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RIESZ SPACE VALUED SUBMEASURES
AND APPLICATION TO GROUP-VALUED FINITELY
ADDITIVE MEASURES

ANNA MARTELLOTTI (Ancona) - ANNA R. SAMBUCINI (Perugia) (*)(**)

As a consequence of a general Domination Theorem given for a
subadditive measure with values in a Riesz space, we prove the arcwise
connectedness of the range of a L.C.V.T.S.-valued and of a group-valued
finitely additive measure.

1. Introduction.

In 1973 Landers [7] proved that a group-valued measure
dominated by a semiconvex real valued countably subadditive set
function has arcwise connected range; this very property was later
extended in [9] to the case of finitely additive measures (f.a.m.’s)
dominated by semiconvex real-valued submeasures (i.e. subadditive
set functions). '

(*) Entrato in Redazione il 16 novembre 1988
(**) Lavoro svolto nell’ambito del G.N.A.F.A. del C.N.R.
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The key idea of this paper is that a large class of group-valued
f.am.’s admits a dominating submeasure ranging on a more general
Riesz space, namely submeasures obtained by means of seminorms:
therefore we can get the arcwise connectedness of the range of such
f.a.m.’s mimicking the proof of the Domination Theorem of [9].

Most of the connectedness or of the arcwise connectedness results
for the range of group-valued measures or f.a.m.s base upon some
properties of the ranges of their restriction over any measurable
subset (briefly subranges); more precisely this kind of results is
obtained under the assumption of compactness of subranges (as in
[6], [9], [8]), or of their closedness ([9]) or their metrizability ([8]).
We also quote in connection to this topic the results in [12] and ([11]
- section 2). To obtain the existence of a vector-valued dominating
submeasure we present here a property of subranges generalizing the
idea of positive f.a.m.’s in the scalar case: it is shown, by means of
an example , that this property, called quasi-monotonicity, is crucial
to get the result even in a locally convex topological vector space.

Given the preliminary definitions in Section 2, in Section 3 we
prove a general Domination Theorem; as an application in Section 4
we first obtain the arcwise connectedness of the range for a f.a.m.
with values in a locally convex topological vector space (L.C.T.V.S.);
furtherly, rearranging an idea due to Musial [10], this last result is
extended to the case of f.a.m. ranging on a locally compact group.

We wish to express our thanks to both Professor C. Vinti
and Professor D. Candeloro who warmly encouraged us during this
research.

2. Preliminaries.

Let (G, +, 7) be any abelian topological group. By Ux(0) we denote
the family of the neighbourhoods of the neutral element 0 € G.
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DEFINITION 2.1. Given a measurable space (2, 4), a set function
m: A — G is called a finitely additive measure (f.a.m.) if

1) m(D) =0 (where 0 denotes the neutral element in G)
2) for every A,B € 4 with AN B =0, m(AUB) =m(4)+m(B).

DEFINITION 2.2. We will say that a f.a.m. is semiconvex provided
for each A € A there exists an A-measurable subset of A, denoted by
Ay, such that

3) m(Ays2) +m(Ayn) = m(A),
while m will be said to be continuous if for every neighbourhood
U € Ug(0) there exists a finite decomposition of Q, say {Ai,...,An}
such that m(A;NE)eU,1=1,....nE €A

DEFINITION 2.3. A set function m : A — G (not necessarily a
finitely additive one) is said to be s-bounded iff any sequence {Ay}n

in A of pairwise disjoint sets is such that lim m(A,) = 0.
n—od

It is known that semiconvexity and continuity are not equivalent
(see [9] Examples 4.3, 4.4); nevertheless, when the group GG does not
have second order cyclic elements, any semiconvex s-bounded f.a.m.
is necessarily continuous ([4]).

DEFINITION 2.4. A set function m : A — G will be said to be
quasi-monotone if for each neighbourhood U € Ug(0) and for every
set A € 4 such that m(A) € U it follows m(B) € U for every B C A,
BeaAa

Throughout this paper (F,C,7) will denote a topological Riesz
space with cone C. '

DEFINITION 2.5. A set function v : A — C will be called a
submeasure if it satisfies (1) and:

4) for every, A,B € Awith ANB =0, v(AUB) < v(A)+v(B);
5) for every A € 4 and for every B € AN A, v(B) < v(A).
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DEFINITION 2.6. If G4, G, are two topological groups, with
neutral elements 0y and 0, respectively, we will say that a set function
v : A— G, dominates a set function m : A — G, and we will write

m L v, iff whenever v(A,) — 0y it follows m(A4,) — 0.

For any locally compact group G, we will denote by G" the
character group, and by ¢ any element of GM. T will denote the
unitary thorus, and by x and 1 we will denote the group multiplication
and the neutral element of T.

3. The Domination Theorem.

LEMMA 31.If v: A — C is a submeasure, and if Ug(0) is a
netghbourhood basis for 0 in E then the family Uy(A)={B e 4 :
v(BAA) € V}, V € Ug(0) forms a neighbourhood basis of A € 4.

Proof. It is obvious that {Uy,V € Ug(0)} is non empty, that
A € Uy(A) for every A €A and V € Ug(0) and that for every Uy, (A),
U, (A) there exists Up(A) C Uy (A) N U (A). We now want to show
that for every Uy(A) and for every B € Uy(A) there exists Up(B)
such that Uy (B) C Uy (A4).

Set v = v(BAA); let W € Ug(0) be such that v+ W C V.

Take C € Uw(B); then since
AAC C (AAB)U (BAC) one as

v(AAC) < v(AAB)+ v(BAC) and thus
V(AAC) < v+2z where z& W, ie.
V(AAC)ev+W CV

whence C € Uy(A) for every C € Uw(B).

From now on we will denote by 7, the topology induced on 4
from the quasi-monotone submeasure v.
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LEMMA 3.2. Let v : A — C be a semiconvex submeasure; then
for every A € A there exists a family of A-measurable subsets of A,
{At}te[o,l]: such that

i) Ao = @, Al =A,'
i) v(Ay) =tv(A);
i) if t' <t then Ay C Ay and v(A; — Ay) = ({t — t/)IJ(A)

Proof. The proof is exactly the same as that of Lemma 2.1 in
[5] once observed that in any Riesz space if (¢,), is a decreasing
sequence of positive numbers and z € C then

inf{g, - z,n € N} = {inf ¢, } - 2.

LEMMA 3.3. Let v : A — C be a submeasure such that for every
A € A there exists a family of A-measurable subsets of A, {Aiheon
satisfying i, ii), iii). Then A equipped with the T,-topology is arcwise
connected.

Proof. We will show that, for every A, B € 4 fixed, the function
f:00,1] -(4,7n)

defined by
f®O=A-Ba-yUANBUB — A

is a continuous arc joining A and B, namely 7, -lim,_y @) = f@).
Assume that ¢t > t’. Then

f®) = fE)=[A~BaypUANBUB —- Axl-

—[(A—-B)a-nUMANBYUB — Ayl;

set
R=(A—-B)i-y, T =(B-A),

R =(A-B)iv), T'=B-Ay, S=(ANB)
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it follows R C R’ and 7" C T and therefore
fO—fE)=[RUSUT]I-[RUSUT =R -RYWUT -TH=T-T")
because R — R’ = §. Hence
f@)—ft)=(B - Ay — (B —Ay.
Analogously one finds
F&) — f®) = (A— B)aty — (A — B)a_i»,

whence
v[fOAFAN] < vI(B — A) — (B — A1+
+v[(A— B)u-¢) — (A — B)u-pl =

=0 —th(B - A+t —twA - B).

So for t — t' we have v[f(t)AF({t)] — 0 ie. F(t) — f(t)).

COROLLARY 34. If v : A4 — C is a semiconvex submeasure then

(4, 1,) is arcwise connected.

THEOREM 3.5 (Domination Theorem) Let m : 4 — G be a f.a.m.
and let v : A — C a semiconvex submeasure dominating m. Then

R(m) is arcwise connected.

Proof. By means of Corollary 3.4 we just have to show that m is
a 7, continuous map. Indeed if 4, = A then v(4,AA4) — 0 and as

U(AAA) > SIKA ~ A+ v(dy — A)

it follows that

v(A—A,) -0 and v(4,—-A) — 0.



RIESZ SPACE VALUED SUBMEASURES 43
As v dominates m it is also true that

m(A — A,) —» 0, m(A, — A) — 0.

From
m(A,) — m(4) =m(A — A,) + m(A, — A)

we find
lim m(A,) = m(A).

4. Application: arcwise connectedness of the range of vector
and group-valued f.a.m.’s.

We are now going to examine a large class of fla.m.s which
always admit a dominating submeasure.

THEOREM 4.1. Let V be a L.CTV.S. and let m : A —V be a
semiconvex quasi-monotone f.a.m.. Then R(m) is arcwise connected.

Proof. Denote by P the family of admissible seminorms of V. The
space F = RZ with cone C = {fe€E: f(p)>0Vpe P} and with the
pointwise convergence topology is an order-complete topological Riesz
space. Let o : 4 — C be defined — for every A € 4 — by o(A) : P— R§,
with o(A)(p) = (p o m)(A); we will show that o is a submeasure
dominating m. Indeed (p o m)(@) =0 for each p € P, i.e. o(@) = 0. Let
A B€ A4 ANB =0; then for all pe P

p[m(A U B)] = p[m(A) + m(B)] < (po m)(A) + (p o m)(B)

whence
c(AUB) < a(A)+o(B).

We are now going to prove the monotonicity of o. Let A, B € 4,
with A C B and let p € P; two possible cases may happen: either
(pom)(B) =0 or (pom)B) > 0. In the first case we find

m(B) € Upe ={z €V :p(z) < e} for every >0
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and by quasi-monotonicity m(A) € Up,e for every e > 0,1.e. (pom)(A4) < e
for every & > 0 whence (po m)(4) = 0. In the second case let
€p = (pom)(B). By the same quasi-monotonicity argument one finds

m(A) € Upe,, ie. (pom)A) < e,=(pom)B).

Thus for each p € P we proved that (p o m)(A) < (pom)(B), and
so 0(A) < o(B). Furthermore from the semiconvexity of m and from
the properties of seminorms in L.C.T.V.S. we have for every p € P
and A€ 4

1 1
(pom)(Ai2) =(om)A—Aip)=p <§m(f1)> = i(p o m)(A4)
le. o(Aip) = o(4 — A = lcr(A). Finally ¢ dominates m. Indeed if

(A.)n is a sequence in 4 Witzh a(A,) — 0, the topology of E being the
pointwise convergence one, we have

o(An)p)=(pom)A4,) =0 forall peP

As V has the weak topology induced by the seminorms it turns
out that m(A4,) — 0. Thus o satisfies all the assumption of Theorem
3.5 and the assertion follows.

We now show that the quasi-monotonicity assumption is crucial
in Theorem 4.1; namely we give an example of a semiconvex f.a.m.
which is not quasi-monotone and such that the range is not arcwise

connected.

EXAMPLE. Let Q =[0,1], B be the o-algebra of Borel subset
of Q, M : B— [0,1] be the usual Lebesgue measure. Let fiR—=R
be any non continuous additive function, and take m : B — R? as
m(B) = (MB), f(\(B))). Then m is semiconvex: indeed, for each 4 € B
choose B C A, B € B such that \(B) = %/\(A), i.e. 2X\(B) = AM(4); from
the additivity of f one finds

2f(M(BY) = FB) + fFO(B)) = FMB) + A(B)) = fF\(A))
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and so m(B) = —;—m(A).

In [3] it is proved that for every z € R f is unbounded on any
neighbourhood of z; therefore m isn’t quasi-monotone. As we have
R(m) = graph(fip,11), and f is not Lebesgue-measurable, (see [3]),
R(m) cannot be arcwise connected.

LEMMA 4.2. Let A and B be two topological groups and let
f:A — B be a continuous morphism. Then f({U4(0) = {f(U),U €
U4(0)} is a neighbourhood basis for the neutral element f(0) € B.

The proof is straightforward.

LEMMA 4.3. Let G be a locally compact group. If m : 4 — G
is a semiconvex quasi-monotone f.a.m. and ¢ is any element in the
character group then (pom): A— T is a semiconvex quasi-monotone
fa.m.. Thus the fa.m. ) : A — T defined - for every A € 4 -
by MA) : GN = T with MA)p) = (p o m)(A) is semiconvex and
quasi-monotone with respect to the pointwise convergence topology.

Proof. Let ¢ € G" be fixed. Observe first that (p o m)(#) =1 and
for A BeAa4 ANB=190

(p o m)(AU B) = p[m(A) + m(B)] = (p o m)(A) * (p o m)(B)

by means of the linearity of ¢. Furthermore, as m is quasi-monotone
if A€ 4, for any B € AN A it follows from Lemma 4.2 that (pom)(B)
lies in each neighbourhood of 1 in T containing (¢ o m)(A), i.e. (pom)
is quasi-monotone. From the semiconvexity of m for each A € 4,
Aipp € AN A exists such that

(p 0 m)(A172) * (p 0o m)(Ay1/2) = (p o m)(A)

and so
(p 0o m)(A1y2) = [(p o m)(A)]V2.

This shows that each (p om) is semiconvex and that for any
A € A the <«halving» subset is the same for every ¢ € G*: thus ) is
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semiconvex itself. The other properties of A being trivial the assertion

follows.

THEOREM 4.4. Let G be a locally compact group without second
order cyclic elements. If m : 4 — G is a semiconvex quasi-monotone,
s-bounded f.a.m., then R(m) is arcwise connected.

Proof. Let I = {z € T :Re(z) € [0,1]}; for every v € G" there
exists U € Ug(0) such that p(U®) C I. From the semiconvexity and
the s-boundedness the continuity of m follows ([4]). Hence there exists
a finite decomposition {Ai,...,A,} of Q such that m(4;, N2 C U®
i=1,...,n Then (pom)yA4KNADCI,i=1,...,n

Set now px(B) = (pom)(BN Ag), B € 4; then pui(B) = e*®B) with
] < g We show now that each v, is a quasi-monotone, semiconvex
fam.. In fact v4(0) =0 as (po m)(@ N Ag) = 1. Moreover if B,C € 4,
BNC =0 then from

e BU0) = | (BUC)=(pom)[(BUC)N A,] =

(pom)(BNA)UCNAD] = (pom)BN Ak *(pom)C N A) =

eiuk(B) i (o) ei[vk(B)ﬂ/k(C)]

e
we get v (B UCQC) = (B)+ vk(C)- v is semiconvex because, for fixed
A € 4, from Lemma 4.3 there exists Ayjp C A, Aijp € A4 such that
(pom)(Ara N Ap) * (pom)(Ara N Ap) = (pom)(AN Ay),
ie. pe(Ay2) x pr(Aiy2) = pr(4) and so
ePrldip) = oD whence 1 (4 DE Eyk(A)'

The quasi monotonicity of v, follows immediately from that of
n

o m) established in Lemma 4.3. Set now v, = vi: it 18 obvious
12 P
k=1
that v, is again a quasi-monotone semiconvex f.a.m.; furthermore as

the Ay’s are pairwise disjoint (pom) =e™ and N (pom) = N (V)
(where AC(-) denotes the ideal of Z-measurable subset having (.)
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measure equal to neutral element of the group.) Consider now
E = R equipped with the pointwise order induced by the cone
C={f:G" - R{} and with the pointwise convergence topology.
Then it is possible to define the following fam.:v : 4 — E, ie.
v(A) : G» — R defined by v(A)p) = v,(A). It is obvious that for
the topology of E and from the same properties for v,, v is quasi
monotone. Moreover, the «halving» sets for v, being independent
from the choice of p € G", v is semiconvex. We now prove that v
dominates m. Indeed if (4,), is a sequence in 4 such that v(4,) — 0
then for edch p € G" (p o m)(A,) — 1. As G has the weak topology
induced by G” ([1)) it follows m(A4,) — 0. We now consider the family
P of admissible seminorms on the L.C.T.V.S. E; set F = RT and
endow F with the pointwise order K = {f :  —» R§} and with the
pointwise convergence topology. Taking o : 4 — C as in the proof of
Theorem 4.1 we get a semiconvex submeasure dominating v; then
m <L v, v & o, implies m < o, and therefore from Theorem 3.5 the
assertion follows.
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