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FURTHER PROPERTIES OF THE ZEROS
OF BESSEL FUNCTIONS

CARLA GIORDANO (Torino) - ANDREA LAFORGIA (Palermo) (*) (**)

New monotonicity and convexity properties for the zeros c, i
(k=1,2,...) of the Bessel functions are proved. New inequalities for
¢y are also given. These inequalities are useful for small values of v.

1. Introduction.

For v > 0 let j,; and ¢,; be the k-th positive zeros of the Bessel
function J,(z) of the first kind and of the general cylinder function

Cu(a:,oz)=Gy(m)=Jy(a:)cosa—Y,,(a:)sincu, OSC}!< m

respectively, where Y,(z) denotes the Bessel function of the second
kind. ,

In [6] the authors introduced the notation j,. by c,x =j,., where
k = k — a/m. The usefulness of this notation has been shown in the
papers [1-7] where monotonicity, concavity, convexity and asymptotic
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properties of j,. have been investigated. We shall use the notation
Jux OF ¢y indifferently.

In this paper we are concerned with some further properties and
inequalities for j,.. _

The results are motivated by the fact that monotonicity, concavity
and convexity properties of j,, arise in the quantum mechanical
explanation for the origin of the vortex lines produced in superfluid
helium when its container is rotated. This explanation has been
proposed by Putterman, Kac and Uhlenbeck [15].

The proofs of the results of the next section are based on the
Sturm comparison theorem [17, p.19] and on a lower bound for
the second derivative of j,,. We observe that monotonicity results
on j,, (for example the decreasing character of j,z/v,v > 0) have
been proved by Lewis and Muldoon [12] as a consequence of the
Hellman-Feynman theorem of quantum chemistry [8].

Finally we find new inequalities and approximations for j,..
These results are stringent for small values of v.

2. Monotonicity and Convexity results.

THEOREM 2.1. For v > 0 let c,x be the k-th zero of the cylinder
function C,(z,a). Then for 0 < a < 7. ‘

2v
Cuk+1 . e
<——U———> increases with v >0, k=2,3,...
Cuk

When 0 < a < g the result holds even in the case k = 1.

Proof. The function y,(z) = /zC, (c,kz'/?") satisfies the differen-
tial equation :

(2.1) ¥ +p,(z)y =0
where

2
p(z) = (S2gH@1)
v
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Besides (2.1) consider the differential equation
2" +pyue(z)2=0, >0

satisfied by z,(z) = y,+.(z). Clearly the function y,(z) and z,(z) have
a common zero at z = 1. The function %! decreases with v > 0, for
z > 1. Moreover c,; /v decreases with v > 0, k=2,3,... [11, p. 471].

Therefore p,,. < p, and an application of the Sturn comparison
theorem [17, p. 19] gives that the next zero of y,(z) occurs before the
next zero of z,(x); this leads to

c v c 2(v+e)
<u,k+1> <<__’if_‘?+_1> v>0k=273 ...
Cuk Cu+ek
In order to complete the proof of the theorem we have to consider
the case k = 1,0 < o < n/2. In general it is not true that c,1/v

decreases with v > 0, but when 0 < a < 7/2 it is so. In fact we know
that under this restriction on «,c,; is concave for v > 0, [111].

Differentiating c,;/v we have to study the sign of the function

f(v) = uicyl — 1, v>0.
dv

Clearly f(0) < 0 and using the concavity of c¢,; we have f'(v) < 0,
v > 0. Thus we can conclude that f(v) < 0 and c¢,;/v decreases with
v>0.

Therefore p,.,. < p, also for £k = 1,0 < o < n/2 and using the
Sturm theorem again we have the conclusion of the Theorem. The
proof of the Theorem 2.1 is complete.

Remark 2.1. The equation (2.1) was the starting point of the
proof given by Makai [13] that j,,/v decreases with v > 0. Here j .
is the k-th positive zero of J,(z).

Remark 2.2. The proof of the theorem 2.1. cannot be extended to
k=1 for any « € [7/2,n]. In fact for these values of @ we can have
cy1 < v. On the other hand from a formula by Spigler [16] we have



22 CARLA GIORDANO - ANDREA LAFORGIA

lim c,;/v =1 and we cannot conclude that c,;/v decreases with
V400

v > 0.

Remark 2.3. We observe that 0 < a < 7/2 encludes the important
case of the zeros j,; and y,; of J,(z) and Y, (z) corresponding to o =0
and « = /2, respectively.

We proved in [1] that the function j,. is concave in v > 0 for
K > ko = 0.344 .. .. Here we study the behaviour of the function j,, +v2.
The result is given by the following theorem.

THEOREM 2.2. For v > 0 and k > ko = 0.7070... the function
Jur + U2 is convex with respect to v.

Proof. We use the lower bound [3, p. 74]

V]ll/%c - jl/njlin
v+ ]lwc )].yn

Jum >
where ' = d/ dv. Thus we need only to show thét
VI + 200 > Junfie — 25
Since the left-hand side is clearly positive <y > 0,7, > 0,7, =

d
='d— Tk > 0> hence it is sufficient to show that
v
]'vnjzl/n - 2]'3& <0.
This is true because [3, p. 76]

Jus

Jow < S < s, ¥ 20, 5 2 5o =0.7070. ..

This completes the proof of the Theorem.

Remark 2.4. Theorem 2.2 shows immediately the convexity of the
function j,. + av? when a > 1. The investigation of similar properties
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when o < 1 is more difficult and it seems not possible to deal with
this problem with the current results of the literature.

3. Inequalities for j,.

The results of this section require the following classical Jensen’s

inequality [14, p. 12]
log f(z1) + log f(z2) + ...+ log f(z,) > nlog f(z)

(3.1)
z=(@ +T2+...+x)/n, z;>0,1=12,...,n

where f(z) is a log-convex function.

We know [1, p. 276] that the function j,, is concave in v > 0 for
k > 0.344.... Since j,, is also log-concave we can apply (3.1) to the
function f(v) =1/j,, which clearly is log-convex. We obtain

(32) julnjuzn .. -]'u,,/c S (jﬂn)n
where
b= +m+...+)/n v, >0 1=1,2,....n £ 2>0344. ..

Similarly a result established in [7] ensures that for x > ko =
0.7070. .. the function log(j,./v) is convex with respect to v > 0.

Thus applying Jensen’s inequality (3.1) to f(v) = j,x/v we find

. . . . 2
]Vm]lfzf@'“]”n"z <]_':_'°_> , ,<;21$0=0.7070...
vy V2 v

(3.3)
b=+t v >0,1=12,...,n

Combining (3.2) and (3.3) we obtain

i+ Un  Jukdms - Jum

@) - (ow)™

S, v>0, 0= @tupt. Aug)/n

(3.4)
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where the upper bound holds for x > 0.344. .., while the lower bound
has been proved only for « > 0.7070,.... '

A numerical example shows the interst of these inequalities. For
n=2, k=1, =1/3, v, =2/3 we find

(3.5) 5™ Sy <

where we have used j L1 =

This result can be useful to obtain a first approximation for ]},10
Indeed we know [18, p. 751] that ]'%,1 = 2.9025862 and by (3.5) we find

3.02 < jz; <341

More generally when (v; +wvy+...+v,)/n=1/2 and k = 1, we can
write

Cm)*" vy ... vy) < ]'ul,lf'uz,l T <"

Anyway the (3.4) gives more and more stringent results the closer
the arithmetical mean of viv,...v, is to their geometrical mean, as
we can see in the following example. For x = 1, v; = 0,249, v, =0, 251.

' Ul_’ 2. 0, 9999920 using the value y 1= 1.241662, we have
V 3

1,241652 < /o 1051 < 1.241662

Remark 3.1. An interesting particular case of (3.2) is when n=2,
vi=v—6>0, 1np=v+0d. In this case (3.2) becomes

ju.+5,n < .]'I/,K,
]u,n ]u——cS,n

a result already pointed out in [4] where more general properties
of the ratio between two zeros of the Bessel functions have been
investigated.
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4. Approximations of j,, for small values of v.

The first purpose of this section is to prove some new inequalities
for j,.. The results are stringent for v close to zero.

The behaviour of j,, for small values of v has been investigated
by A. Laforgia and M.E. Muldoon [10]. In particular for x =1 they
found the asymptotic formula

(4.1) ju1 = jor +av +at + 0@, v—0
where

. . 2 .
a; = G = 1.542889743, ap = & v = —0.175493592.

2
av |, Y7 =0

Now, using the concavity of j,; we have that the first two terms
in (4.1) give an upper bound for j,;. Similarly using the property
I > 0, r fixed, established in [3] for v > 0, we get that the first
three terms of (4.1) give a lower bound for j,;. Then we have the

inequalities
(4.2) jo1 + 1.542889743v — 0.1754935920% < j,1 < jo1 + 1.542889743v

Now we want to use the result d?j,;/dv? > 0 already mentioned
and to consider polynomial interpolations of second degree for j,.

We know the particular values

jor = 2.40482556, jj, = 5;]},1 = 1.542889743, j, | = 3.14159265

0

Therefore we can write the polynomial of second degree p,(v)
which satisfies the conditions

p20) = jor, p2(0) = jor, p2(1/2) =J1

that 1is
pa(v) = jor + 1.542889743v — 0.13871112612.
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The error Ey(v) = j,1 — p2(v) is given by

v — 1/2)

3 oilu=e, 0< &< 1/2.

Er(v) =

Since j)] >0, v > 0, we have
Jn—p) <0, 0<v<1/2

and the inequality
(43)  ju1 < Jjor +1.542889743y — 0.138711126:%, 0 < v < 1/2

follows. The improvement of this inequality with respect to the upper
bound in (4.2) is evident.

In [9] we compared some inequalities for j7,; on the interval
[0,1/2] and we found that these should be used in the following way
i

7V 0<v<0.042

Ju1 < Jo1 +

Jot < 2+ D +5)Sv +11)/(Tv +19)1%, 0.043 < v < 0.459
Jn < D&+ 2v(n® — j3)1Y?, 0.460 < v < 0.5.

Comparing these inequalities with (4.3), by evaluating the
approximations of j,; with step 0.001, v € [0,1/2], we find that (4.3)
is the closest.

In order to improve the bound (4.3) in the middle part of the
interval [0, 1/2] we interpolate Ju1 at the points v=0,v=1/4, v=1/2.

By means of straighforward calculations we are led to the bound

(4.4) Ju1 > jor + 1534963132y — 0.12285790412, 0 < v < 1/4.

The inequality is reversed for 1/4 < v < 1/2. The upper bound
established now for v € (1/4,1/2) is more stringent than the one in
(4.83). For example from (4.3) we have

Jpa1 < 29037098
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while (4.4) reversed gives

Jiy < 2.9028291.

The «exact» value is [18, p. 751] ji , = 2.902586.. ..

Further inequalities can be derived interpolating j,; in different
intervals at different points v;(i =0,1,...,n). In order to do this we
need only to know the values of j,; at v=1; 1=0,1,...,n).

On the other hand it is not possible to extend inequality (4.3) to

any zero j,, of J,(z). In fact it is not known the value of a—c—i— Tkl
1%

v=0
when k=23, ...
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