RIESZ SPACE VALUED SUBMEASURES AND APPLICATION TO GROUP-VALUED FINITELY ADDITIVE MEASURES

ANNA MARTELLOTTI (Ancona) - ANNA R. SAMBUCINI (Perugia)(*)(**)

As a consequence of a general Domination Theorem given for a subadditive measure with values in a Riesz space, we prove the arcwise connectedness of the range of a L.C.V.T.S.-valued and of a group-valued finitely additive measure.

1. Introduction.

In 1973 Landers [7] proved that a group-valued measure dominated by a semiconvex real valued countably subadditive set function has arcwise connected range; this very property was later extended in [9] to the case of finitely additive measures (f.a.m.'s) dominated by semiconvex real-valued submeasures (i.e. subadditive set functions).

^(*) Entrato in Redazione il 16 novembre 1988

^(**) Lavoro svolto nell'ambito del G.N.A.F.A. del C.N.R.

The key idea of this paper is that a large class of group-valued f.a.m.'s admits a dominating submeasure ranging on a more general Riesz space, namely submeasures obtained by means of seminorms: therefore we can get the arcwise connectedness of the range of such f.a.m.'s mimicking the proof of the Domination Theorem of [9].

Most of the connectedness or of the arcwise connectedness results for the range of group-valued measures or f.a.m.'s base upon some properties of the ranges of their restriction over any measurable subset (briefly subranges); more precisely this kind of results is obtained under the assumption of compactness of subranges (as in [6], [9], [8]), or of their closedness ([9]) or their metrizability ([8]). We also quote in connection to this topic the results in [12] and ([11] - section 2). To obtain the existence of a vector-valued dominating submeasure we present here a property of subranges generalizing the idea of positive f.a.m.'s in the scalar case: it is shown, by means of an example, that this property, called quasi-monotonicity, is crucial to get the result even in a locally convex topological vector space.

Given the preliminary definitions in Section 2, in Section 3 we prove a general Domination Theorem; as an application in Section 4 we first obtain the arcwise connectedness of the range for a f.a.m. with values in a locally convex topological vector space (L.C.T.V.S.); furtherly, rearranging an idea due to Musial [10], this last result is extended to the case of f.a.m. ranging on a locally compact group.

We wish to express our thanks to both Professor C. Vinti and Professor D. Candeloro who warmly encouraged us during this research.

2. Preliminaries.

Let $(G, +, \tau)$ be any abelian topological group. By $U_G(0)$ we denote the family of the neighbourhoods of the neutral element $0 \in G$. DEFINITION 2.1. Given a measurable space (Ω, \mathcal{A}) , a set function $m: \mathcal{A} \to G$ is called a finitely additive measure (f.a.m.) if

- 1) $m(\emptyset) = 0$ (where 0 denotes the neutral element in G)
- 2) for every $A, B \in \mathcal{A}$ with $A \cap B = \emptyset$, $m(A \cup B) = m(A) + m(B)$.

DEFINITION 2.2. We will say that a f.a.m. is semiconvex provided for each $A \in \mathcal{A}$ there exists an A-measurable subset of A, denoted by $A_{1/2}$, such that

3) $m(A_{1/2}) + m(A_{1/2}) = m(A)$, while m will be said to be continuous if for every neighbourhood $U \in U_G(0)$ there exists a finite decomposition of Ω , say $\{A_1, \ldots, A_n\}$ such that $m(A_i \cap E) \in U$, $i = 1, \ldots, n E \in \mathcal{A}$

DEFINITION 2.3. A set function $m: \mathcal{A} \to G$ (not necessarily a finitely additive one) is said to be s-bounded iff any sequence $\{A_n\}_n$ in A of pairwise disjoint sets is such that $\lim_{n\to\infty} m(A_n) = 0$.

It is known that semiconvexity and continuity are not equivalent (see [9] Examples 4.3, 4.4); nevertheless, when the group G does not have second order cyclic elements, any semiconvex s-bounded f.a.m. is necessarily continuous ([4]).

DEFINITION 2.4. A set function $m: \mathcal{A} \to G$ will be said to be quasi-monotone if for each neighbourhood $U \in U_G(0)$ and for every set $A \in \mathcal{A}$ such that $m(A) \in U$ it follows $m(B) \in U$ for every $B \subset A$, $B \in \mathcal{A}$.

Throughout this paper (E, \mathbf{C}, τ) will denote a topological Riesz space with cone \mathbf{C} .

DEFINITION 2.5. A set function $\nu: \mathcal{A} \to \mathbb{C}$ will be called a submeasure if it satisfies (1) and:

- 4) for every, $A, B \in \mathcal{A}$ with $A \cap B = \emptyset$, $\nu(A \cup B) \leq \nu(A) + \nu(B)$;
- 5) for every $A \in \mathcal{A}$, and for every $B \in \mathcal{A} \cap A$, $\nu(B) \leq \nu(A)$.

DEFINITION 2.6. If G_1 , G_2 are two topological groups, with neutral elements 0_1 and 0_2 respectively, we will say that a set function $\nu: \mathcal{A} \to G_2$ dominates a set function $m: \mathcal{A} \to G_1$, and we will write $m \ll \nu$, iff whenever $\nu(A_n) \to 0_2$ it follows $m(A_n) \to 0_1$.

For any locally compact group G, we will denote by G^{\wedge} the character group, and by φ any element of G^{\wedge} . T will denote the unitary thorus, and by * and 1 we will denote the group multiplication and the neutral element of T.

3. The Domination Theorem.

LEMMA 3.1. If $\nu : \mathcal{A} \to \mathbf{C}$ is a submeasure, and if $U_E(0)$ is a neighbourhood basis for 0 in E then the family $U_V(A) = \{B \in \mathcal{A} : \nu(B\Delta A) \in V\}$, $V \in U_E(0)$ forms a neighbourhood basis of $A \in \mathcal{A}$.

Proof. It is obvious that $\{U_V, V \in U_E(0)\}$ is non empty, that $A \in U_V(A)$ for every $A \in \mathcal{A}$ and $V \in U_E(0)$ and that for every $U_{V_1}(A)$, $U_{V_2}(A)$ there exists $U_W(A) \subset U_{V_1}(A) \cap U_{V_2}(A)$. We now want to show that for every $U_V(A)$ and for every $B \in U_V(A)$ there exists $U_W(B)$ such that $U_W(B) \subset U_V(A)$.

Set $v = \nu(B\Delta A)$; let $W \in U_E(0)$ be such that $v + W \subset V$. Take $C \in U_W(B)$; then since

$$A\Delta C\subset (A\Delta B)\cup (B\Delta C)$$
 one as $u(A\Delta C)\leq \nu(A\Delta B)+\nu(B\Delta C)$ and thus $u(A\Delta C)\leq v+z$ where $z\in W$, i.e. $u(A\Delta C)\in v+W\subset V$

whence $C \in U_V(A)$ for every $C \in U_W(B)$.

From now on we will denote by τ_{ν} the topology induced on \mathcal{A} from the quasi-monotone submeasure ν .

LEMMA 3.2. Let $\nu : \mathcal{A} \to \mathbb{C}$ be a semiconvex submeasure; then for every $A \in \mathcal{A}$ there exists a family of \mathcal{A} -measurable subsets of A, $\{A_t\}_{t\in[0,1]}$, such that

- *i*) $A_0 = \emptyset$, $A_1 = A$;
- *ii*) $\nu(A_t) = t\nu(A)$;
- iii) if t' < t then $A_{t'} \subset A_t$ and $\nu(A_t A_{t'}) = (t t')\nu(A)$.

Proof. The proof is exactly the same as that of Lemma 2.1 in [5] once observed that in any Riesz space if $(q_n)_n$ is a decreasing sequence of positive numbers and $z \in \mathbb{C}$ then

$$\inf\{q_n\cdot z, n\in \mathbb{IN}\} = \{\inf_n q_n\}\cdot z.$$

LEMMA 3.3. Let $\nu : \mathcal{A} \to \mathbb{C}$ be a submeasure such that for every $A \in \mathcal{A}$ there exists a family of \mathcal{A} -measurable subsets of A, $\{A_t\}_{t \in [0,1]}$ satisfying i, ii, iii). Then \mathcal{A} equipped with the τ_{ν} -topology is arcwise connected.

Proof. We will show that, for every $A, B \in \mathcal{A}$ fixed, the function

$$f:[0,1]\to(\mathcal{A},\tau_{\nu})$$

defined by

$$f(t) = (A - B)_{(1-t)} \cup (A \cap B) \cup (B - A)_t$$

is a continuous arc joining A and B, namely τ_{ν} - $\lim_{t\to t'} f(t) = f(t')$. Assume that t > t'. Then

$$f(t) - f(t') = [(A - B)_{(1-t)} \cup (A \cap B) \cup (B - A)_t] -$$
$$- [(A - B)_{(1-t')} \cup (A \cap B) \cup (B - A)_{t'}];$$

set

$$R = (A - B)_{(1-t)}, \quad T = (B - A)_t,$$

$$R' = (A - B)_{(1-t')}, \quad T' = (B - A)_{t'}, \quad S = (A \cap B);$$

it follows $R \subset R'$ and $T' \subset T$ and therefore

$$f(t) - f(t') = [R \cup S \cup T] - [R' \cup S \cup T'] = (R - R') \cup (T - T') = (T - T')$$

because $R - R' = \emptyset$. Hence

$$f(t) - f(t') = (B - A)_t - (B - A)_{t'}$$

Analogously one finds

$$f(t') - f(t) = (A - B)_{(1-t)} - (A - B)_{(1-t')}$$

whence

$$\nu[f(t)\Delta f(t')] \le \nu[(B-A)_t - (B-A)_{t'}] +$$

$$+ \nu[(A-B)_{(1-t')} - (A-B)_{(1-t)}] =$$

$$= (t-t')\nu(B-A) + (t-t')\nu(A-B).$$

So for $t \to t'$ we have $\nu[f(t)\Delta f(t')] \to 0$ i.e. $f(t) \xrightarrow{\tau_{\nu}} f(t')$.

COROLLARY 3.4. If $\nu : \mathcal{A} \to \mathbb{C}$ is a semiconvex submeasure then $(\mathcal{A}, \tau_{\nu})$ is arcwise connected.

THEOREM 3.5 (Domination Theorem) Let $m : \mathcal{A} \to G$ be a f.a.m. and let $\nu : \mathcal{A} \to \mathbf{C}$ a semiconvex submeasure dominating m. Then R(m) is arcwise connected.

Proof. By means of Corollary 3.4 we just have to show that m is a τ_{ν} continuous map. Indeed if $A_n \xrightarrow{\tau_{\nu}} A$ then $\nu(A_n \Delta A) \to 0$ and as

$$\nu(A_n \Delta A) \ge \frac{1}{2} [\nu(A - A_n) + \nu(A_n - A)]$$

it follows that

$$\nu(A - A_n) \to 0$$
 and $\nu(A_n - A) \to 0$.

As ν dominates m it is also true that

$$m(A - A_n) \to 0, \ m(A_n - A) \to 0.$$

From

$$m(A_n) - m(A) = m(A - A_n) + m(A_n - A)$$

we find

$$\lim_{n\to\infty} m(A_n) = m(A).$$

4. Application: arcwise connectedness of the range of vector and group-valued f.a.m.'s.

We are now going to examine a large class of f.a.m.'s which always admit a dominating submeasure.

THEOREM 4.1. Let V be a L.C.T.V.S. and let $m : A \to V$ be a semiconvex quasi-monotone f.a.m.. Then R(m) is arcwise connected.

Proof. Denote by \mathcal{P} the family of admissible seminorms of V. The space $E = \mathbb{R}^{\mathcal{P}}$ with cone $\mathbf{C} = \{ f \in E : f(p) \geq 0 \ \forall p \in \mathcal{P} \}$ and with the pointwise convergence topology is an order-complete topological Riesz space. Let $\sigma : \mathcal{A} \to \mathbf{C}$ be defined – for every $A \in \mathcal{A}$ – by $\sigma(A) : \mathcal{P} \to \mathbb{R}_0^+$, with $\sigma(A)(p) = (p \circ m)(A)$; we will show that σ is a submeasure dominating m. Indeed $(p \circ m)(\emptyset) = 0$ for each $p \in \mathcal{P}$, i.e. $\sigma(\emptyset) = 0$. Let $A, B \in \mathcal{A}$, $A \cap B = \emptyset$; then for all $p \in \mathcal{P}$

$$p[m(A \cup B)] = p[m(A) + m(B)] \le (p \circ m)(A) + (p \circ m)(B)$$

whence

$$\sigma(A \cup B) < \sigma(A) + \sigma(B)$$
.

We are now going to prove the monotonicity of σ . Let $A, B \in \mathcal{A}$, with $A \subset B$ and let $p \in \mathcal{P}$; two possible cases may happen: either $(p \circ m)(B) = 0$ or $(p \circ m)(B) > 0$. In the first case we find

$$m(B) \in U_{p,\varepsilon} = \{x \in V : p(x) \le \varepsilon\}$$
 for every $\varepsilon > 0$

and by quasi-monotonicity $m(A) \in U_{p,\varepsilon}$ for every $\varepsilon > 0$, i.e. $(p \circ m)(A) \le \varepsilon$ for every $\varepsilon > 0$ whence $(p \circ m)(A) = 0$. In the second case let $\varepsilon_p = (p \circ m)(B)$. By the same quasi-monotonicity argument one finds

$$m(A) \in U_{p,\varepsilon_p}$$
, i.e. $(p \circ m)(A) \le \varepsilon_p = (p \circ m)(B)$.

Thus for each $p \in \mathcal{P}$ we proved that $(p \circ m)(A) \leq (p \circ m)(B)$, and so $\sigma(A) \leq \sigma(B)$. Furthermore from the semiconvexity of m and from the properties of seminorms in L.C.T.V.S. we have for every $p \in \mathcal{P}$ and $A \in \mathcal{A}$

$$(p \circ m)(A_{1/2}) = (p \circ m)(A - A_{1/2}) = p\left(\frac{1}{2}m(A)\right) = \frac{1}{2}(p \circ m)(A)$$

i.e. $\sigma(A_{1/2}) = \sigma(A - A_{1/2}) = \frac{1}{2}\sigma(A)$. Finally σ dominates m. Indeed if $(A_n)_n$ is a sequence in \mathcal{A} with $\sigma(A_n) \to 0$, the topology of E being the pointwise convergence one, we have

$$\sigma(A_n)(p) = (p \circ m)(A_n) \to 0 \text{ for all } p \in \mathcal{P}.$$

As V has the weak topology induced by the seminorms it turns out that $m(A_n) \to 0$. Thus σ satisfies all the assumption of Theorem 3.5 and the assertion follows.

We now show that the quasi-monotonicity assumption is crucial in Theorem 4.1; namely we give an example of a semiconvex f.a.m. which is not quasi-monotone and such that the range is not arcwise connected.

EXAMPLE. Let $\Omega = [0,1]$, \mathcal{B} be the σ -algebra of Borel subset of Ω , $\lambda:\mathcal{B} \to [0,1]$ be the usual Lebesgue measure. Let $f:\mathbb{R} \to \mathbb{R}$ be any non continuous additive function, and take $m:\mathcal{B} \to \mathbb{R}^2$ as $m(B) = (\lambda(B), f(\lambda(B)))$. Then m is semiconvex: indeed, for each $A \in \mathcal{B}$ choose $B \subset A$, $B \in \mathcal{B}$ such that $\lambda(B) = \frac{1}{2}\lambda(A)$, i.e. $2\lambda(B) = \lambda(A)$; from the additivity of f one finds

$$2f(\lambda(B)) = f(\lambda(B)) + f(\lambda(B)) = f(\lambda(B) + \lambda(B)) = f(\lambda(A))$$

and so $m(B) = \frac{1}{2}m(A)$.

In [3] it is proved that for every $x \in \mathbb{R}$ f is unbounded on any neighbourhood of x; therefore m isn't quasi-monotone. As we have $R(m) = graph(f|_{[0,1]})$, and f is not Lebesgue-measurable, (see [3]), R(m) cannot be arcwise connected.

LEMMA 4.2. Let A and B be two topological groups and let $f: A \to B$ be a continuous morphism. Then $f(U_A(0)) = \{f(U), U \in U_A(0)\}$ is a neighbourhood basis for the neutral element $f(0) \in B$.

The proof is straightforward.

LEMMA 4.3. Let G be a locally compact group. If $m: \mathcal{A} \to G$ is a semiconvex quasi-monotone f.a.m. and φ is any element in the character group then $(\varphi \circ m): \mathcal{A} \to \mathbf{T}$ is a semiconvex quasi-monotone f.a.m.. Thus the f.a.m. $\lambda: \mathcal{A} \to \mathbf{T}^{G^{\wedge}}$ defined – for every $A \in \mathcal{A}$ – by $\lambda(A): G^{\wedge} \to \mathbf{T}$ with $\lambda(A)(\varphi) = (\varphi \circ m)(A)$ is semiconvex and quasi-monotone with respect to the pointwise convergence topology.

Proof. Let $\varphi \in G^{\wedge}$ be fixed. Observe first that $(\varphi \circ m)(\emptyset) = 1$ and for $A, B \in \mathcal{A}$, $A \cap B = \emptyset$

$$(\varphi \circ m)(A \cup B) = \varphi[m(A) + m(B)] = (\varphi \circ m)(A) * (\varphi \circ m)(B)$$

by means of the linearity of φ . Furthermore, as m is quasi-monotone if $A \in \mathcal{A}$, for any $B \in A \cap \mathcal{A}$ it follows from Lemma 4.2 that $(\varphi \circ m)(B)$ lies in each neighbourhood of 1 in T containing $(\varphi \circ m)(A)$, i.e. $(\varphi \circ m)$ is quasi-monotone. From the semiconvexity of m for each $A \in \mathcal{A}$, $A_{1/2} \in A \cap \mathcal{A}$ exists such that

$$(\varphi \circ m)(A_{1/2}) * (\varphi \circ m)(A_{1/2}) = (\varphi \circ m)(A)$$

and so

$$(\varphi \circ m)(A_{1/2}) = [(\varphi \circ m)(A)]^{1/2}.$$

This shows that each $(\varphi \circ m)$ is semiconvex and that for any $A \in \mathcal{A}$ the «halving» subset is the same for every $\varphi \in G^{\wedge}$: thus λ is

semiconvex itself. The other properties of λ being trivial the assertion follows.

THEOREM 4.4. Let G be a locally compact group without second order cyclic elements. If $m: \mathcal{A} \to G$ is a semiconvex quasi-monotone, s-bounded f.a.m., then R(m) is arcwise connected.

Proof. Let $I = \{z \in \mathbf{T} : \operatorname{Re}(z) \in [0,1]\}$; for every $\varphi \in G^{\wedge}$ there exists $U^{(\varphi)} \in U_G(0)$ such that $\varphi(U^{(\varphi)}) \subset I$. From the semiconvexity and the s-boundedness the continuity of m follows ([4]). Hence there exists a finite decomposition $\{A_1, \ldots, A_n\}$ of Ω such that $m(A_i \cap \mathcal{A}) \subset U^{(\varphi)}$ $i = 1, \ldots, n$. Then $(\varphi \circ m)(A_i \cap \mathcal{A}) \subset I$, $i = 1, \ldots, n$.

Set now $\mu_k(B) = (\varphi \circ m)(B \cap A_k)$, $B \in \mathcal{A}$; then $\mu_k(B) = e^{i\nu_k(B)}$ with $|\nu_k| \leq \frac{\pi}{2}$. We show now that each ν_k is a quasi-monotone, semiconvex f.a.m.. In fact $\nu_k(\emptyset) = 0$ as $(\varphi \circ m)(\emptyset \cap A_k) = 1$. Moreover if $B, C \in \mathcal{A}$, $B \cap C = \emptyset$ then from

$$e^{i\nu_k(B\cup C)} = \mu_k(B\cup C) = (\varphi\circ m)[(B\cup C)\cap A_k] =$$

$$(\varphi\circ m)[(B\cap A_k)\cup (C\cap A_k)] = (\varphi\circ m)(B\cap A_k)*(\varphi\circ m)(C\cap A_k) =$$

$$e^{i\nu_k(B)}\cdot e^{i\nu_k(C)} = e^{i[\nu_k(B)+\nu_k(C)]}$$

we get $\nu_k(B \cup C) = \nu_k(B) + \nu_k(C)$. ν_k is semiconvex because, for fixed $A \in \mathcal{A}$; from Lemma 4.3 there exists $A_{1/2} \subset A$, $A_{1/2} \in \mathcal{A}$ such that

$$(\varphi \circ m)(A_{1/2} \cap A_k) * (\varphi \circ m)(A_{1/2} \cap A_k) = (\varphi \circ m)(A \cap A_k),$$
i.e. $\mu_k(A_{1/2}) * \mu_k(A_{1/2}) = \mu_k(A)$ and so
$$e^{2i\nu_k(A_{1/2})} = e^{i\nu_k(A)}, \quad \text{whence} \quad \nu_k(A_{1/2}) = \frac{1}{2}\nu_k(A).$$

The quasi monotonicity of ν_k follows immediately from that of $(\varphi \circ m)$ established in Lemma 4.3. Set now $\nu_{\varphi} = \sum_{k=1}^{n} \nu_k$: it is obvious that ν_{φ} is again a quasi-monotone semiconvex f.a.m.; furthermore as the A_k 's are pairwise disjoint $(\varphi \circ m) = e^{i\nu_{\varphi}}$ and $\mathcal{N}(\varphi \circ m) = \mathcal{N}(\nu)$ (where $\mathcal{N}(\cdot)$ denotes the ideal of \mathcal{A} -measurable subset having (\cdot)

measure equal to neutral element of the group.) Consider now $E = \mathbb{R}^{G^{\wedge}}$ equipped with the pointwise order induced by the cone $\mathbf{C} = \{f: G^{\wedge} \to \mathbb{R}_0^+\}$ and with the pointwise convergence topology. Then it is possible to define the following f.a.m.: $\nu : \mathcal{A} \to E$, i.e. $\nu(A): G^{\wedge} \to \mathbb{R}$ defined by $\nu(A)(\varphi) = \nu_{\varphi}(A)$. It is obvious that for the topology of E and from the same properties for ν_{φ} , ν is quasi monotone. Moreover, the «halving» sets for ν_{φ} being independent from the choice of $\varphi \in G^{\wedge}$, ν is semiconvex. We now prove that ν dominates m. Indeed if $(A_n)_n$ is a sequence in \mathcal{A} such that $\nu(A_n) \to 0$ then for each $\varphi \in G^{\wedge}$ $(\varphi \circ m)(A_n) \to 1$. As G has the weak topology induced by G^{\wedge} ([1]) it follows $m(A_n) \to 0$. We now consider the family $\mathcal P$ of admissible seminorms on the L.C.T.V.S. E; set $F = \mathbb R^{\mathcal P}$ and endow F with the pointwise order $\mathbf{K} = \{f : \mathcal{P} \to \mathbf{R}_0^+\}$ and with the pointwise convergence topology. Taking $\sigma: \mathcal{A} \to \mathbb{C}$ as in the proof of Theorem 4.1 we get a semiconvex submeasure dominating ν ; then $m \ll \nu$, $\nu \ll \sigma$, implies $m \ll \sigma$, and therefore from Theorem 3.5 the assertion follows.

REFERENCES

- [1] Armacost D.L., The structure of locally compact abelian groups, Dekker, New York, (1981).
- [2] Caccioppoli R., Sopra i funzioni distributivi, Boll. Un. Mat. Ital. Suppl. 5, (1926), 128-130.
- [3] Caccioppoli R., Sull'equazione funzionale f(x + y) = f(x) + f(y), Boll; Un. Mat. Ital. Suppl. 5 (1926) 227-228.
- [4] Candeloro D., Unpublished manuscript.
- [5] Candeloro D., Martellotti A., Su alcuni problemi relativi a misure scalari subadditive e applicazioni al caso della additività finita, Atti Sem. Mat. Fis. Univ. Modena, 27, (1978), 284-296.
- [6] Constantinescu C., The range of atomless group-valued measures, Comment. Math. Helv. 51, (1976), 191-205.
- [7] Landers D., Connectedness properties of the range of vector and semimeasures, Manuscripta. Math. 9, (1973), 105-112.
- [8] D'Andrea De Lucia A.B., De Lucia P., Sul codominio delle funzioni

- finitamente additive, Rend. Circ. Mat. di Palermo Serie II, Tomo XXXV, (1986), 203-210.
- [9] Martellotti A., Topological properties of the range of a group-valued finitely additive measure, J. of Math. Anal. and Applications 110, (1985), 411-424.
- [10] Musial K., Absolute continuity and the range of group-valued measures, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 21, (1973), 105-113.
- [11] Volkmer H., Weber H., Der Wertebereich atomloser Inhalte, Arch. Math. Vol. 40, (1983), 464-474.
- [12] Weber H., Die atomare Struktur topologischer Boolescher Ringe und s-beschränkter Inhalte, Studia Math. 74 (1), (1982), 57-81.

Anna Martellotti
Dipartimento di Matematica
Facoltà di Ingegneria
Via Brecce Bianche
60100 Ancona
Anna Rita Sambucini
Dipartimento di Matematica
Università degli Studi
Via Pascoli

06100 Perugia