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COMPONENTWISE LINEARITY OF IDEALS
ARISING FROM GRAPHS

VERONICA CRISPIN - ERIC EMTANDER

Let G be a simple undirected graph on n vertices. Francisco and Van
Tuyl have shown that if G is chordal, then

⋂
{xi,x j}∈EG

〈xi,x j〉 is componen-
twise linear. A natural question that arises is for which ti j > 1 the inter-
section ideal

⋂
{xi,x j}∈EG

〈xi,x j〉ti j is componentwise linear, if G is chordal.
In this report we show that

⋂
{xi,x j}∈EG

〈xi,x j〉n−1 is componentwise linear
for all n≥ 3, if G is a complete graph. We give also an example where G
is chordal, but the intersection ideal is not componentwise linear for any
t > 1.

1. Introduction

Let G be a simple graph on n vertices, EG the edge set of G and VG the vertex set
of G. Let R = k[x1, . . . ,xn] be the polynomial ring over a field k. The edge ideal
of G is the quadratic squarefree monomial ideal I (G) = 〈{xix j} | {xi,x j} ∈
EG〉 ⊂ R. Then we define the squarefree Alexander dual of I (G) as I (G)∨ =
∩{xi,x j}∈EG〈xi,x j〉. To call I (G)∨ the squarefree Alexander dual of I (G) is
natural since it is the Stanley–Reisner ideal of the simplicial complex ∆∨ that
is the Alexander dual simplicial complex of ∆, where ∆ in turn is the simplicial
complex whose Stanley–Reisner ideal is I (G).
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In [4] Herzog and Hibi give the following definition. Given a graded ideal
I ⊂ R, we denote by I〈d〉 the ideal generated by the elements of degree d that
belong to I. Then we say that a (graded) ideal I ⊂ R is componentwise linear if
I〈d〉 has a linear resolution for all d.

If the graph G is chordal, that is, every cycle of length m ≥ 3 in G has a
chord, then it is proved by Francisco and Van Tuyl in [2] that I (G)V is com-
ponentwise. (The authors then use the result to show that all chordal graphs are
sequentially Cohen-Macaulay.)

In this report we examine componentwise linearity of ideals arising from
complete graphs and of the form

⋂
{xi,x j}∈EG

〈xi,x j〉n−1.

2. A counterexample

There exists a chordal graph G such that
⋂
{xi,x j}∈EG

〈xi,x j〉t is not component-
wise linear for any t > 1.

Let G be the chordal graph
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Denote the intersection
⋂
{i, j}∈EG

〈i, j〉t by I(t)
4 . We have that

I(1)
4 =

⋂
{i, j}∈EG

〈i, j〉= 〈bc,abd,acd〉

and
I(2)
4 =

⋂
{i, j}∈EG

〈i, j〉= 〈b2c2,abcd,a2b2d2,a2c2d2〉.

We claim that for t > 1 the ideal has the form

I(t)
4 = 〈btct ,bt−1ct−1ad〉+ Jt ,

where Jt is an ideal generated of elements of degree at least 2t + 1. This is
evidently true for t = 1. Now, for t +1 we may write the ideal as

I(t+1)
4 = 〈a,b〉〈a,b〉t ∩〈a,c〉〈a,c〉t ∩〈b,c〉〈b,c〉t ∩〈b,d〉〈b,d〉t ∩〈c,d〉〈c,d〉t .
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Assuming our claim holds for I(t)
4 , it is clear that no generator of I(t+1)

4 has
degree strictly less than 2t +2. Furthermore one sees that the only generators of
degree equal to 2t +2 are bt+1ct+1 and btctad. This proves our claim.

Consider the minimal free resolution of I(t)
4 . Its degree 2t-part is

0→ R(−(2t +2))→ R2(−2t)→ (btct ,bt−1ct−1ad)→ 0,

which clearly is non-linear.

3. Intersections for complete graphs
Let Kn be a complete graph on n vertices, that is, {xi,x j} ∈ EKn for all 1 ≤ i 6=
j ≤ n. We write K(n−1)

n =
⋂
{xi,x j}∈EKn

〈xi,x j〉n−1. We show that the ideal K(n−1)
n

is componentwise linear for all n≥ 3. Recall that a vertex cover of a graph G is
a subset A ⊂ VG such that every edge of G is incident to at least one vertex of
A. One can show that I (G)V = 〈xi1 · · ·xik | {xi1 , . . . ,xik} a vertex cover of G〉. A
t-vertex cover (or a vertex cover of order t) of G is a vector a = (a1, . . . ,an) with
ai ∈ N such that ai +a j ≥ t for all {xi,x j} ∈ EG.

In the proof of the theorem below, we use the following definition and
proposition.

Definition 3.1. A monomial ideal I is said to have linear quotients, if for some
degree ordering of the minimal generators f1, . . . , fr and all k > 1, the colon
ideals 〈 f1, . . . , fk−1〉 : fk are generated by a subset of {x1, . . . ,xn}.
Proposition 3.2 (Proposition 2.6 in [3] and Lemma 4.1 in [1]). If I is a homo-
geneous ideal with linear quotients, then I is componentwise linear.

Theorem 3.3. The ideal K(n−1)
n is componentwise linear for all n≥ 3.

Proof. For calculating an explicit generating system of K(n−1)
n we will use t-

vertex covers. Pick any monomial m in K(n−1)
n and, for some k and l, consider

the maximal tk, tl such that xtk
k xtl

l is a factor in m. As m is contained in 〈xk,xl〉n−1

we must have tk + tk ≥ n− 1. Hence, K(n−1)
n is generated by the monomials of

the form xa, where a is an (n−1)-cover of Kn. That is, the sum of the two lowest
exponents in every (monomial) generator of K(n−1)

n is at least n−1.
Now assume that n− 1 = 2m + 1 is odd. Using the degree lexicographic

ordering x1 ≺ x2 ≺ ·· · ≺ xn on the the minimal generators we get

K(n−1)
n = K(2m+1)

n =
〈
xm

1 ∏i6=1 xm+1
i , . . . ,xm

n ∏i 6=n xm+1
i ,

xm−1
1 ∏i6=1 xm+2

i , . . . ,xm−1
n ∏i 6=1 xm+2

i ,
...

∏i6=1 x2m+1
i , . . . ,∏i 6=n x2m+1

i

〉
.
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This order on the minimal generators satisfies the condition in Definition 3.1.
Hence, K(n−1)

n has linear quotients and is componentwise linear by Proposi-
tion 3.2.

If n− 1 = 2m is even, then the degree lexicographic ordering yields the
sequence

K(n−1)
n = K(2m)

n =
〈

∏
2m
i=1 xm

i , xm−1
1 ∏i6=1 xm+1

i , . . . ,xm−1
n ∏i 6=n xm+1

i ,

xm−2
1 ∏i6=1 xm+2

i , . . . ,xm−2
n ∏i 6=1 xm+2

i ,
...

∏i 6=1 x2m
i , . . . ,∏i 6=n x2m

i
〉
,

which also satisfies the condition in Definition 3.1, and the same result follows.

Example 3.4.

K(5)
6 =

〈
{x2

j ∏
i6= j

x3
i }1≤ j≤6, {x j ∏

i6= j
x4

i }1≤ j≤6, {∏
i 6= j

x5
i }1≤ j≤6

〉
and

K(6)
7 =

〈 7

∏
i=1

x3
i , {x2

j ∏
i 6= j

x4
i }1≤ j≤7, {x j ∏

i 6= j
x5

i }1≤ j≤7, {∏
i 6= j

x6
i }1≤ j≤7

〉
.

4. Problems and generalizations

We want to check whether the result in Section 3 is valid for complete hy-
pergraphs. We would also like to investigate the relation between sequentially
Cohen-Macaulayness and componentswise linearity for non-squarefree ideals.
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