TOTALLY REAL SUBMANIFOLDS OF GENERALIZED HOPF MANIFOLDS

SORIN DRAGOMIR (Bari) (*)

We classify totally-geodesic totally-real submanifolds of generalized Hopf manifolds, provided the normal connection is flat.

1. Introduction and statement of results.

Let (M^{2n}, g_0, J) be a locally conformal Kaehler (l.c.K.) manifold of complex dimension $n \geq 2$ with the complex structure J and the Hermitian metric g_0 . Let ω_0 be the Lee form of M^{2n} ; i.e.

(1.1)
$$\omega_0 = \frac{1}{n-1}i(\Omega_0)d\Omega_0$$

Here $i(\Omega_0)$ denotes the adjoint of $e(\Omega_0)$, $e(\Omega_0)\emptyset = \Omega_0 \wedge \emptyset$, for any differential form \emptyset on M^{2n} , while Ω_0 is the Kaehler 2-form. If ω_0 is parallel (with respect to the Riemannian connection of (M^{2n}, g_0)) then M^{2n} is a generalized Hopf (g.H.) manifold, cf. [11].

^(*) Entrato in Redazione il 4 aprile 1988

Let M^{2n} be a g.H. manifold; we put $||\omega_0|| = 2c$, $c \ge 0$. Throughout we suppose $c \ne 0$, since otherwise M^{2n} falls into nothing but a Kaehler manifold. Let $B_0 = \omega_0 \#$ be the Lee field of M^{2n} , where # denotes raising of indices by g_0 . Let $\psi: M^m \to M^{2n}$ be an isometric immersion of a real m-dimensional Riemannian manifold (M^m, g) into M^{2n} . Let $E \to M^m$ be the normal bundle of the given immersion ψ . Let tan_x , nor_x be the natural projections associated with the direct sum decomposition $T_x(M^{2n}) = T_x(M^m) \oplus E_x$, $x \in M^m$. We set $B = \tan(B_0)$, $B^\perp = nor(B_0)$.

Let $\omega = \psi^* \omega_0$. If ω has no singular points, i.e. $\omega_x \neq 0$ at any $x \in M^m$, then M^m carries a canonical foliation \mathcal{F} whose leaves are the maximal connected integral manifolds of the Pfaffian equation $\omega = 0$.

The submanifold M^m of M^{2n} is totally-real if $J_x(T_x(M^m)) \subseteq E_x$, $x \in M^m$. The study of totally-real submanifolds in l.c.K. manifolds (in particular, in complex Hopf manifolds) has been initiated in [2]. Cf. also [3], [7]. We obtain the following result:

THEOREM. Let M^n be a connected complete totally-geodesic totally-real submanifold (of real dimension $n \geq 2$) of the g.H. manifold M^{2n} ; suppose M^n has a flat normal connection.

- i) If M^n is a simply-connected real surface (n = 2) tangent to the Lee field $(B^{\perp} = 0)$ of the ambient g.H. manifold M^4 then it is isometric to \mathbb{R}^2 with the flat Euclidean metric;
- ii) If n > 2, $B^{\perp} \neq 0$ and M^n is orientable then M^n is normal to the Lee field and its universal covering manifold is isometric to the sphere $S^n\left(\frac{1}{c}\right)$;
- iii) If n = 2, $B^{\perp} \neq 0$ and M^2 is orientable then M^2 is isometric to $S^2\left(\frac{1}{c}\right)$;
- iv) If n > 2 and $B^{\perp} = 0$ then M^n is quasi-Einstein and its Ricci form is positive semi-definite and degenerated only along the distribution

generated by the Lee field. Moreover, any leaf of the canonical foliation \mathcal{F} of M^n is a totally-geodesic real hypersurface of M^n and its universal covering manifold is isometric to $S^{n-1}\left(\frac{1}{c}\right)$.

Throughout $S^m(r)$ denotes the sphere of radius r > 0 and center the origin of \mathbb{R}^{m+1} .

2. Basic formulae.

Let M^{2n} be a g.H. manifold and $\psi: M^m \to M^{2n}$ an isometric immersion. As usual, we do not distinguish notationally between x and $\psi(x)$, respectively X and ψ_*X , for each $X \in T_x(M^m)$, $x \in M^m$. We recall the Gauss and Weingarten formulae, see e.g. [1]:

(2.1)
$$\nabla_X^0 Y = \nabla_X Y + h(X, Y)$$
$$\nabla_X^0 \xi = -A_{\xi} X + \nabla_X^{\perp} \xi$$

for any tangent vector fields X, Y on M^n , respectively any cross-section ξ in E. Here ∇ , h, A_{ξ} and ∇^{\perp} denote the *induced connection*, the second fundamental form (of ψ), the Weingarten operator (associated with the normal section ξ) and the normal connection (in E).

Since M^{2n} is l.c.K., there exists an open covering $(U_i)_{i\in I}$ of M^{2n} and a family $(f_i)_{i\in I}$ of smooth real-valued functions $f_i \in C^{\infty}(U_i)$ such that the metrics $g_i = \exp(-f_i)g$, $i \in I$, are Kaehler. The Levi-Civita connections of the (local) metrics g_i are known to glue up to a globally-defined torsion-free linear connection on M^{2n} , namely the Weyl connection, i.e.

(2.2)
$$D_X^0 Y = \nabla_X^0 Y - \frac{1}{2} \{ \omega_0(X) Y + \omega_0(Y) X - g_0(X, Y) B_0 \}$$

Throughout ∇^0 denotes the Riemannian connection of (M^{2n}, g_0) . Cf. [10], p. 441, the curvature tensor fields K_0 , R_0 of D^0 , ∇^0 are related by:

$$(2.3) K_0(X,Y)Z = R_0(X,Y)Z - \frac{1}{4} \{ [\omega_0(X)Y - \omega_0(Y)X]\omega_0(Z) + [g_0(X,Z)\omega_0(Y) - g_0(Y,Z)\omega_0(X)]B_0 \} - c^2 \{ g_0(Y,Z)X - g_0(X,Z)Y \}$$

for any tangent vector fields X, Y, Z on M^{2n} , provided that $\nabla^0 \omega_0 = 0$. We shall also need the Gauss and Ricci equations:

$$g_0(R_0(Z, U)Y, X) = g(R(Z, U)Y, X) +$$

$$+g_0(h(X, Z), h(Y, U)) - g_0(h(X, U), h(Y, Z))$$

(2.5)
$$\begin{split} g_0(R_0(X,Y)\xi,\eta) &= \\ &= g_0(R^{\perp}(X,Y)\xi,\eta) - g([A_{\xi},A_{\eta}]X,Y) \end{split}$$

Here R, R^{\perp} stand respectively for the curvature tensor fields of ∇ , ∇^{\perp} . Let ω be the 1-form induced on M^n by the Lee form of the ambient g.H. manifold. Note that:

$$(2.6) (\nabla_X \omega) Y = \omega_0(h(X, Y))$$

Therefore, if M^n is totally-geodesic then ω is parallel, too.

Let $\lambda \in C - \{0\}$, $|\lambda| \neq 1$ and denote by G_{λ} the discrete group of analytic transformations of $C^n - \{0\}$ generated by $z \to \lambda z$, $z \in C^n - \{0\}$. Then G_{λ} acts freely and property discontinuously on $C^n - \{0\}$ such that the factor space $CH^n = \frac{C^n - \{0\}}{G_{\lambda}}$ inherits a natural structure of complex manifold. This is the well known complex Hopf manifold. The Hermitian metric $ds^2 = |z|^{-2} \delta_{ij} dz^i \otimes d\bar{z}^j$ on $C^n - \{0\}$ is G_{λ} -invariant, thus defining a global l.c.K. metric g_0 on CH^n .

Let $\pi:C^n-\{0\}\to CH^n$ be the natural surjection. Let $j:M^m\to(C^n,\delta_{ij})$ be an isometric immersion of a Riemannian manifold

 (M^m,g) into C^n (endowed with the flat Euclidean structure) such that M^n does not pass through the origin. Then $\psi:M^m\to CH^n$, $\psi=\pi\circ j$, is an isometric immersion of (M^m,g) into (CH^n,g_0) . The second fundamental forms of the immersion ψ,j are related by $h(\psi)=h(j)+\frac{1}{2}g\otimes B^\perp$. Consequently, if j is totally-geodesic, then ψ is totally-umbilical (totally-geodesic, provided that M^m is tangent to the Lee field of H^n). Let $U\subseteq \mathbb{R}^2-\{0\}$ be open and $\psi:U\to CH^2$, $\psi(x,y)=\pi(x,0,y,0)$, for any $(x,y)\in U$. Then U is a totally-real totally-geodesic (immersed) submanifold of CH^2 with a flat normal connection.

3. Proof of the theorem.

Let M^n be a totally-real submanifold of the g.H. manifold M^{2n} . If Z is a tangent vector field on M^n then JZ is a normal section. Therefore, our (2.3) yields:

$$(3.1) K_0(X,Y)JZ = R_0(X,Y)JZ - \frac{1}{4}[\omega(X)Y - \omega(Y)X]\omega_0(JZ)$$

for any X, Y, Z tangent to M^n . Since D^0 is the Riemannian connection of the (local) Kaehler metrics g_i , $i \in I$, it is almost complex, i.e. $D^0J = 0$. Thus $K_0(X,Y)J = JK_0(X,Y)$, cf. [5], p. 149, vol. II. Then using again (2.3), the formula (3.1) turns into:

$$JR_{0}(X,Y)Z = R_{0}(X,Y)JZ +$$

$$+ \frac{1}{4} \{ [\omega(X)JY - \omega(Y)JX]\omega(Z) +$$

$$+ [g(X,Z)\omega(Y) - g(Y,Z)\omega(X)]JB_{0} \} +$$

$$+ c^{2} \{ g(Y,Z)JX - g(X,Z)JY \} +$$

$$+ \frac{1}{4} \{ \omega(X)Y - \omega(Y)X \} \omega_{0}(JZ)$$

Let U be a tangent vector field on M^n . Taking the inner product of (3.2) with JU and substituting from (2.4)-(2.5) into the resulting equation, one obtains:

(3.3)
$$R(X,Y)Z = \frac{1}{4} \{ [\omega(X)Y - \omega(Y)X]\omega(Z) + \\ + [g(X,Z)\omega(Y) - g(Y,Z)\omega(X)]B \} + \\ + c^2 \{ g(Y,Z)X - g(X,Z)Y \}$$

provided that h = 0, $R^{\perp} = 0$. Further contraction of indices in (3.3) furnishes the expression of the Ricci form of (M^n, g) , i.e.

(3.4)
$$Ric(X,Y) = \left\{ (n-1)c^2 - \frac{1}{4}||\omega||^2 \right\} g(X,Y) - \frac{n-2}{4}\omega(X)\omega(Y)$$

Let now M^2 be a totally-geodesic totally-real surface in a g.H. manifold M^4 of complex dimension 2. By (3.4) one has $Ric = \frac{1}{4}||B^{\perp}||^2g$. Therefore, if M^2 is tangent to B_0 , then it is Ricci flat, and thus flat, (for surfaces the two notions are known to coincide). Suppose from now on that n > 2. If X is tangent to M^n , (3.4) leads to:

(3.5)
$$Ric(X,X) = \frac{1}{4} \{ (n-1)||B^{\perp}||^2 + (n-2)||\omega||^2 \} ||X||^2 - \frac{n-2}{4} \omega(X)^2$$

Since $||\omega|| = const.$, either $\omega = 0$ and then (3.3) shows that M^n is a Riemannian manifold of constant sectional $c^2 > 0$, or ω is nowhere vanishing. The last step in the proof of ii) consists in showing that actually the second possibility does not occur. To this end, suppose $\omega \neq 0$. Let $x \in M^n$, $X \in T_x(M^n)$. There exists a unique $Y \in T_x(M^n)$ perpendicular on B_x such that $X = Y + \lambda B_x$, for some $\lambda \in \mathbb{R}$. Substitution into (3.5) leads to

$$Ric(X,X) = \frac{1}{4}[(n-1)||B^{\perp}||^2 + (n-2)||\omega||^2]||Y||^2 + \frac{1}{4}\lambda^2(n-1)||B^{\perp}||^2||\omega||^2, \text{ i.e. } Ric(X,X) \ge 0.$$

Also Ric(X,X) = 0 iff Y = 0, $\lambda = 0$, since $B^{\perp} \neq 0$. Thus Ric is positive-definite. By a result of [6], M^n follows to be compact. Since ω is parallel, by (2.12.4) in [4], p. 78, it is harmonic. Consequently, the first Betti number $b_1(M^n)$ of M^n is > 1. This is a contradiction, since by a result of S. Bochner ([4], th. 3.2.1., p. 87), $b_1(M^n) = 0$, Q.E.D. Let us prove iii). If n=2, $B^{\perp}\neq 0$, then by (3.4) it follows that M^2 is a compact Einstein surface (with $b_1(M^2) = 0$). But ω is harmonic hence $\omega = 0$. Consequently, by (3.3) and a result of [8], $\pi_1(M^2) = 0$. At this point th. 7.10. of [5], p. 265, vol. I, yields iii). Moreover, if n > 2, $B^{\perp} = 0$, then $Ric = \frac{n-2}{4}[||\omega||^2 g - \omega \otimes \omega]$, i.e. M^n is quasi-Einstein, cf. the terminology in [9]. Also if $X = Y + \lambda B$, g(Y,B)=0, then Ric(X,X)=0 iff Y=0. To prove the last part of the statement iv) let M^{n-1} be a leaf of \mathcal{F} . As M^{2n} is non-Kaehler and $B^{\perp} = 0$, the induced form ω has no singular points. Then $U = \frac{1}{2c}B$ is a unit normal on M^{n-1} . Let ∇' , h' be respectively the induced connection and the second fundamental form of M^{n-1} in M^n . The Gauss formula $\nabla_X Y = \nabla'_X Y + h'(X, Y)$ and $\nabla_X \omega = 0$ yield h' = 0, i.e. M^{n-1} is totally-geodesic; then, on one hand completeness of M^n implies completeness of M^{n-1} . On the other, our (3.3) combined with the Gauss equation (e.g. (2.6) in [1], p. 45) of M^{n-1} in M^n , shows that M^{n-1} is a Riemannian manifold of constant sectional curvature $c^2 > 0$.

REFERENCES

- [1] Chen B.Y., Geometry of submanifolds, Marcel Dekker, Inc., New York, 1973.
- [2] Dragomir S., Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, I-II., Geometriae Dedicata, 28 (1988), 181-197, Atti. Sem. Mat. Fis. Univ. Modena, 37 (1989), 1-11.
- [3] Dragomir S., On submanifolds of Hopf manifolds, Israel J. Math., (2) **61** (1988), 199-210.
- [4] Goldberg S., Curvature and homology, Academic Press, New York, 1962.
- [5] Kobayashi S., Nomizu K., Foundations of differential geometry, vol. I-II, Interscience Publishers, 1963, 1969.

- [6] Myers S., Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (1941), 401-404.
- [7] Piccini P., Chen B.Y., The canonical foliations of a locally conformal Kaehler manifold, Ann. di Matem. pura appl., 141 (1985), 283-305.
- [8] Synge J., On the connectivity of spaces of positive curvature, Quart. J. Math. Oxford Ser., 7 (1936), 316-320.
- [9] Vaisman I., Goldberg S., On compact locally conformal Kaehler manifolds with non-negative sectional curvature, Ann. Fac. Sci. Toulouse, 2 (1980), 117-123.
- [10] Vaisman I., Some curvature properties of locally conformal Kaehler manifolds, Trans. A.M.S., (2) **259** (1980), 439-447.
- [11] Vaisman I., Generalized Hopf manifolds, Geometriae Dedicata, 13 (1982), 231-255.

Università degli Studi di Bari Via G. Fortunato, Campus Universitario 70125 Bari (Italia)