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TOTALLY REAL SUBMANIFOLDS
OF GENERALIZED HOPF MANIFOLDS

SORIN DRAGOMIR (Bari) (*)

We classify totally-geodesic totally-real submanifolds of generalized

Hopf manifolds, provided the normal connection is flat.

1. Introduction and statement of results.

Let (M?", go,J) be a locally conformal Kaehler (1.c.K.) manifold
of complex dimension n > 2 with the complex structure J and the
Hermitian metric gg. Let wy be the Lee form of M?"; i.e.

(1.1) wp = 1(€20)d€2

n—1

Here 1(€)) denotes the adjoint of e(Q), e(Qp)f = Qy A @, for any
differential form § on M?", while Qy is the Kaehler 2-form. If wq is
parallel (with respect to the Riemannian connection of (%", go)) then
M?™ is a generalized Hopf (g.H.) manifold, cf. [11].

(*) Entrato in Redazione il 4 aprile 1988



4 SORIN DRAGOMIR

Let M?" be a g.H. manifold; we put |jwo|| = 2¢, ¢ > 0. Throughout
we suppose ¢ # 0, since otherwise M 2" falls into nothing but a Kaehler
manifold. Let By = wo# be the Lee field of M?, where # denotes
raising of indices by go. Let ¢ : M™ — M?" be an isometric immersion
of a real m-dimensional Riemannian manifold (M™,g) into M?".
Let E — M™ be the normal bundle of the given immersion 1. Let
tang, nor, be the natural projections associated with the direct sum
decomposition T,(M?*") = To(M™) @ E,, = € M™. We set B = tan(53,),
B+ = nor(By).

Let w = 9*wg. If w has no singular points, ie. w, # 0 at any
x € M™, then M™ carries a canonical foliation ¥ whose leaves are
the maximal connected integral manifolds of the Pfaffian equation
w = 0.

The submanifold M™ of M?" is totally-real if J,(To(M™)) C E;,
z € M™. The study of totally-real submanifolds in l.c.K. manifolds (in
particular, in complex Hopf manifolds) has been initiated in [2]. Cf.
also [3], [7]. We obtain the following result:

THEOREM. Let M"™ be a connected complete totally-geodesic
totally-real submanifold (of real dimension n > 2) of the g.H. manifold
M?"; suppose M™ has a flat normal connection.

i) If M™ is a simply-connected real surface (n = 2) tangent to the
Lee field (B+ = 0) of the ambient g.H. manifold M* then it is
isometric to R? with the flat Euclidean metric;

i) If n>2, Bt %0 and M™ is orientable then M™ is normal to the
Lee field and its universal covering manifold is isometric to the

1
sphere S™ <—C—>,

1)) If n=2, B+ 0 and M? is orientable then M? is isometric to
SZ _1_ . )
C 2
iv) If n> 2 and B+ =0 then M" is quasi-Einstein and its Ricci form is

positive semi-definite and degenerated only along the distribution
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generated by the Lee field. Moreover, any leaf of the canonical

foliation F of M™ is a totally-geodesic real hypersurface of M™
1

and its universal covering manifold is isometric to S™ ! (—)
v c
Throughout S™(r) denotes the sphere of radius r > 0 and center

the origin of R™,

2. Basic formulée.

Let M?" be a g.H. manifold and ¢ : M™ — M?" an isometric
immersion. As usual, we do not distinguish notationally between =z
and (z), respectively X and ¢, X, for each X € T,(M™), z € M™.
We recall the Gauss and Weingarten formulae, see e.g. [1]:

VoY =VxY +h(X,Y)
2.1)
VY€ = —Ae X + V%

for any tangent vector fields X,Y on M™", respectively any cross-section
¢ in E. Here V, h, A; and V+ denote the induced connection, the
second fundamental form (of 1), the Weingarten operator (associated
with the normal section &) and the normal connection (in E).

Since M?" is l.c.K., there exists an open covering (U;)ie; of M?"
and a family (f;);e; of smooth real-valued functions f; € C*(U;) such
that the metrics g; = exp(—fi)g, 1 € I, are Kaehler. The Levi-Civita
connections of the (local) metrics g; are known to glue up to a
globally-defined torsion-free linear connection on M?", namely the
Weyl connection, i.e.

22 DY =V%Y - %{wo(X)Y +wo()X — go(X,Y)Bo}

Throughout V° denotes the Riemannian connection of (M2, g).
Cf. [10], p. 441, the curvature tensor fields Ky, Ry of D° VO are
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related by:
Ko(X,Y)Z = Ry(X,Y)Z —

1
— 7 {lwoXY — wo() X Jwo(Z)+

(2.3) .
+ [90(X, 2)wo(Y) — go(Y, Z)wo(X)]Bo}—

— MgV, 2)X — go(X, Z)Y'}

for any tangent vector fields X,Y,Z on M 2n provided that Vowg = 0.
We shall also need the Gauss and Ricci equations:

90(Ro(Z, U)Y, X) = g(R(Z, U)Y, X )+
(2.4)
+90(h(X, Z2), (Y, U)) — go(h(X, U), h(Y, Z))

gO(RO(X) Y)é) 77) =
2.5)
= go(RT(X,Y)¢,m) — g([A¢, 441X, Y)

Here R, R' stand respectively for the curvature tensor fields of
V, V+. Let w be the 1-form induced on M"™ by the Lee form of the
ambient g.H. manifold. Note that:

(2.6) (Vxw)Y = wo(h(X,Y))

Therefore, if M™ is totally-geodesic then w is parallel, too.

Let X € C — {0}, |A\] #1 and denote by G\ the discrete group of
analytic transformations of C" — {0} generated by z — Mz, z € C"—{0}.
Then Gy acts freely and property discontinuously on C™ — {0} such

{0
that the factor space CH™ = U—l inherits a natural structure of

X .
complex manifold. This is the well known complex Hopf manifold. The
Hermitian metric ds® = |2[726;;d2' ® dZ/ on O™ — {0} is G)-invariant,
thus defining a global l.c.K. metric gy on CH™. ‘

Let m :C"— {0} - CH™ be the natural surjection. Let j :
M™ — (C™, é;;) be an isometric immersion of a Riemannian manifold
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(M™, ¢) into C" (endowed with the flat Euclidean structure) such
that M™ does not pass through the origin. Then ¢ : M™ — CH",
¥ =moJj, is an isometric immersion of (M™,g) into (CH™,gq). The
second fundamental forms of the immersion 1,7 are related by
h(y) = h(j)+ %g ® B*. Consequently, if j is totally-geodesic, then 1
is totally-umbilical (totally-geodesic, provided that M™ is tangent to
the Lee field of H™). Let U C IR? — {0} be open and ¢ : U — CH?,
¥(z,y) = 7(z,0,y,0), for any (z,y) € U.Then U is a totally-real
totally-geodesic (immersed) submanifold of CH 2 with a flat normal

connection.

3. Proof of the theorem.

Let M™ be a totally-real submanifold of the g.H. manifold A/2".
If Z is a tangent vector field on M" then JZ is a normal section.
Therefore, our (2.3) yields:

Ko(X,Y)JZ = Ry(X,Y)J Z—

(3.1) 1
_ Z[W(X)Y — w(Y)XJwo(J Z)

. for any X,Y, Z tangent to M™. Since DO is the Riemannian connection
of the (local) Kaehler metrics g;, 1 € I, it is almost complex, i.e.
D% =0. Thus Ko(X,Y)J = JKo(X,Y), cf. [5], p. 149, vol. II. Then
using again (2.3), the formula (3.1) turns into:

JRo(X,Y)Z = Ry(X,Y)J Z+
+ i‘{[w(X)JY — w(Y)JXjLu(Z)+

(3.2) +[g(X, Z)w¥") — gV, Z)w(X)]J Bo}+
+cHg(Y,Z)J X — g(X,Z)JY }+

¥ i{w(X)Y — W(Y)X Jwo(T 2)
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Let U be a tangent vector field on M™. Taking the inner product
of (3.2) with JU and substituting from (2.4)-(2.5) into the resultmg
equation, one obtains:

| R(X,V)Z = %{[w(xjy W)X Jw(Z )+
(3.3) -+ (X, Z2)w) — oY, Z)w(X)]B )+

+ {9V, 2)X — ¢(X, Z)Y'}

provided that A =0, R+ = 0. Further contraction of indices in (3.8)
furnishes the expression of the Ricci form of (M™, g), i.e.

Ric(X,Y) = {(n—— 1c? — %Hw”z} g(X,Y)—
(3.4 :

-2
7 w(XHw()

Let now M2 be a totally-geodesic totally-real surface 1n a g.H.
manifold M* of complex dimension 2. By (3.4) one has Ric = HBLH g.

Therefore, if M? is tangent to By, then it is Ricci flat, and thus flat,
(for surfaces the two notions are known to coincide). Suppose from
now on that n> 2. If X is tangent to M™, (3.4) leads to:

RicCX, X) = 7 {n— DB+ 0 2wl |
n—2
Since |lw|| = const., either w = 0 and then (3.3) shows that
M™ is a Riemannian manifold of constant sectional >0, or w
is nowhere vanishing. The last step in the proof of ii) consists in
showing that actually the second poSsibﬂity does not occur. To this
end, suppose w #0. Let z € M™, X € To(M™). There exists a unique
Y € Ty(M") perpendicular on B, such that X =V + AB;, for some
A € R. Substitution into (3.5) leads to

(3.5)
cu(X)2

Ric(X, 30 = 2ln— DB + (n— 2wl 7]+

+%VW*I)IIBLII"’:kuz, ie. Ric(X,X)> 0.
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Also Ric(X,X) =0 iff Y =0, A =0, since B+ # 0. Thus Ric is
positive-definite. By a result of [6], M™ follows to be compact. Since
w is parallel, by (2.12.4) in [4], p. 78, it is harmonic. Consequently,
the first Betti number b;(M™) of M™ is > 1. This is a contradiction,
since by a result of S. Bochner ([4], th. 3.2.1., p. 87), by(M™) = 0O,
Q.E.D. Let us prove iii). If n=2, BL #0, then by (3.4) it follows
that M? is a compact Einstein surface (with bi1(M )= 0). But w is
- harmonic hence w = 0. Consequently, by (3.3) and a result of [8],
7 (M?) = 0. At this point th. 7.10. of [5], p. 265, vol. I, yields iii).
Moreover, if n > 2, B+ =0, then Ric= - 2[||w[|2g —w®uw], lLe.
M™ is quasi-Einstein, cf. the terminology in [9]. Also if X =Y + \B,
g(Y,B) =0, then Ric(X,X) =0 iff Y =0. To prove the last part of the
statement iv) let M™ ! be a leaf of # As M?" is non-Kaehler and

1
Bt =0, the induced form w has no singular points. Then U = 2—B
c

is a unit normal on M™!. Let V', h' be respectively the induced
connection and the second fundamental form of M™ ! in M™. The
Gauss formula VxY = V4V +//(X,Y) and Vxw =0 yield »' =0,
i.e. M™! is totally-geodesic; then, on one hand completeness of M™
implies completeness of M™!. On the other, our (3.3) combined with
the Gauss equation (e.g. (2.6) in [1], p. 45) of M™! in M", shows
that M™ ! is a Riemannian manifold of constant sectional curvature

2 > 0.
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