(d:)
we can now conclude ~ r(z) and therefore s(z), which is incorrect
because comp(P) E~ s(b). The moral is that we must be cautious
concerning substitutions and negation.

We now define SLDN F-resolution, that is, SILD-resolution
together with the negation as failure rule. Let P be a general
program, G a general goal, and R a computation rule. Then an
SLDN F-derivation from P U {G} via R is a sequence of triples
[Go, *,*], [G1,Cy,01],... such that Gy is G, and for all i1, if G, is
« L1,..., Ly, and the literal L; in G; selected by R is

1. positive, then [Gi+1,Ci41, 0541] satisfies the definition of
S L D-derivation;

2. negative, say ~ A, and if PU {« A} has a finitely failed

272 RON SIGAL

SLDNF R-search space, then
o G“,-{-l iS (_"Ll,...,L]'__l, L]‘+1,...,Ln,
LAREZ | is *a

e 0;,1 is the identity substitution.

An SLDN F-refutation of PU{G?} via R is a finite SL DN F'-derivation
from PU{G} via R in which the last goal is Q. An SLDN F-derivation
via R is failed if it finite and, for the literal L selected by R in the
last goal &G, either

1. L is positive and does not unify with the head of any clause
in P, or

2. L is negative, say ~ A, and there is an SLDN F-refutation
of PU{« A} via R.

P U{G} has a finitely failed SLDNF R-search space if there are
only a finite number of SL DN F-derivations from P U {G} via R, and
they are all failed.

Note that we impose the policy that SLDN F-resolution applied
to negative literals returns only the identity substitution. We can
- be particularly conservative by restricting our attention to safe
computation rules, which select negative literals only when they are
ground. For safe computation rules the soundness part of Theorems
13 and 8 can be extended to general programs and goals.

THEOREM 15. Let P be a general program, G a general goal

«— Ly,...,L,, and R a safe computation rule.
1. If PU{G} has a finitely failed SLDNF R-search then
comp(P) E G. ‘

2. If 6 is an R-computed answer substitution for P U {G} then
6 is a correct answer substitution for comp(P)U {G}, i.e.,
comp(P) EL1OA ...\ L,b.

Unfortunately, the corresponding completeness results do not

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC . 273

hold in general. One line of research has been to find subclasses of
general programs and goals for which SLDN F-resolution is complete.
For example, in [3] a program P is defined to be ground-categorical
if for every A € Bp, either P £ A or comp(P) ~ A. For a ground-
categorical program P the decision problem for ground atoms, i.e.,
determining if P £ A for A € Bp, is clearly decidable by enumerating
all SL D-derivations from P U {« A} via some fair computation rule
R, since either there is a refutation of PU {« A} or PU {« A}
has a finitely failed R-search space. Building on the concept of
ground-categoricity, [3] defines a class of general programs, called
structured programs, for which SL DN F-resolution is complete for
ground correct answer substitutions. However, being structured is an
undecidable semantic property which depends on the nature of the
relations defined by a program. '

Another approach has been to find decidable syntactic properties
of programs which guarantee completeness of SIL DN F-resolution.
We will describe one such class of programs for which a completeness
proof is given in [1]

Let P be a general.program. The dependency graph of P is a
labelled directed graph DG(P) = (V, E) where

e U is the set of all predicate symbols appearing in P, and

e (p,q) € E if and only if there is a clause p(t1,...,t,) «
Li,...,L, in P such that ¢ is the predicate symbol in some
Li,i=1,...,m. (p,q) is labelled positively (negatively) if L;
is a positive (negative) atom.

Note that an edge can be labelled both positively and negatively.
For two predicate symbols p, ¢ which appear in P, p depends positively
(negatively) on ¢ in P if and only if there is a path in DG(P) from
D to g with an even (odd) number of edges labelled negatively. P is
stratified if DG(P) contains no cycles with at least one negative edge.
P is strict if there is no pair p, ¢ of predicate symbols in P such that
p depends both positively and negatively on q.

274 RON SIGAL

P is allowed if for every clause C in P, each variable in
occurs at least once in a positive literal in the body of . P satisfies
the closed derivation condition if it is allowed and if for every clause
C in P, each variable occurring in a positive literal in the body of C
also occurs in the head of C.

THEOREM 16. Let P be a strict stratified general program
satisfying the closed derivation condition, and let G be a general goal
and R a computation rule. If 0 is a correct answer substitution for
- PU{G} then 0 is an R-computed answer substitution for P U {G}.

Note that the conditions imposed on P are sufficient to force §
to be a ground substitution. Related work can be found in [6].

4. Functions.

In addition to relational programming, a declarative paradigm
which has been studied deeply is functional programming, and a
great deal of discussion has been generated concerning their relative
strengths and weaknesses. Abstractly it is certainly true that functions
andthose based on relations are interchangeable, since functions are
a particular kind of relation, and relations can be represented as
characteristic functions. However, divergent classical approaches to
the definition and implementation of programming languages based
on functions and relations result in important practical differences.
For example, computation in functional languages is usually designed
to determine canonical values for ground functional expressions, and
so lacks the ability to find answer substitutions. One consequence
is that in a typical functional language there is no analog to the
possibility of using a single relation like plus, defined in section 2, to
determine both that {z/s(s(s(0)))} is a correct answer substitution for
«—plus(s(0), s(s(0)), 2) and that {z/s(0)} is a correct answer substitution
for «plus(z, s(s(0)), s(s(s(0)))), even though plus is normally thought

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 275

of as a function.

On the other hand it is often the case that the solution to a given
problem is, semantically, a function, in which case a relational syntax
is an obstacle to the natural expression of the solution. For example,
if we need to compute factorial, and do not need the ability to treat
the input and the output symmetrically as in the plus relation, then

fact;(0) =1

facts(s(z)) =timess(s(z), facts(z)) .
is clearer than

fact,(0,1) «

fact,(s(x),y) «fact.(z, z), times,(s(x), z, Y)
because it avoids, by nested function application, the unstructured
device of shared variables, in this case z.

In recognition of the complementary strengths of the functional
and relational styles, a growing body of work aims at finding a
suitable model in which the two can usefully co-exist. A number of
approaches have appeared. An early one was to embed an interpreter
for one language in the interpreter of another. In the language
LOGLISP ([20]), for example, an interpreter for Horn clause logic is
implemented in Lisp, and when passed a goal from a Lisp function,
it will return a list of one or more answer substitutions. Also, when
the Horn clause interpreter is evaluating a goal, it can call the Lisp
interpreter to evaluate function symbols to which Lisp functions have
been bound.

More recently attempts have been made to try to find a single
unified framework for expressing aspects of functional and relational
programining. One approach is to stay as close as possible to the
programming language foundations of Horn clause logic, namely,
minimal model semantics and SL D-resolution. We will discuss one
language in this category, LEAF (Logic, Equations, and Functions),
described in [2].

A key to the way in which LEAF extends Horn clause logic is
the ability to associate function definitions with function symbols.

276 RON SIGAL

LEAF partitions the usual set of function symbols into two parts:
undefined data constructor symbols, and defined function symbols,
so that a signature for a LEAF language is a 4-tuple (D, F, P ar),
where D is the set of data constructor symbols and ¥ is the set of
function symbols. In addition to 2 the predicate symbol =, with arity
2, is available. There are two classes of terms, data terms with no
(defined) function symbols, and terms, which may have occurrences of
function symbols. An atom is either an atom in the usual sense, or
a functional atom of the form f(ti,... ,tn) =t, where f is a function
symbol and ¢,t;,...,t, are terms. Function definitions are given by
way of a new class of program clauses of the form

f(tl,...,tn)ZtHBl,...,Bm

where f is a function symbol, t1,...,t, are data terms, ¢t is a term,
Bi,...,By are atoms, m > 0, and each variable in ¢ is functionally
derived in the clause. A variable z is functionally derived in a clause
C

fly,.. . ty) =t «— B1,...,Bp,

if either 1) z occurs in some ¢;, i1=1,...,m, or 2) z occurs in some
B; of the form t' =z and all of the variables in ¢ are functionally
derived in C. Clauses defining relations are of the form

p(tl,...,tn)FBl,...,Bm

where p € P, where ty,...,t, are data terms, and where By, ..., B, are
atoms, m > 0. A LEAF program is a set of clauses such that for each
pair of clauses with heads f1,...,tw) =t and f(uy,...,u,) = u, the
terms f(t1,...,¢,) and f(uy,...,u,) are not unifiable. The restrictions
imposed on function definitions are sufficient to guarantee that the
relations they define are indeed functions.

A feature of LEAF which it shares with lazy evaluation functional
languages (see, e.g., [25]) is the ability to define and partially construct
infinite data structures. For example, in the program

sum_1 _n(n)=nth(n,sum())«

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 277

nth(0,Cons(z, y)) = x « /* Cons is a data constructor * /
nth(S(n), Cons(z, y)) =nth(n,y) «— /* S is a data constructor * /
sum() = accum(0, nats (0)) «+

accum(z, Cons(y, z)) =Cons(+(z, y), accum(+(z, y), z)) +
nats(n)=Cons(n,nats(S(n))) « -
+(0,y) = y «nat(y)

+(S (@), y) = S(+(z,y)) «nat(y)
nat(0) «+

nat(S(z)) «<nat(z)

4

nats(z) defines an infinite list of numbers beginning with z, and
the O-ary function sum() defines an infinite sequence m,ni,...,

1 n

where n; = E j. Calculating E i, which is the value returned by
Jj=1 1=1

sum_1 n(n), requires only that the first n+ 1 elements of the infinite

structure sum() be generated.

The model theoretic meaning of LEAF progams is given
by a version of Herbrand interpretations carefully expanded to
account for the call-by-name semantics of function applications. Let
L= (D, ¥,Par) be a signature for a LEAF language. Uz, the

Herbrand universe for ¥, is the set of all terms d(ti,...,t,) over
D U{w}, where d € D, ar(d) = n, such that either n =0 or t;w
for some i =1,...,n. w ¢ D is a special symbol intended to denote

that an argument of a data term has not yet been evaluated. Uy is
ordered by the reflexive relation < defined

w<t for all t € Us
dty, ... tn) < d(uy,...,up) iff t; <wug,t=1,...,n

t < u expresses the intuitive notion that ¢ is a‘possibly less completely
computed approximation to u. By, the Herbrand base for ¥, is the
set of all atoms of the form

o f(t1,...,ty) =t, where f € ¥, ar(f)=n, and t1,...,t, € Us

278 RON S1GAL

¢ p(t1,...,1s), Where p c P, ar(p) =n, and ¢y,...,t, € Us.
A LEAF-interpretation for ¥ is a subset I of By such that

® flt1,...,tn) =w is in I, for all f € ¥, ar(f) = n_and all
ti,...,ty € Uy, and

o if f(t1,...,t,) =1t and f(u1,...,uy) = u are in I, then either
t<uoruc<t.

Thus in any LEAF-interpretation the meaning of terms f(t;,...,t,)
is given by a consistent set of approximations. ,

The notions of satisfaction and model are the usual ones, and
the model intersection property holds. The model theoretic semantics
of a LEAF program, then, is its minimal LEAF-model. An equivalent
fixpoint semantics is also defined in [2].

The operational semantics of LEAF programs is based on SLD-
resolution, but there are two additional ideas. First, to put programs
and goals in a suitable form so that ST, D-resolution can cope with the
semantics of function application, clauses go through a preprocessing
«flattening» transformation to remove nested applications. A canonical
clause is a clause in which all atoms are canonical atoms, where a
canonical atom is of the form

o f(t1,...,t,) =t, where feF, ar(f) = n, and t1,...,t, are
data terms, or ‘

e p(t1,...,t,), where p € P, ar(p) = n, and ty,...,t, are data
terms.

We illustrate the transformation with an example. The clause
accum(z, Cons(y, z)) =Cons(+(z, y), accum(+(z, y),2))
becomes
accum(z, Cons(y, z)) =Cons(vy, vp) « +Hz,y) = v,

accum(vs, z) = vy, +(z, y) = vs

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 279

which can be simplified to
accum(z, Cons(y, z)) =Cons(vi,v2) « +(z,y) = v, accum(vl,vz)_; vy,

Once program and goal have been put into canonical form,
G D-resolution can begin, treating the equality symbol as just
another predicate, but one more inference rule is needed to account
for the lazy evaluation of function application. In particular, the data
term which is the value of a function application is generated only
to the extent necessary to perform resolution on the atoms in which
it occurs. Given an atom f(ti,...,t,) =t, if the computation reaches
a point where t is not a subterm of an argument to any other atom,
and if the variables of ¢ are not needed to determine the answer
substitution, then the atom elimination inference rule allows the
atom f(t1,...,tn) =t to be deleted from the current goal. A precise
definition is given in [2].

Given a canonical program and goal, computation proceeds
essentially by applying S D-resolution and the atom elimination
rule, with preference given to the latter when both are applicable,
until the empty clause is derived. See [2] for details, as well as
aspects of the language which we have not discussed here.

5. Equality.

Equality is such a fundamental relation that it is sometimes
considered part of first-order logic, and so it is natural to consider
how to incorporate it into Horn clause logic. In fact we have already
seen two uses of equality. However, the equality theory in program
completibns is quite limited, since its intention is to prevent some
terms from being equal as much as it is to require others to be
equal. The use of equality in LEAF is motivated by the introduction
of functions, and consequently the interpretation of equality is no
stronger than necessary to achieve that goal. Consider for example

the program

280 RON SIGAL

repr(0) = 0 «

repr(S(z)) = +(1, repr(z)) « /*+ is a data constructor here * /
which flattens to

repr(0) = 0 «

repr(S(z)) = +(1,v) « i‘epr(a:) =,

If = were interpreted as true equality then the goal «repr(z) =
repr(z) should yield the identity substitution. In LEAF, however, this
goal flattens to

«—repr(z) = v, repr(z) =v

which simplifies to «repr(z) = v. Now S L D-resolution will return
the sequence of answer substitutions {z/0}, {z/s(0)}, {z/s(s(0))},....

In this section we will look at languages in which equality
is used to impose additional algebraic structure on the domain of
computation, so that the programmer can reason in an algebraic
model rather than the unstructured minimal Herbrand model (or
minimal S-model).

When S D-resolution tries to unify (the arguments of) an atom
in a goal with (the arguments of) the head of a clause, say p(tq,...,t,)
and p(uy,...,u,), this process may be thought of as an attempt to
find a most general solution for the equations ¢; = u;, 1=1,... n In
ordinary Horn clause logic two terms are considered equal only if
they are syntactically identical, but if we require the equality relation
to obey additional axioms, then non-identical terms may denote
identical objects. Furthermore, more than one most general solution
may exist. For example, consider the equation g(f(z,a)) = g(f(a, 1))
in the presence of the axiom

f(2, f(,2) = f(f(z,9),2) (associativity for f).

Here 01 = {z/a}, 0, = {z/ f(a,0)}, 65 = {z/f(f(a,a),a)},... are all most

general solutions. ‘
In the presence of additional equality axioms we need to generalize

the notion of most general unifier. Let T be a first-order theory over

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 281

signature X. The relations = and < on pairs of X-substitutions 0, o
generalize to

o=p W] if T kzo=x0 for all z € W, where WwcCv
o <y 0[W] if o =1 0 oy[IW] for some Z-substitution 7.

A T-unifier for t,u € T'Ms is a Z-substitution § such that
T Etf =ub, |

and a most general set of T-unifiers for t,u € T'Ms is a set U of
2-substitutions satisfying

1. (Correctness) every 0 ¢ U is a T-unifier for t, u;

2. (Completeness) for every T'-unifier o for ¢, 4, there is a § cU
such that o <p f[var@®)u var(u)];

3. (Minimality) for all ¢, o € U, if o <p 9[var(t)u Var(u)] then
o =0 (i.e., o and # are the same element of U).

Note that if ¢, u are not unifiable then the empty set satisfies (1) -
(3). A set of substitutions that satisfies (1) and (2) is a complete set
of T"-unifiers for ¢, u.

T-unification has been studied intensively in the case where T
is a set of equations, in which case it is also called FE-unification or
universal unification, and theories are known to exist in each of the
following classes.

1. unitary: a most general set of T-unifiers for t, u € T Ms
always exists and has at most one element

2. finitary: a most general set of T-unifiers for t, uw € TMs
always exists and has more than one but at most a finite
‘number of elements

3. infinitary: a most general set of T-unifiers for t, u € TMsx
always exists and is infinite for some to, uo € T'Ms

4. type 0: there are t, u € TMs for which there is no most
general set of T-unifiers

282 RON SIGAL

In an infinitary theory most general sets of T-unifiers are not
necessarily r.e. See [21] for more on universal unification.

Two general strategies can be identified for extending a Horn
clause interpreter to handle equality. A fixed equality theory can
be assumed and a specialized unification algorithm built into the
interpreter, ‘or axiomatization of equality can be made available at the
program level, in which case the interpreter needs a general purpose
unification algorithm. Prolog-XT ([4]), for example, is an experimental
implementation of Prolog with a built-in unification algorithm ([5])
for the unitary theory of Boolean rings. In the remainder of this
section we will discuss the language Eqlog ([12]), an instance of the
second strategy. , |

Eqlog is rooted as much in the theory of abstract data structures
as in logic programming, and it demonstrates the advantages of
bringing together these two areas. From the former Eqlog brings
the idea of axiomatizing data structures by sets of equations. The
abstract behavior of a stack, for example, can be described (ignoring
error conditions) by the equations

pop(push(z, y)) =y

top(push(z,y)) =z
The intended model theoretic interpretations of such equations is, as
we will see, closely related to minimal Herbrand model semantics.

Abstract data type equations are typically expressed in order-
sorted languages, a generalization of many-sorted languages, which
are in turn a generalization of first-order languages. A manysorted
signature is a tuple Z= (S5, F,P ,ar), where S is a set of sort symbols,
F and P are sets of function and predicate symbols, and the arity
function ar is defined on F U P and takes values in the set of finite
sequences of sort symbols. We assume the availability of a countable
set V; of variable symbols for each sort { € 5, and we denote U Ve as

¢es
7). We also assume that P contains a symbol =; for each ¢ € S5, with

ar(=¢) = (£,§). Many-sorted Z-terms, X-formulas, Y-theories, X-atoms,

LOGIC PROGRANMING EXTENSIONS OF HORN CLAUSE LOGIC 283

I-literals, X-clauses, Horn 2-clauses, and Horn clause 2-programs are
defined as for ordinary signatures, with the addition of the following
- well-sortedness conditions.

1. v € V¢ has sort ¢.
2. For f e 7, if ar(f) = (€1,...,&x1), then term f1,...,t,) has

3. For f e 7, if ar(f) = (€1,...,&m1), then in term f, .. t),
each t; must have sort &,1=1,... n

4. For p € P, if ar(p) = (¢1,...,&,), then in atom p(t, ..., tn),
each t; must have sort ¢;, i = I,...,n

2-formulas of the form t =; v are Z-equations.

An order-sorted signature is a tuple X = (0,5, F , P,ar), where
(S, F,P,ar) is a many-sorted signature and O is a set of subsort
declarations of the form ¢ < n, where £, n,€ S. O determines a subsort
relation <, which is the least quasi-ordering on S satisfying E<om
if (¢ < n) € 0. Order-sorted 2-terms, E-formulas, 2-theories, Z-atoms,
2-literals, X-clauses, Horn 2-clauses, and Horn clause X-programs are
defined as for many-sorted signatures, except that the well-sortedness
conditions are relaxed according to the following stipulation.

5. If term ¢ has sort ¢ and ¢ <o 7, then t also has sort 1.

Note that a first-order signature can be transformed easily into
a many-sorted signature with a single sort, and that a many-sorted
signature (S, F, P ar) can be identified with the order-sorted signature
0,8, F,P,ar).

The following example is a definition, in Eqlog syntax, of the data
type List of Integers. Int is a built-in Eqlog data type. The subsort
Ne list is used to restrict the domains of head and tail to non-empty
lists, that is, lists constructed by the cons function.

284 RON SIGAL

module List of Integers using Int is

sorts Int, Ne list,List
subsorts Ne list<List
fns nil: — List

head: Nelist — Int
tail: Ne list — List
cons: Int,List — Ne list
vars I:Int, L:List
axioms head(cons(I,L))=1
tail(cons(I, L)) = L
endmod List of Integers

Note that the signature can be derived from the information given..
A Y-interpretation for order-sorted signature X = (0,5, ¥,P,ar) is a
pair I = (D, u) such that
o D ={¢l|¢ € 5}, where &7 is a set, for all { € 5, and £ <o 7
implies ¢f C nf
e 1 is a map defined on F U P such that

o u(f) &l x .. ox &b =€l for fe F, ar(f) = (&, ... nnt)
e u(p) C & x ... x ¢l for pe P, arlp) = (€1,...,&n)
o (=) = {(d, d)|d € £'}.

The last condition forces the equality symbols to be interpreted as identity.
An order-sorted variable assignment into I is a map a: ¥V — U ¢l

¢es ,
satisfying the condition that z € V¢ implies a(z) € ¢T. Satisfaction in an

order-sorted interpretation is defined as for ordinary first-order interpretations,
and similarly for models and logical consequence.

Let I = (D, ur), J = {(Dy,us) be two interpretations for % =
(0,8, F,P,ar), and let C; =UDy and C; =UD;. A X-homomorphism
from [to J is a map ¢ : 'CI — (Cy such that .

o if o € ¢! then ¢(a) € €7,
o if FeF, ar(f) = (E1,...,Enn) and (a1,...,a0) € 6l x ... x L,

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 285

then
Plur(fat, ..., an)) = ps(H@lar), ..., dplan));

o if p € P, ar(p) = (¢1,...,&,), and (a1,...,a,) €& x...x¢l,
then :

(a1, an) € () implies ($(ar), .., $lan) € s (p).

A bijective Z-homomorphism in which the implication in the last condition
holds in both directions is a Z-isomorphism, and two 2-interpretations I, J
are tsomorphic if there is a X-isomorphism from I to J.

Let P be a program over an order-sorted signature £. A model M of
P which satisfies the initiality condition

for every model M’ of P there exists a unique

2-homomorphism ¢ : M — M’

is an initial model of P. In the field of abstract data types initial models
are taken as the intended model theoretic semantics of programs, based on
the following

THEOREM 17. Let X be an order-sorted signature, and let P be q
X-program.

1. Initial models of P exist.
2. All initial models of P are isomorphic.

3. Let M be an initial model of P, and let A be a ground
2-atom. Then M = A if and only if P k A.

Thus initial models are an abstraction of the concept of minimal Herbrand
models. Moreover, a specific initial model directly comparable to minimal
Herbrand models of ordinary Homn clause programs can be constructed
from the terms over the signature associated with a program.

286 RON SIiGAL

Let X = (S, F,?P,ar) be a many-sorted signature, and let P be
a X-program. Let + denote derivability in some sound and complete
calculus for many-sorted Horn logic with equality (as given in [18],
for example), let ~p be an equivalence relation on ground terms of &
defined

t ~p uif and only if P ¢ = u,

where t, u have sort &, and let [t]p be the equivalence class of t with
respect to ~p. The initial term model of P is Ip = (Dp,up), where

o Dp={EF|¢ €S8}, where €7 = {[t]p]|t is a ground Z-term with
sort };

o up(Ntilp, ..., [tnlp) = [f(t1,...,tn)]lp, where f € F, ar(f) =
(€1,...,&m1), and t; has sort &, i=1,...,n

o up(p)={(ltilp,..., [talp)|P F p(t1,...,tn)}, for pe P.

A semantic construction (independent of i) of initial term models for
programs over order-sorted signatures is given in [22].

The operational semantics of Eqlog programs is given in part by
S L D-resolution, up to the point of solving the equations that appear
explicitly in the bodies of clauses and that are implicitly created in
the process of unifying goals with clause heads. Equation solving
can be handled in various ways, depending on the role that equality
.plays in a particular program. The simplest case is when a program
can be partitioned into two sets of clauses P and F such that P is
a Horn clause program with no clause heads which are equations,
and F is a set of equations. In this case the solution of equations
with respect to the theory E can be carried out, independently of the
S L D-resolution process, by narrowing (see, e.g., [13]), a technique
that comes from the field of term rewriting.

A term rewriting system R is a set of rewrite rules of the form
t — u, where t, u are terms such that var(u) C var(t). The one-step

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 287

R-reduction relation on terms, denoted —s R, 18 defined

f—)Ru if 1), t1 — tris in R;
2). o is a substitution and s is a subterm of
¢t such that s = t;0; _
3). wuis ¢t with s replaced by t,0;

and the R-reduction relation, denoted =%, is the reflexive, transitive
closure of —p. R is confluent if ¢, 4 ty and t; = t3 implies there
is a term ¢4 such that ¢, = ty and t3 =4 t4. R is noetherzan if there
are no infinite sequences t1 —R t2 —pg ..., and it is canonical if it is
confluent and noetherian.

A term t is in R-normal form if there is no term u such that
t —p u. It can be shown that in canonical systems R every term
¢t has a unique canonical form, denoted canp(t). If F is a set of
equatlonq then canonical term rewriting system R is a complete set
of reductions for F if

E [t =uif and only if cany(¢) is identical to cang(u).

Since R is noetherian, the R-normal form of any two terms can be
found in a finite amount of time, and so we have a decision procedure
for F.

However, we need more than a decision procedure: we need
a way of enumerating solutions to equations. We now generalize
reduction to narrowing by relaxing (2) 1n the definition of —5. The
one-step R-narrowing relation, denoted —’ R, 1s defined

t 2, ru if 1). ¢, — tyis a variant away from var(t)
of a rule in R;
2). sis a subterm of t and 6 is a most general
unifier of s, t1;
3). t'is t with s replaced by t, and u is ¢'6;

and the R-narrowing relation, denoted —q—>§, is defined

4 .) ¢ 0,
t—%}#%UIft:tl—;th-i»R .———1>Rtn=uand9=910...09n_1.

288 RON SIGAL

THEOREM 18. Let E be a set of equations, and let canonical term
rewriting system R be a complete set of reductions for E. Let h be a
symbol that does not appear in E or R, and let R'=RU{h(z,2) —
true}. Then {0|h(t,u) ;’Lﬁ, true} is a complete set of E-unifiers for t,

U.

Thus, if P is an Eqlog program which can be partitioned into
P'U E, where P' is a Horn clause program without equations in the
heads of clauses, and E is a set of equations {t; = uili = 1,...,n}
such that {t; — u;|i =1,...,n} is canonical and is a complete set of
reductions for F, then SI D-resolution plus narrowing can be used
to find a complete set of correct answer substitutions for P U {G} for
any goal G.

Now let P be an Eqlog program which can be partitioned into
P'U E where P’ is as before and E is a set of conditional equations
of the form ¢t =u « t; = u1,...,tn = us. [11] defines a class of sets of
conditional equations for which a suitable generalization of narrowing,
called conditional narrowing, enumerates complete sets of E-unifiers.

In the general case, of course, Eqlog programs cannot be
partitioned this way. In this case [12] proposes that SI D-resolution
and conditional narrowing work together in a co-routining relationship,
though no completeness results are given.

6. Constraints.

An answer substitution for a Horn clause program and a goal can
be. thought of as a set of constraints on the form of certain terms. For
example, for the goal « p(f(z)) the substitution {x/g(y)} says that p
is true of any term of the form f(g(y)). Since we take the Herbrand
universe of a program as its canonical domain of computation, we
are guaranteed that every object in the domain has a name, and
so a (possibly infinite) set of substitutions can describe all possible
solutions to a goal. Given, for example, the program

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 289

int(0) «

int(s(z)) +int(x)

1£(0, s(y)) +—int(y)

t(s(z), s(y)) « lt(z,y)

between(z, y, z) « lt(z, y), lt(y, z)
the complete set of answer substitutions for the goal —between(0, y,
s(s(5)0)))) is {y/s(0)}, {y/s(s(0)}. _

The same situation holds for Horn clause programs with equality,
where all initial models are isomorphic to the initial term model.
It does not hold, however, if the intended domain is uncountable.
Consider the clause

between real(z,y,2) «— 2 < y,y < z ,
where the domain is the real numbers and < is interpreted as
usual. Then every real in the open interval (0,3) is a solution for the
goal «between real(0,y,3), and no countable set of substitutions to
y can represent that set. On the other hand, the pair of inequalities
0 < y < 3 does the job nicely.

The point is that by generalizing from substitution to set of
constraints, where a constraint is simply an atom, we get a more
expressive notion of an answer. Moreover, if the constraints are
interpreted in a particular algebraic structure, then we can augment
the operational semantics of a programming language with any of
the specialized algorithms associated with that structure. For the
goal «between real(3,y,0), for example, we would prefér the answer
«No» to the answer 3 < y < 0, and, indeed, there are fast linear
inequality solvers that make finding the first answer feasible.

Constraint programming languages offer yet another declarative
programming paradigm, and a number of such languages have
been proposed and implemented. (See [16] for a survey.) Indeed, the
literature on constraint languages predates that of logic programming
languages, e.g., [23]. In this section we will discuss a class of
languages which combines the features of both. This class ([14]) is
called CLP(X), where CLP is Constraint Logic Programming and X

290 ’ RON SIGAL

can be instantiated to any of a large class of structures.

To describe CLP(A), we begin with a fixed structure A and
an order-sorted signature X, = (0,S,%,®,ar) for which A is an
interpretation. Intuitively, A is the structure in which constraints are
to be interpreted. Now, just as each Horn clause program induces
a particular signature, each CLP(A) program induces a particular
extension of X, with new uninterpreted function and predicate
symbols. Also, we can assume that associated with A is some uniform
policy of 1) relating symbols in ? to terms with function SYmbols
not in ¥ (for example, by considering such atoms ill-sorted), and
2) extending A, when necessary, with new objects to interpret new
terms. Therefore we extend X in two stages, where the first stage
implements this policy.

First, let Fp, where FpNF = @, be a finite set of function symbols
to appear in CLP(A) program P. The arity of each symbol in ¥p is
fixed, except for its length, by policy, so let Ap- be A augmented as
necessary with new objects, and let X4, be the new signature

(0OUO0™,SUS™, FU Fp,P,arUarb),

where O~ and S~ are determined by policy. Next, each CLP(A)
program P contributes a set of predicate symbols Pp, where PpNP = 0,
sorted according to ar%, so let T4, be

(OUO™,5US™,FUFp,PUPp,arUarp Uarp).

For example, let A be the real numbers with +*,=, and <. There
is a single sort Real, and X is (§, {Real}, {+ %,0,1,...}, {=, <}, ar)

where
ar(+) = (Real,Real,Real) ar(0) = (Real)

ar(x) = (Real,Real,Real) ar(l) = (Real)
ar(<) = (Real,Real) :
ar(=) = (Real,Real)

Let Fp be any set of new function symbols, say {f,¢}, to
appear in program P. The policy for interpreting these symbols is

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 291

to create a new sort RealTerm, make Real a subsort of RealTerm
(ie., 07 = {Real<RealTerm}), and to give each symbol in ¥ p an
arity of (RealTerm,..., RealTerm). We leave the arity of < as it is
in X4, so that f(0) < f(1) is not well-sorted. The domain of Ap- is
{ Dreat, DRealTorm }, Where Dryey is the set of the reals, Dreat C DRealTorm,
and DrgeaiTerm \ Dreal cONSists of objects, say finite trees, which interpret
terms with symbols in Fp.

Terms, formulas, theories, atoms, literals, clauses, Horn clauses,
and programs over X A, are defined as for any order-sorted signature,
except that the predicate symbols in the heads of clauses must come
from Pp. Atoms whose predicate symbol is in P are distinguished
as atomic constraints, and constraints are (possibly infinite) sets of’
atomic constraints. For notational convenience we write clauses as
A« CUBy,...,B,, where C is a finite constraint, 0 is a special
notation for A, and By,...,B, are atoms with predicate symbols not
in P.

Given an interpretation A for signature XA, a finite set of new
function symbols #p, and a policy for extending A to A p-, then the
interpretation Ap- = (D A, M AP—> is fixed. A solution in Ap- to a

constraint ¢ is an order-sorted assignment « : Uvar(c) — UD A |
e

ceC
such that Ap-, o ¢ for all c € C. A constraint is solvable in Ap- if

it has a solution in Ap-. Element d ¢ UD Ap 18 (finitely) definable if
there is a (finite) constraint C, a distinguished variable z Uvar(c),

and a solution « of C in Ap- such that a(z) = 4. If oz(a:c)ei d for
all solutions « of C in Ap- then d is uniquely definable, and if it
uniquely definable but only by infinite constraints then it is a limit
element. Ap- is solution compact if it satisfies

1. every d € UD A, is uniquely definable

2. ifde UuD A,. is a limit element uniquely defined by constraint
Cg, then for any constraint C, the constraint C U C; is not
solvable in Ap- if and only if there is a finite constraint),
defining d such that C U C, is not solvable in Ap-.

292 RON SIGAL

The results in [14] apply to all solution compact structures Ap-,
so we restrict our attention to such structures. Henceforth in this
section let A be an interpretation of X = (0,5, ¥,P,ar), let Fp be
a. finite set of function symbols such that Ap- = (D A, H AP,,> is
solution compact, and let P be a program over

Zp,=(OUO07,SUS™, FU Fp,PUPp,arUarp).

A CLP(A)-interpretation of A, is any order-sorted interpretation
of % A, which extends Ap-. Since the only information left unspecified
in Ap- is the interpretation of symbols in Pp, we can identify each
CL P(A)-interpretation of X A, With a subset of the Ap-base

B, = {pla(z1),...,a(za))lp € Pp,arp(p) = ({1, .., &n), and
a:{z1,...,Ts} —»UQ)AP_
is an order-sorted assignment}.

The definition of satisfaction in a CLP(A)-interpretation is given
by the definition for order-sorted interpretations, and similarly for
CLP(A) models.

The CLP(A) models of program P enjoy the model intersection
property, so we can give the model theoretic semantics of P as the
least CLP(A) model of P, denoted M Ay We can also give a fixpoint

B B
characterization of M Ap by way of the function Ty , : 2 Ar 5 27Ap,
defined

Ta p(D) ={pld1,...,dn) € Bp,|
1. p(t1,...,tn) <« CU By,..., B, is a clause in P;
n
2). o U var(t;) — UD A, is an order-sorted assignment;

1=1

N alt)=dii=1,... n
4). Ap-,a Ec, for all c € C;
5) B2 is pi(ul, veey umi) and

pila(uy),...,aluy)) € I,i=1,...,m}.

LOGIC PROGRAMMING EXTENSIONS OF HORN CLAUSE LOGIC 293

Defining
TA p T0 =90 .
TA’p i 5 +1= TA’p(TA’p 1 /B)
TapTX =|{JTap 1A X alimit ordinal,
A<
we have

THEOREM 19. My = Ufp(Tp p) =Tp , T w.

The operational semantics of CLP(A) programs can be given
based on SLD-resolution, where the result of a computation is a
constraint which exactly characterizes a set of solutions to a goal.
See [14] for details. ’

REFERENCES

[1] Baratella S., File G., A completeness result for SLDNF resolution, Proc.
GULP-89, 85-98.

[2] Barbuti R., Bellia M., Levi G., Martelli M., LEAF: A language which
integrates logic, equations, and functions, in [9]. _

[3] Barbuti R., Martelli M., Completeness of the SLDNF-resolution for a
class of logic programs, Proc. 3rd Int. Conf on Logic Programming,
London, (1986), 600-614.

[4] Buttner W., personal communication.

[5] Biittner W., Simonis H., Embedding boolean expressions into logic
programming, Journal of Symbolic Computation, 4 (1987), 191-206.

[6] Cavedon L., Lloyd J.W., A completeness theorem for SLDNF-resolution,
Comp. Sci. Dept. technical report CS-87-06, Univ. of Bristol, 1987. (To
appear in Journal of Logic Programming.) }

[7] Clark K.L., Tarnlund S.A., Logic Programming, Academic Press, eds.,
1982. .

[8] Davis . M., Eliminating the irrelevant from mechanical proofs,
Proc. Symp. Appl. Math., 15 (1963), 15-30. .

[9] DeGroot D., Lindstrom G., Logic Programming: Functions, Relations,
and Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[10] Falaschi M., Levi G., Martelli M., Palamidessi C., Declarative modelling
of the operational behavior of logic languages, Theoretical Computer
Science, 70 (1989).

294 " RON SIGAL

[11] Giovannetti E., Moiso C., A completeness result for FE-unification
algorithms based on conditional narrowing, Proc. Foundations of Logic
and Functional Programming, LNCS 306, Springer-Verlag, Berlin, 1988.

[12] Goguen J.A., Meseguer J., EQLOG: Equality, types, and generic modules
for logic programming, in [9].

[13] Hullot J. M., Canonical forms and unification, 5th Conf. on Automated
Deduction, LNCS, Springer-Verlag, Berlin, 1980.

[14] Jaffar J., Lassez J.L., Constraint logic programming, Conf. Proc.
Principles of Programming Languages, Munich, 1987. ‘

[15] Knight K., Unification: a multidisciplinary survey, Computing Surveys,
21 (1989), 93-124.

[16] Leler W., Constraint Programming Languages, Addison-Wesley, Reading,
MA, 1988.

[17] Lloyd J.W., Foundations of Logzc Programmmg, 2nd ed., Sprmger -Verlag,
Berlin, 1987.

[18] Padawitz P., Computing in Horn Clause Theories, Springer-Verlag,
Berlin, 1988.

[19] Robinson J.A., A machine-oriented logic based on the resolution principle,
JACM, 12 (1965), 23-41.

[20] Robinson J.A., Sibert E.E, LOGLISP: Motivation, design, and imple-
mentation, in [7].

[21] Siekmann J.H., Unification Theory, Journal of Symbolic Computation,
7 (1989), 207- 274

[22] Smolka G., Order-sorted Horn logic: semantics and deduction, SEKI
report SR-86-17, University of Kaiserslautern, 1986.

[23] Sutherland 1., SKETCHPAD: A man-machine graphical communication
system, Proc. IFIPS Spring Joint Comp. Conf., 1965.

[24] Tarski A., A lattice-theoretical fixpoint theorem and its applications,
Pacific J. Math 5 (1955), 285-309.

[25] Turner D.A., Miranda - a non-strict functional language with polymorphic
types, Proc. Conf. on Functional Programming Languages and Computer
Languages, LNCS 201, Springer-Verlag, Berlin 1985.

Dipartimento di Matematica
Universita di Catania
Catania (Italy)

