A KOROVKIN-TYPE THEOREM FOR SET-VALUED HAUSDORFF CONTINUOUS FUNCTIONS

MICHELE CAMPITI (Potenza) (*) (**)

In this paper, we give a generalization of a Korovkin-type theorem for set-valued Hausdorff continuous functions (cf. [1] and [2]), by means of upper and lower envelopes.

1. Introduction.

Throughout this paper, X is a compact Hausdorff topological space and E is a real finite dimensional normed space. We denote by $\operatorname{Conv}(E)$ the set of all compact convex non empty subsets of E; $\operatorname{Conv}(E)$ is equipped with the natural addition and multiplication by scalars of sets; further, we consider on $\operatorname{Conv}(E)$ the Hausdorff distance defined by putting, for each $A, B \in \operatorname{Conv}(E)$,

$$d(A,B) = \inf\{\varepsilon \in \mathbb{R}_+^* | A \subset B + \varepsilon \cdot \mathbb{B}, \ B \subset A + \varepsilon \cdot \mathbb{B}\}$$

where $\mathbb B$ denotes the closed unit ball of E of center 0.

^(*) Entrato in Redazione il 16 novembre 1988

^(**) Work performed under the auspices of the G.N.A.F.A. and the Ministero Pubblica Istruzione (60%) and supported by I.N.D.A.M.

Moreover we recall that a multivalued function $F: X \to \operatorname{Conv}(E)$ is said to be Hausdorff continuous (briefly \mathcal{H} -continuous) at the point $x_0 \in X$ if, for each $\varepsilon \in \mathbb{R}_+^*$, there exists a neighbourhood U of x_0 such that $d(F(x), F(x_0)) \leq \varepsilon$ for each $x \in U$; F is said to be \mathcal{H} -continuous if it is continuous at each $x_0 \in X$.

We denote by $\mathcal{S}(X,E)$ the set of all \mathcal{H} continuous set-valued functions of X in $\operatorname{Conv}(E)$; this space is equipped with a natural addition and multiplication by scalars ((F+G)(x)=F(x)+G(x)) and $(\lambda F)(x)=\lambda F(x)$ for each $F,G\in\mathcal{S}(X,E)$, $\lambda\in\mathbb{R}$ and $x\in X$) and with the uniform distance $d:\mathcal{S}(X,E)\times\mathcal{S}(X,E)\to\mathbb{R}$ defined by putting, for all $F,G\in\mathcal{S}(X,E)$:

$$d(F,G) = \sup_{x \in X} d(F(x), G(x)).$$

In $\mathcal{S}(X,E)$ we also consider the following order relation; if $F,G\in\mathcal{S}(X,E)$, we say that $F\leq G$ if, for each $x\in X$, $F(x)\subset G(x)$.

Now, an operator $\mathcal{J}:\mathcal{S}\left(X,E\right)\to\mathcal{S}\left(X,E\right)$ is called linear if

$$\mathcal{I}(F+G)=\mathcal{I}(F)+\mathcal{I}(G),\ \mathcal{I}(\lambda F)=\lambda\,\mathcal{I}(F)$$

for each $F,G\in\mathcal{S}(X,E)$ and $\lambda\in\mathbb{R}_+$ and is called monotone if the condition $F\leq G$ implies $\mathcal{J}(F)\leq\mathcal{J}(G)$ $(F,G\in\mathcal{S}(X,E))$.

Finally, we recall that a subset H of the space $\mathcal{C}(X,\mathbb{R})$ of all continuous real functions defined in X is said to be a Korovkin system in $\mathcal{C}(X,\mathbb{R})$ if, for each equicontinuous net $(T_{\alpha})_{\alpha\in I}^{\leq}$ of positive linear operators of $\mathcal{C}(X,\mathbb{R})$ into itself, the convergence to h of the net $(T_{\alpha}(h))_{\alpha\in I}^{\leq}$ for each $h\in H$ implies the convergence to f of the net $(T(f)_{\alpha})_{\alpha\in I}^{\leq}$ for each $f\in \mathcal{C}(X,\mathbb{R})$. This definition can be adjusted in the space $\mathcal{S}(X,E)$ in the following manner.

DEFINITION 11. A subset G of S(X,E) is said to be a Korovkin system in S(X,E) if, for each equicontinuous net $(\mathcal{J}_{\alpha})_{\alpha\in I}^{\leq}$ of monotone linear operators of S(X,E) into itself such that the net $(\mathcal{J}_{\alpha}(G))_{\alpha\in I}^{\leq}$ converges to G for each $G\in G$, it follows the convergence to F of the net $(\mathcal{J}_{\alpha}(F))_{\alpha\in I}^{\leq}$ for each $F\in S(X,E)$.

As observed in [1], if H (resp. \mathcal{G}) contains the constant functions, then the equicontinuity of the net $(T_{\alpha})_{\alpha\in I}^{\leq}$ (resp. $(\mathcal{I}_{\alpha})_{\alpha\in I}^{\leq}$) is superfluous.

2. The main theorem.

In [1] the following Korovkin type theorem has been proved.

THEOREM 2.1. If H is a Korovkin system of positive functions in $C(X, \mathbb{R})$, then the subset G of S(X, E) whose elements are the constant functions and, for each $f \in H$, the function $x \mapsto f(x) \cdot \mathbb{B}$ (\mathbb{B} denotes the closed unit ball of E) is a Korovkin system in S(X, E).

In what follows, we denote by $\mathbb B$ the constant function in $\mathcal S(X,E)$ of constant value $\mathbb B$.

Our main result is the following theorem.

THEOREM 2.2. If G is a subset of S(X, E) containing the constant functions and if there exists a Korovkin system H of positive functions in $C(X, \mathbb{R})$ such that, for each $f \in H$ and $x_0 \in X$ and for each $\varepsilon \in \mathbb{R}_+^*$,

(2.1)
$$(f(x_0) + \varepsilon) \cdot \mathbb{B} = \overline{\bigcup_{\psi \in \mathcal{G} \\ \psi \leq (f+\varepsilon)} \mathbb{B}} \psi(x_0),$$

(2.2)
$$(f(x_0) + \varepsilon) \cdot \mathbb{B} = \bigcap_{\substack{\psi \in \mathcal{G} \\ (f+\varepsilon) \cdot \mathbb{B} \le \psi}} \psi(x_0)$$

then G is a Korovkin system in S(X, E).

Proof. Let $(\mathcal{J}_{\alpha})_{\alpha\in I}^{\leq}$ be a net of monotone linear operators of the space $\mathcal{S}(X,E)$ into itself such that net $(\mathcal{J}_{\alpha}(G))_{\alpha\in I}^{\leq}$ converges to G for each $G\in \mathcal{G}$. Thanks to Theorem 2.1, our proof will be accomplished if we will show that the net $(\mathcal{J}_{\alpha}(f\cdot\mathbb{B}))_{\alpha\in I}^{\leq}$ converges to $f\cdot\mathbb{B}$ for each $f\in H$. To this end, fix $f\in H$ and let $\varepsilon\in\mathbb{R}_{+}^{*}$ and $x_{0}\in X$; since

 $\psi(x_0)$ is precompact, by (2.1) there exist $\psi_1,\ldots,\psi_m\in\mathcal{G}$ and, $\psi \in G$

for each i = 1, ..., m, there exists $y_i \in E$ such that

(2.3)
$$\left(f(x_0) + \frac{\varepsilon}{4} \right) \cdot \mathbb{B} \subset \bigcup_{i=1}^m \left(y_i + \frac{\varepsilon}{4} \cdot \mathring{\mathbb{B}} \right)$$

(where $\stackrel{\circ}{\mathbb{B}}$ denotes the open unit ball in E) and

(2.4)
$$\psi_{i} \leq \left(f + \frac{\varepsilon}{4}\right) \cdot \mathbb{B}, \ y_{i} \in \psi_{i}(x_{0}).$$

Since the net $(\mathcal{J}_{\alpha}(\psi_i))_{\alpha\in I}^{\leq}$ converges to ψ_i for each $i=1,\ldots,m$, we may found $\iota_1 \in I$ such that, for each $\alpha \in I$, $\alpha \geq \iota_1$ and for each $i=1,\ldots,m,\ d(\psi_i,\mathcal{I}_{\alpha}(\psi_i))\leq \frac{\varepsilon}{8}$, which implies, for each $x\in X$,

$$\psi_i(x)\subset \mathcal{J}_{lpha}(\psi_i)(x)+rac{arepsilon}{8}\cdot ext{IB}.$$

Further, for each i = 1, ..., m (cf. (2.4)) and $\alpha \ge \iota_1$,

$$\mathcal{I}_{\alpha}(\psi_{i}) \leq \mathcal{I}_{\alpha}\left(\left(f + \frac{\varepsilon}{4}\right) \cdot \mathbb{IB}\right) = \mathcal{I}_{\alpha}(f \cdot \mathbb{IB}) + \frac{\varepsilon}{4} \cdot \mathcal{I}_{\alpha}(\mathbb{IB});$$

it follows, for each $x \in X$,

(2.5)
$$\bigcup_{i=1}^{m} \psi_{i}(x) \subset \mathcal{J}_{\alpha}(f \cdot \mathbb{B})(x) + \frac{\varepsilon}{4} \cdot \mathcal{J}_{\alpha}(\mathbb{B})(x) + \frac{\varepsilon}{8} \cdot \mathbb{B}.$$

Since $\mathbb{B} \in \mathcal{G}$, the net $(\mathcal{I}_{\alpha}(\mathbb{B}))_{\alpha \in I}$ converges to \mathbb{B} and therefore there exists $\iota_2 \in I$ such that, for each $\alpha \geq \iota_2$

(2.6)
$$\mathcal{J}_{\alpha}(\mathbb{B})(x) \subset \mathbb{B} + \frac{\varepsilon}{4} \cdot \mathbb{B}.$$

By (2.3) and (2.4), it results

$$\left(f(x_0) + \frac{\varepsilon}{4}\right) \cdot \mathbb{B} \subset \bigcup_{i=1}^m \left(y_i + \frac{\varepsilon}{4} \cdot \mathring{\mathbb{B}}\right) \subset \bigcup_{i=1}^m \left(\psi_i(x_0) + \frac{\varepsilon}{8} \cdot \mathring{\mathbb{B}}\right);$$

since $f \cdot \mathbb{B}$ and each ψ_i are Hausdorff continuous, there exists a neighbourhood U_1 of x_0 such that, for each $x \in U_1$,

$$\left(f(x) + \frac{\varepsilon}{4}\right) \cdot \mathbb{B} \subset \bigcup_{i=1}^{m} \left(\psi_{i}(x) + \frac{\varepsilon}{4} \cdot \mathbb{B}\right);$$

by (2.5) and (2.6), we have, for each $x \in U_1$ and $\alpha \in I$ with $\alpha \ge \iota_1$, $\alpha \ge \iota_2$,

$$\left(f(x) + \frac{\varepsilon}{4}\right) \cdot \mathbb{B} \subset \bigcup_{i=1}^{m} \left(\psi_{i}(x) + \frac{\varepsilon}{4} \cdot \mathbb{B}\right) \subset
\subset \mathcal{J}_{\alpha}(f \cdot \mathbb{B})(x) + \frac{\varepsilon}{4} \cdot \mathcal{J}_{\alpha}(\mathbb{B})(x) + \frac{\varepsilon}{8} \cdot \mathbb{B} + \frac{\varepsilon}{4} \cdot \mathbb{B} \subset
\subset \mathcal{J}_{\alpha}(f \cdot \mathbb{B})(x) + \frac{\varepsilon}{4} \cdot \left(\mathbb{B} + \frac{\varepsilon}{4} \cdot \mathbb{B}\right) + \frac{\varepsilon}{8} \cdot \mathbb{B} + \frac{\varepsilon}{4} \cdot \mathbb{B}$$

and finally, for each $x \in U_1$ and $\alpha \in I$ with $\alpha \ge \iota_1$, $\alpha \ge \iota_2$,

(2.7)
$$f(x) \cdot \mathbb{B} \subset \mathcal{J}_{\alpha}(f \cdot \mathbb{B})(x) + \varepsilon \cdot \mathbb{B}.$$

Now, put

$$A = \left(\left(f(x_0) + \frac{\varepsilon}{2} \right) \cdot \mathbb{B} \right) \setminus \left(\left(f(x_0) + \frac{\varepsilon}{4} \right) \cdot \mathring{\mathbb{B}} \right);$$

for each $z \in A$, we have $z \notin \left(f(x_0) + \frac{\varepsilon}{8}\right)$ · B and therefore (cf. (2.2)) there exists $\chi \in \mathcal{G}$ such that $\left(f + \frac{\varepsilon}{8}\right)$ · B $\leq \chi$ and $z \notin \chi(x_0)$; since $\chi(x_0)$ is compact, there exists a neighbourhood of z disjoint from $\chi(x_0)$.

The set A is compact and therefore, we may found $\chi_i, \ldots, \chi_p \in \mathcal{G}$ such that

(2.8)
$$\bigcap_{i=1}^{p} \chi_{i}(x_{0}) \subset \left(f(x_{0}) + \frac{\varepsilon}{4}\right) \cdot \mathbb{B}$$

and, for each $i = 1, \ldots, p$,

$$(2.9) \left(f + \frac{\varepsilon}{8}\right) \cdot \mathbb{B} \le \chi_i.$$

Since $f \cdot \mathbb{B}$ is Hausdorff continuous, there exists a neighbourhood U'_0 of x_0 such that, for each $x \in U'_0$,

$$f(x_0)\cdot \mathbb{B}\subset f(x)\cdot \mathbb{B}+\frac{\varepsilon}{8}\cdot \mathbb{B};$$

moreover, each χ_i is Hausdorff continuous, and therefore, for each $i=1,\ldots,p$, there exists a neighbourhood U_i' of x_0 such that, for each $x\in U_i'$, $\chi_i(x)\subset \chi_i(x_0)+\frac{\varepsilon}{8}\cdot\mathbb{B}$; now, put $U_2=\bigcap_{i=0}^p U_i'$; for each $x\in U_2$, it results (cf. (2.8))

(2.10)
$$\bigcap_{i=1}^{p} \chi_{i}(x) \subset \bigcap_{i=1}^{p} \chi_{i}(x_{0}) + \frac{\varepsilon}{8} \cdot \mathbb{B} \subseteq$$

$$\subset \left(f(x_{0}) + \frac{\varepsilon}{4} \right) \cdot \mathbb{B} + \frac{\varepsilon}{8} \cdot \mathbb{B} \subset$$

$$\subset f(x) \cdot \mathbb{B} + \frac{\varepsilon}{8} \cdot \mathbb{B} + \frac{\varepsilon}{4} \cdot \mathbb{B} + \frac{\varepsilon}{8} \cdot \mathbb{B} =$$

$$= \left(f(x) + \frac{\varepsilon}{2} \right) \cdot \mathbb{B}.$$

For each $i=1,\ldots,p$, the net $(\mathcal{J}_{\alpha}(\chi_{i}))_{\alpha\in I}$ converges to χ_{i} and therefore there exists $\iota_{3}\in I$ such that, for each $\alpha\geq\iota_{3}$ and $x\in X$,

$$d(\mathcal{J}_{\alpha}(\chi_{i}(x)), \chi_{i}(x)) \leq \frac{\varepsilon}{8}$$

from which

(2.11)
$$\mathcal{J}_{\alpha}(\chi_{i}(x)) \subset \chi_{i}(x) + \frac{\varepsilon}{8} \cdot \mathbb{B}.$$

By (2.10) and (2.11), we obtain, for each $\alpha \geq \iota_3$ and $x \in U_2$,

$$(2.12) \qquad \bigcap_{i=1}^{p} \mathcal{J}_{\alpha}(\chi_{i}(x)) \subset \bigcap_{i=1}^{p} \chi_{i}(x) + \frac{\varepsilon}{8} \cdot \mathbb{B} \subset f(x) \cdot \mathbb{B} + \frac{\varepsilon}{2} \cdot \mathbb{B} + \frac{\varepsilon}{8} \cdot \mathbb{B}.$$

The condition (2.9) implies, for each $\alpha \in I$, $x \in X$ and $i = 1, \ldots, m$, $\mathcal{J}_{\alpha}\left(\left(f + \frac{\varepsilon}{8}\right) \cdot \mathbb{B}\right)(x) \subset \mathcal{J}_{\alpha}(\chi_{i})(x)$, that is $\mathcal{J}_{\alpha}(f \cdot \mathbb{B})(x) + \frac{\varepsilon}{8} \cdot \mathcal{J}_{\alpha}(\mathbb{B})(x) \subset \mathcal{J}_{\alpha}(\chi_{i})(x)$ and therefore

(2.13)
$$\mathcal{J}_{\alpha}(f \cdot \mathbb{B})(x) + \frac{\varepsilon}{8} \cdot \mathcal{J}_{\alpha}(\mathbb{B})(x) \subset \bigcap_{i=1}^{p} \mathcal{J}_{\alpha}(\chi_{i})(x);$$

by (2.6), for each $\alpha \geq \iota_2$, $\mathcal{J}_{\alpha}(\mathbb{B})(x) \subset \mathbb{B} + \frac{\varepsilon}{4} \cdot \mathbb{B}$, and hence (2.13) becomes

(2.14)
$$\mathcal{J}_{\alpha}(f \cdot \mathbb{B})(x) \subset \bigcap_{i=1}^{p} \mathcal{J}_{\alpha}(\chi_{i})(x) + \frac{\varepsilon}{8} \left(\mathbb{B} + \frac{\varepsilon}{4} \cdot \mathbb{B} \right).$$

By putting together (2.12) and (2.14), we obtain, for each $x \in U_2$ and $\alpha \in I$ with $\alpha \ge \iota_2$, $\alpha \ge \iota_3$,

(2.15)
$$\mathcal{J}_{\alpha}(f \cdot \mathbb{B})(x) \subset f(x) \cdot \mathbb{B} + \frac{\varepsilon}{2} \cdot \mathbb{B} + \frac{\varepsilon}{8} \cdot \mathbb{B} + \frac{\varepsilon}{8} \left(\mathbb{B} + \frac{\varepsilon}{4} \cdot \mathbb{B} \right)$$
$$\subset f(x) \cdot \mathbb{B} + \varepsilon \cdot \mathbb{B}.$$

Finally, put $U = U_1 \cap U_2$ and let $\iota \in I$ such that $\iota \ge \iota_1$, $\iota \ge \iota_2$, $\iota \ge \iota_3$; for each $\alpha \ge \iota$ and $x \in U$, we have (cf. (2.7) and (2.15))

$$d(\mathcal{I}_{\alpha}(f \cdot \mathsf{IB})(x), f(x) \cdot \mathsf{IB}) < \varepsilon.$$

Now, it is enough to apply a standard covering argument on the compact space X to establish the existence of $\lambda \in I$ such that, for each $\alpha \geq \lambda$, $d(\mathcal{I}_{\alpha}(f \cdot \mathbb{B}), f \cdot \mathbb{B}) \leq \varepsilon$; since $\varepsilon \in \mathbb{R}_{+}^{*}$ is arbitrary, this shows that the net $(\mathcal{I}_{\alpha}(f \cdot \mathbb{B}))_{\alpha \in I}$ converges to $f \cdot \mathbb{B}$.

Remark 2.3. We esplicitly observe that Theorem 2.2 generalizes Theorem 2.1; in fact, if we take H and G as in Theorem 2.1 then, for each $f \in H$, the function $(f + \varepsilon) \cdot \mathbb{B}$ belongs to G and consequently the conditions (2.1) and (2.2) are trivially statisfied for each $x_0 \in X$ and $\varepsilon \in \mathbb{R}_+^*$.

REFERENCES

- [1] Keimel K., Roth W., A Korovkin type approximation theorem for set-valued functions, preprint Technische Hochshule Darmstadt, no. 1072, 1987.
- [2] Vitale R.A., Approximation of convex set-valued functions, J. Approx. Theory 26 (1979), no. 4, 301-316.

Istituto di Matematica Università degli Studi della Basilicata Via N. Sauro, 85 85100 Potenza (Italia)