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A KOROVKIN-TYPE THEOREM FOR SET-VALUED
HAUSDORFF CONTINUOUS FUNCTIONS

MICHELE CAMPITI (Potenza) (*) (**)

In this paper, we give a generalization of a Korovkin-type theorem
for set-valued Hausdorff continuous functions (cf. [1] and [2]), by means
of upper and lower envelopes.

1. Introduction.

[Throughout this paper, X is a compact Hausdorff topological
space and E is a real finite dimensional normed space. We denote
by Conv(E) the set of all compact convex non empty subsets of E;
Conv(E) is equipped with the natural addition and multiplication
by scalars of sets; further, we consider on Conv(E) the Hausdorff
distance defined by putting, for each A, B € Conv(E),

d(A,B)=inf{e e Ri{JAC B+¢e-B, BC A+¢-B}

where B denotes the closed unit ball of E of center O.

(*) Entrato in Redazione il 16 novembre 1988
(**) Work performed under the auspices of the G.N.A.F.A. and the Ministero
Pubblica Istruzione (60%) and supported by LN.D.A.M.
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Moreover we recall that a multivalued function F : X — Conv(E)
is said to be Hausdorff continuous (briefly # -continuous) at the point
zo € X if, for each € € R¥, there exists a neighbourhood U of Ty such
that d(F(z), F(zo)) < € for each z € U; F is said to be # -continuous
if it is continuous at each zp € X.

We denote by S (X,E) the set of all # continuous set-valued
functions of X in Conv(E); this space is equipped with a natural
addition and multiplication by scalars ((F + G)(x) = F(z) + G(z) and
(\F)(z)=XF(z) for each F,G € S(X,E), \€ R and z € X) and with
the uniform distance d : § (X, E) X $(X,E) — R defined by putting,
for all F,G € S(X, E):

zeX

d(F, G) = sup d(F(z), G(x)).

In §$(X,E) we also consider the following order relation; if
F,G € 5(X,E), we say that F < G if, for each z € X, F(z) C G(z).
Now, an operator 7:S(X,E) — S (X, E) is called linear if

HE +G) = HF)+ IG), INF)=NIF)

for each F,G € S(X,E) and )\ € R, and is called monotone if the
condition F' < G implies (F) < AQ) (F,G € S (X, E)).

Finally, we recall that a subset H of the space C(X,R) of all
continuous real functions defined in X is said to be a Korovkin
system in C(X,IR) if, for each equicontinuous net (T(,[)fe ; of positive
linear operators of (X, R) into itself, the convergence to h of the
net (Ta(h))aa for each 4 € H implies the convergence to f of the net
(T( f)a>aef for each f € C(X,R). This deﬁmtlon can be adjusted in
the space S (X, E) in the following manner.

DEFINITION 11. A subset G of S(X,E) is said to be a Korovkin
system in S(X, E) if, for each equicontinuous net ( ](,1)01E ; of monotone
linear operators of S (X, FE) into itself such that the net (,'Ia(G))aeI
converges to G for each G € G, it follows the convergence to F of the
net (Jo(F))S <r for each F € S(X,E).
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As observed in [1], if H (resp. G ) contains the constant functions,
then the equicontinuity of the net (Tc,,)gE 7 (resp. ( ]O,)fE ;) is superfluous.

2. The main theorem.
In [1] the following Korovkin type theorem has been proved.

THEOREM 2.1. If H is a Korovkin system of positive functions
in C(X,R), then the subset G of S(X,E) whose elements are the
constant functions and, for each f € H, the function z — f(z)-1B (B
denotes the closed unit ball of E) is a Korovkin system in S (X, E).

In what follows, we denote by IB the constant function in § (X, F)
of constant value B.

Our main result is the following theorem.

THEOREM 2.2. If G is a subset of S (X, E) containing the constant
functions and if there exists a Korovkin system H of positive functions
in C(X,R) such that, for each f € H and zo € X and for each € € R},

2.1) (f@o)+e)-B= [ o),
veG
p<(r+e)- 1B

(2.2)  (f@o)+e)-B= [ (=0
(f:ilBS\ﬁ

then G is a Korovkin system in S(X, E).

Proof. Let ( ](,[)fE ; be a net of monotone linear operators of the
space S (X, E) into itself such that net ( ]a(G))feI converges to G for
each G € G. Thanks to Theorem 2.1, our proof will be accomplished
if we will show that the net (J,(f - IB))C%E] converges to f - IB for each

f € H.To this end, fix f € H and let ¢ € Rt and zp € X; since
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U ¥(zo) is precompact, by (2.1) there exist ¢1,...,%,, € G and,
veG

<o) 1B
for each 1=1,..., m, there exists y; € E such that

2.3) (f(a:o)+ 2) BC O (y,. + -2 . u%)
1=]

(where 1B denotes the open unit ball in F) and
. I3
@4 b < (F47) B, w € hila)
Since the net (]a(g[)i))gej converges to 1; for each i=1,... m,

we may found ¢; € I such that, for each o € I, o > ¢; and for each
i=1,...,m, dW;, J.(¥;)) < -g—, which implies, for each z € X,

$i(@) C Ja)@) + < - 1B
Further, for each 1 =1,...,m (cf. (2.4)) and o > ¢,
£ E
) < Ja ((£45) B) =Julf - B)+ - JuB);
it follows, for each z € X,

@5) i@ € 20 - B+ 7 IaB)@)+ 2B

Since B € G, the net (J,(B)).c;r converges to B and therefore
there exists 1, € I such that, for each o > «,

2.6) 7.(B)(x) C B+ g . B.

By (2.3) and (2.4), it results

(fan+2) B C U (w+3B) 6 (wi@o)+ 5 - 8);

1=1
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‘since f - B and each 1; are Hausdorff continuous, there exists a
neighbourhood U; of zy such that, for each z € Uy,

(f(“)* %) B C Lzmjl <¢¢(w)+ 'j? : IB> ;

by (2.5) and (2.6), we have, for each z € Uy and « € I with o > ¢,
a > L,

(ﬂ@+§)Bc{]@4@+§m§c
' 1=1

E & E
C Ju(f - lB)(w)+Z -Ja(lB)(a:)+§ B+--BC
& £ E &
Cja(f-lB)(:z:)+Z-<lB+Z-lB> +§-|B+Z-IB

and finally, for each z € U; and « € I with a > 11, a > 1,
(2.7) f@)-BC J(f-B)z)+e- B.

Now, put

1+ (1) D)\ (s 2) &)

for each z € A, we have z ¢ <f(:z:0)+ g-) - B and therefore (cf. (2.2))

there exists x € G such that <f+ E) -B < x and -z & x(zp); since
x(zp) is compact, there exists a neighbourhood of z disjoint from
x(zo)-

The set A is compact and therefore, we may found x;,...,xp € G
such that

P . £
2.8) (Mt (fan+3)-B
and, for each i1=1,...,p,
) €
2.9) <f+§> B < xi.
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Since f-I1B is Hausdorff continuous, there exists a neighbourhood
Uy of zo such that, for each z € U}, '
F(z0) - B C f(z) B+ -g- B;
moreover, each y; is Hausdorff continuous, and therefore, for each
1=1,...,p, there exists a neighbourhood U! of zy such that, for each

z € U], xi(z) C xi(zo) + % +B; now, put Us = ﬂ Uy; for each @ € U, it
i=0
results (cf. (2.8))

ﬂxz(:v) C ﬂx1(wo)+ =B C

=1

B+—-BC

SN

<f($o) + %
(2.10)

-B+ IB+— B =

-le ool ™

C f(z) B+

oo|m

= (f(z)+§2-> B

For each 1 =1,...,p, the net (J.(xi)aer converges to y; and
therefore there exists ¢3 € I such that, for each o > 3 and z € X,

AU (D, (@) <
from which
(2.11) Ja(i(@) C xi(@) + < - B
By (2.10) and (2.11), we obtain, for each o > 13 and z € U,

(2.12) ﬂﬂa<x,<z>>cﬂx,<m>+— BC f@)- B+ B+ B,

1=1

The condition (2.9) implies, for eacha € I,z € X and 1=1,...,m,

£
5 ((F+5)B) @) € 2000, that is 4. - BYw)+ S - 2(BXE) €
J.(x:)(z) and therefore

(2.13) Jo(f - B)(@) + - Ja(B)(z) C ﬂﬂa(xi)(:r)

Coa=]
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by (2.6), for each « > 12, J,(B)(z) C lB+§: -1B, and hence (2.13) becomes

p
& £
2.14) 945 - BYa) © [+ (B+-B).

By putting together (2.12) and (2.14), we obtain, for each z € U,
and « € I with a > 1, a > 13,

E £ & E
Juf -BYz)C f(z)-B+=-B+—--B+-(B+—--IB
C f(z) - B+¢g-B.

Finally, put U = U1 NU, and let « € I such that ¢ > 1, ¢ > 12,
1 > 13; for each o >+ and z € U, we have (cf. (2.7) and (2.15))

d(Ja(f - B)(z), f(z) - B) < €.

Now, it is enough to apply a standard covering argument on the
compact space X to establish the existence of A € I such that, for
each o > )\, d(J,(f - B), f - B) < ¢; since € € R} is arbitrary, this shows
that the net (J,(f - B))oer converges to f - B..

Remark 2.3. We esplicitly observe that Theorem 2.2 generalizes
Theorem 2.1; in fact, if we take H and G as in Theorem 2.1 then,
for each f € H, the function (f+¢)- B belongs to G and consequently
the conditions (2.1) and (2.2) are trivially statisfied for each 7y € X
and ¢ € R}.
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