AN ALMOST SURE INVARIANCE PRINCIPLE FOR THE MAPS

 $S_a(x) = ax(1-x)$ IN THE INTERVAL [0, 1]

MARIO ABUNDO (Roma) (*)

In this paper we consider the family of maps in the unit interval defined by $S_a(x) = ax(1-x)$, $x \in [0,1]$, $a \in [0,4]$. For a countable set of values of a for which the a.c. S_a -invariant measure μ_a exists, we show an almost sure invariance principle for the process $\{f \circ S_a^i\}$, with f a function of bounded p-variation; from this the previously proved central limit theorem with respect to μ_a follows again; moreover log-log-laws and weak invariance principles for the process $\{f \circ S_a^i\}$ follow.

1. Introduction.

We consider the family of maps in the unit interval defined by $S_a(x) = ax(1-x), x \in [0,1], a \in [0,4].$

For such maps it is known that there exists a set Θ of values of the parameter a of power the continuum, for which S_a has an

^(*) Entrato in Redazione il 9 maggio 1988, ed in forma rivista il 30 novembre 1988

absolutely continuous invariant measure ([4], [6]).

Moreover, a countable set of values of the parameter a has been investigated by Pianigiani ([7]) for which an a.c. S_a -invariant measure exists. This measure is unique and ergodic ([4], [9], [1]).

In [1] a central limit theorem is proved for the map S_a for the countable set of values of a satisfying the conditions of Pianigiani ([7]), with respect to the a.c. S_a -invariant measure μ_a .

In this paper we show an almost sure invariance principle (a.s.i.p.) for the map S_a for such values of a.

We make use of an a.s.i.p. for maps of Misiurewicz ([6]) stated by K. Ziemian ([5]).

In [5] the a.s.i.p. is proved for maps satisfying a certain set of conditions, said «of Misiurewicz» (see [6]).

Indeed, we show that our maps S_a , for certain values of $a \in [0, 4]$, satisfy the set of conditions of Misiurewicz, and therefore the a.s.i.p. holds.

We remark that the set of values of a satisfying the conditions of Pianigiani, is disjoint from the continuum set of values for which Misiurewicz showed the existence of S_a^k -invarinat a.c. measures, for some integer k ([6]).

From the a.s.i.p. log-log-laws, and weak invariance principles follows (see [8]). Also we obtain again the central limit theorem that was already proved in [1].

In section 2 we formulate the problem and state the main result. In section 3 we prove the result.

2. Formulation of the problem and main result.

Let us consider the family of maps $S_a:[0,1] \to [0,1]$, defined by $S_a(x) = ax(1-x)$, where the parameter $a \in [0,4]$ satisfies the conditions of Pianigiani [7]:

- 1) $\exists p > 1$ such that $S_a^p(1/2) = 1 S_a^{2p}(1/2)$ and $S_a^p(1/2) < 1/2$;
- 2) $S_a^p(I) = I$ and $S_a^i(I) \cap (1/a, 1 1/a) = \emptyset$ i = 1, ..., p 1, where $I = (S_a^p(1/2), S_a^{2p}(1/2))$.

In [7] is proved that a countable set of values of the parameter $a = a_p > 2$ satisfying 1) and 2) exists. We say \mathcal{A} this set. If $a \in \mathcal{A}$ a measure $\mu_a(dx) = \rho_a(x)dx$ invariant under S_a and absolutely continuous with respect to the Lebesgue measure on [0,1] exists [7] and this measure is unique and ergodic ([4], [9]).

The support of μ_a is not [0,1], but the subset $A_I = \bigcup_{k=0}^{p-1} S_a^k(I)$. The density $\rho_a(x)$ of the S_a -invariant measure μ_a is not a bounded function, but it has singularities as $\operatorname{const}_*(|x - S_a^k(1/2)|)^{-1/2}$ in the points $S_a(1/2)$, $S_a^2(1/2)$, ..., $S_a^{2p}(1/2)$.

Indeed, if $a \in \mathcal{A}$ ([7]) the map S_a^p is conjugate, via the homeomorphism $F: I \to [0,1]$, to a piecewise C^1 expanding map $R_a: [0,1] \to [0,1]$ ($|R'_a| > \sqrt{8/a} > \sqrt{2}$); that is $R_a = F \circ S_a^p \circ F^{-1}$ where $F(x) = \int_{S_a^p(\frac{1}{2})}^x h(t)dt$, $h(t) = \text{const}*(|S_a^p(1/2) - t| |S_a^{2p}(1/2) - t|)^{-1/2}$,

$$\int_I h(t)dt = 1.$$

The expanding map R_a has a R_a -invariant measure $\hat{\nu}_a$ and the measure ν_a defined by $\nu_a = \hat{\nu}_a \circ F$ is invariant under S_a^p .

Thus μ_a is obtained as:

$$\mu_a = (\nu_a + \nu_a \circ (S_a^{-1}) + \ldots + \nu_a \circ (S_a^{-p+1}))/p.$$

In [1] a central limit theorem is proved for S_a , $a \in \mathcal{A}$ with respect to the a.c. S_a -invariant measure μ_a .

Now, we state theorem 1., that is an almost sure invariance principle, from which log-log-laws, weak invariance principles and the central limit theorem follow.

Let $f:[0,1] \to \mathbb{R}$ be a function with bounded p-variation, $p \geq 1$

that is

$$V^{p} f = \sup \sum_{i=1}^{n} |f(x_{i}) - f(x_{i-1})|^{p} < \infty$$

where the supremum is taken over all finite subsets $\{x_0, \ldots, x_n\}$ $x_0 < x_1 < \ldots < x_n$ of the interval [0,1].

Let
$$s_t^a = \sum_{n < t} f \circ (S_a^n)$$
, $a \in \mathcal{A}$.

THEOREM 1. If $a \in [0,4]$ satisfies conditions 1) and 2), then for every $f:[0,1] \to R$ with bounded p-variation such that $\int_0^1 f d\mu_a = 0$ the series

$$\sigma_a^2 = \int f^2 d\mu_a + 2\sum_{i=1}^{\infty} \int f(f \circ S_a^i) d\mu_a$$

is absolutely convergent;

$$\int (s_n^a)^2 d\mu_a = n\sigma_a^2 + O(1)$$

and if $\sigma_a^2 \neq 0$, then without changing its distribution we can redefine the process $(s_t^a)_{t\geq 0}$ on a richer probability space together with a standard Brownian motion $(B_t^a)_{t\geq 0}$ such that:

$$|\sigma_a^{-1} s_t^a - B_t^a| = 0(t^{1/2 - \lambda_a}) \quad \mu_a - a.s.$$

for some $\lambda_a > 0$.

3. Proofs.

First, we recall the set of conditions of Misiurewicz which are needed for the proof of the w.i.p. in [5].

Let J be a closed interval, $g: J \to J$ a continuous map monotonic on the connected components of the set $J \setminus P(g)$, where P(g) is a finite subset of J containing the ends of J, and consider the following assumptions ([6], [5]) for $g|J \setminus P(g)$:

- (i) g is of class C^3 ;
- (ii) $g' \neq 0$;
- (iii) the Schwarzian derivative S(g) of g is non positive, i.e.

$$S(g) = g'''/g' - (3/2) \cdot (g''/g') \le 0$$

- (iv) if $g^{n}(x) = x$, then $|(g^{n})'(x)| > 1$
- (v) there exists a neighbourhood U of the set P(g) such that for all $t \in P(g)$, n > 0 $g^n(t) \in P(g)$ or $g^n(t) \notin U$ for all $m \ge n$
- (vi) for all $t \in P(g)$ there exists a neighbourhood U_t of t and constants $\alpha, w, \delta > 0$, $u \ge 0$ such that:

(I)
$$\alpha |x-t|^u \le |g'(x)| \le \omega |x-t|^u$$

(II)
$$|g''(x)| \leq \delta |x-t|^{u-1}$$
 for all $x \in U_t$.

We recall that assumptions (i)-(iv) imply theorem 1., that is the a.s.i.p., as stated by Ziemian in [5].

Indeed, we will show that the above assumptions are true for the maps considered (this will be done in lemma 2).

LEMMA 1. If $T^n(x) = x$, then $|(T^n)'(x)| > 1$, where $T = S^p_a$ and $n \in \mathbb{N}$.

Proof. We have:

$$(T^n)'(x) = [F'(F^{-1} \circ R_a^n \circ F(x))]^{-1} \cdot (R_a^n)'(F(x)) \cdot F'(x);$$

since $T^n x = x$, then $F^{-1} \circ R_a^n \circ F(x) = x$. Therefore: $(T^n)'(x) = (R_a^n)'(F(x))$. Thus: $|(T^n)'(x)| = |(R_a^n)'(F(x))| \ge \alpha > 1$, where $\alpha > \sqrt{2}$ is the expanding coefficient of R_a

LEMMA 2. If $a \in A$, S_a satisfies the above conditions (i)-(vi) of Misiurewicz

Proof. (i), (ii) and (iii) are trivial, since $S_a'''(x) = 0$. To prove (iv) we proceede as follows.

Observe that $\forall n$ there exist two integers m and K such that nK = mp. Then, if $S_a^n(x) = x$ we have:

$$x = S_a^{nk}(x) = S_a^{mp}(x) = T^m(x)$$

and so for lemma 1.

$$|(S^{nk})'(x)| > 1$$

that is:

$$\underbrace{\left| (S^n)'(x) \cdot (S^n)'(x) \dots (S^n)'(x) \right|}_{k \text{ times}} > 1 \quad \text{i.e.} \quad \left| (S^n)'(x) \right|^k > 1$$

which implies $|(S^n)'(x)| > 1$ and so (iv) holds.

To prove (v) we recall that $P(S_a) = \{0, 1/2, 1\}$ and $S_a^n(0) = S_a^n(1) = 0 \ \forall n > 0$. If $I = (S_a^p(1/2), S_a^{2p}(1/2)) \ni 1/2$, we have $S_a(I) \subset (1-1/a,1), S_a^l(I) \subset (0,1/a), l = 2, \ldots, p-1$ and $S_a^p(I) = I$; moreover the right endpoint of the interval $S_a^l(I)$ increases with $l = 2, \ldots, p-1$ (see [2]).

So:

$$S_a(1/2) \in (1-1/a, 1); \ S_a^l(1/2) \in (0, 1/a), \ l = 2, ..., p-1; \ S_a^p(1/2) < 1/2.$$

Now, we set

$$U_0 = (0, (1/2) \cdot S_a^2(1/2));$$

$$U_1 = ((1/4) + (1/2) \cdot S_a^p(1/2), (3/4) - (1/2) \cdot S_a^p(1/2));$$

Then $U = U_0 \cup U_1 \cup U_2$ is a neighbourhood of $P(S_a)$ such that $S_a^m(1/2) \notin U$ for any m.

To prove (vi) is enough to choose

 $U_2 = ((1/2) + (1/2) \cdot S_a(1/2), 1).$

$$U_t = (0, 1/4)$$
 and $u = 0$, $\alpha = 1$, $\omega = 4$, $\delta = 2$ for $t = 0$; $U_t = (3/4, 1)$ and $u = 0$, $\alpha = 1/2$, $\omega = 4$, $\delta = 1$ for $t = 1$;

 $U_t=((1/2)-r,\ (1/2)+r)$ for small enough r and $u=1,\ \alpha=1,$ $\omega=2,\ \delta=8$ for t=1/2.

Now we can prove theorem 1.

Proof of th. 1. Thanks to lemma 2., for $a \in \mathcal{A}$, S_a satisfies all the assumptions of theorem 1. in [5]. Then, our theorem follows from this.

Remark 1. If we denote \mathcal{P} the partition into the intervals of monotonicity of S_a , that is $\mathcal{P} = \{(0, 1/2), (1/2, 1)\}$, an exponential rate of decreasing of the diameter of the partition $V_0^{n-1}S_a^{-i}\mathcal{P}$ in the sense of Lebesgue measure and of the measure μ_a can be proved by using the properties of S_a . Analogous estimates are proved in [5] starting from assumption (i)-(vi).

Remark 2. From the proof of the a.s.i.p. the central limit theorem follows again for S_a , $a \in \mathcal{A}$ (for istance, see [8], [3]); already it was proved with different arguments in [1].

Moreover, the a.s.i.p. implies log-log-laws, and weak invariance principles (see [8]) for the process $\{f \circ S_a^i\}$.

REFERENCES

- [1] Abundo M., Tirozzi B., The central limit theorem for a class of maps of the interval [0, 1], Boll. Un. Mat. Ital. (6), 3-B (1974), 25-37.
- [2] Abundo M., A remark about topological and measure entropy for a class of maps of the interval [0,1], Rendiconti del Circolo Matematico di Palermo Serie II, Tomo XXXV (1986), 456-465.
- [3] Hofbauer F., Keller G., Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Zeitsch., 180 (1982), 119-140.
- [4] Jakobson M.V., Topological and metric properties of one dimensional endomorphism, Soviet. Math. Dokl., 19 (1978) 6.
- [5] Ziemian K., Almost sure invariance principle for some maps of an interval, Ergod. Theory and Dynam. System 5 (1985) 4, 625-640.
- [6] Misiurewicz M., Absolutely continuous measures for certain maps of the interval, Publ. Math. IHES 53 (1981), 17-51.
- [7] Pianigiani G., Absolutely continuous invariant measures for the process x = Ax(1-x), Boll. Un. Mat. Ital. 16-A (1979), 374-378.

- [8] Philipp W., Stout W., Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs of the Amer. Math. Soc. 161 (1975).
- [9] Sinai Ja.G., Bunimovich L.A., On velocity of correlations decay in unidimensional models, Ekologii i Populiazii, ed Nauka (in Russian).

Dipartimento di Matematica II Università degli Studi di Roma Via Orazio Raimondo 00173 Roma (Italia)