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COMPLETENESS AND DECIDABILITY
OF THE DEDUCIBILITY PROBLEM FOR SOME CLASS
OF FORMULAS OF SET THEORY

ALBERTO POLICRITI (New York) (*)

An extension of results on the decidability of classes of formulas
in set theory is proved. In particular a class of restricted quantified
formulas is proved to be decidable also in the case in which the
underlying axiomatic set theory does not contain the axiom of foundation.
For all the classes considered is also studied whether or not they result
to be not only decidable, but also complete and a simple decidable but
not complete class of formulas is presented.

1. Introduction and Motivations.

The present work extends some of the results obtained in Decision
Procedures for Elementary Sublanguages of Set Theory II. Formulas
Involving Restricted Quantifiers, together with Ordinal, Integer, Map,
and Domain Notions [1].

The results contained in [1] are based upon a decidability proof
of the problem of deducibility in Zermelo-Fraenkel-Skolem set theory

(*) Entrato in Redazione il 16 novembre 1988
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ZF of a class of formulas T' which is then enlarged in several stages.

To say that the deducibility problem for a given class of formulas
is decidable with respect, say, to ZF means that in a given metatheory
(for example again Z F) it is possible to introduce a one-place predicate
T'(z) that expresses the fact that (the code of) a formula belongs to
the class 7" and another one-place recursive predicate D(z) which
analogously expresses the fact that:

(1) ZF FYo(T(p) — (D(p) + ZF F @)

with Z F intended as metatheory and ¢ as variable for formulas in a
suitable arithmetization of sintax!.

Considering a different theory with respect to which the algorithm
decides the deducibility, such a result can be improved in two ways:

1. strengthening (with respect to Z F) the theory when dealing with
formulas that have been declared to be not deducible by the
algorithm (we try to answer the question: for which theories F
such that F D ZF we can say

T'(p) = (=D(p) — F I p)

2. weakening (with respect to ZF) the theory when dealing with
formulas that have been declared to be deducible by the algorithm
(here the question is: for which theories S such that S C ZF we
can say

T'(p) = (D(p) = S F @)

Looking at the algorithm introduced in [1] it is easy to see
that the formulas that have been declared to be not deducible with
respect to Z F, as a matter of fact are not deducible in any consistent

1 We will use the term deducibility algorithm (or equivalently deducibility
problem) which seems to be more appropriate in this context and avoids the pos-
sible misunderstandings that the term decidability algorithm (decidability pro-
cedure) could generate, since it would be always necessary to specify if we are

talking about the decidability of validity or the decidability of satisfiability
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extension of ZF, being the theory ZF complete with respect to those
classes of formulas, therefore improvements of type 1. are trivial.

In this paper we present instead some improvement of type 2.
by substituing the theory ZF with the weaker theory ZFA (where
A stands for absolute or arithmetic) which is the theory ZF without
the axioms of foundation, powerset and infinity presented in [5].

, After developing the details for ZFA it will be clear how to
further extend the results to even weaker set theories such as the
theory Ty presented in [2].

We will show that it is possible to solve the deducibility problem
with respect to ZFA for the classes of formulas introduced in [1] by
using the algorithm introduced in that paper modified by eliminating
one of the steps, and we will prove the following metatheorem

for any —¢ which does not contain an immediate contradiction of
the axiom of foundation (a cycle of variables in the relation €):
Z FAF o iff there exists a (consistent) extension F of ZF A such
that F I ¢.

The method that we will describe is the one of the so called
permutations of the universe of Fraenkel-Mostowski classically used
to prove the consistency of the axiom of foundation and choice (for
a complete introduction see [4]) and also used in [6] [7] [8] [9] to
obtain a number of related results.

We will be able to use as metatheory again ZFA, which is
strictly finitistic, since we will give consistency proofs by constructing
internal syntactic interpretations and not by making use of the axiom
of infinity to argue the existence of suitable models.

2. Decidability of a class of formulas.

Let us consider the language of set theory extended with the
constant § denoting the empty set. We define the class of formulas T}
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to be the propositional closure of the set of formulas of the type:
(2) T=yY, TEY

where z and y are variables or the constant {.

We will call literals the formulas in 7, of type (2) or their
negations.

We will prove that there exists a deducibility algorithm for
disjunctions of literals in 77 with respect to ZF A. This will produce a
deducibility algorithm for any formula in 73 by first bringing generic
formulas in 7% in conjunctive normal form, and then testing each

conjunct separately.
Deducibility algorithm for disjunction of literals in T7.

Since we describe the algorithm in terms of satisfiability we start
with a conjunction of literals . Let £1,..., Bn be the literals in ¢.

Step 1. Let V be the set of variables in ¢; we define an
equivalence relation ~ on V in this way: |

z ~ y iff zpy, zpz or z and y are the same variable;
where zpy iff there exists a finite succession zi,...,z, of elements in
V such that z is z;, y is z, and for any j € {1,...,n— 1} z;5z,41 (we
will use the symbol “on a connective of the form = % €, ¢ to indicate
that the corrensponding literal is in o).

Let now V be V\ ~ (that is the set of equivalence classes in V
with respect to the relation ~).

We will indicate by ¢ the formula obtained from ¢ by substituting
the variables by their representatives with respect to the equivalence
relation ~ and eliminating all conjuncts of the form z = z, if the
result is not empty; otherwise let ¢ be any fixed tautology.

Observation 1. The existential closure of ¢ and ¢ are logically
equivalent (and therefore equisatisfiable).

Step 2. Consider the following conditions:
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a) z#z for some z € V.
b) z&@ for some z € V.
¢) zéy and z¢y for some 7,y € V.

and declare —¢ deducible iff one of the above condition is satisfied.

The claim expressed in step 2 is proved by showing the following
lemma:

LEMMA 2.1. None of the conditions a) b) ¢ is satisfied iff
Con(Z F A+ 35p)?

Proof. Clearly if any of the conditions is satisfied then
ZFAF -(3p)

and therefore the theory ZF A + 3%y is not consistent.

Viceversa let us suppose that none of the conditions is satisfied
and, moreover, let us suppose that also the following condition d) is
not satisfied:

d) there éxists T1,...,Zs € V such that

T1€T2, ..., Tn&ly

We will prove that if none of the conditions a) - d) is satisfied
then ZFA F 3%y from which it follows Con(Z FA +3Zp), and then
we will see that the hypothesis d) is not necessary to prove the

consistency.
From the fact that d) is not satisfied it easily follows that.we
~can define a well order < on V such that:

.'L‘éy—>a:<)y

We will indicate with z1,...,, the elements of V assuming that
x; Ay, iff 1 <7J.

2 Con stands for is consistent; JZ¢p stands for the existential closure of .
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Let us suppose that §§ € V as a representative of the equivalence
class to which it belongs or added by hypothesis if it does not appear
in .

At any rate, because of the fact that condition b) is not satisfied,
we can put z; = §.

Let I be a function having V as domain with Iz; =@ and such
that:

l<j<n—= Uz ={}ANi;={j,n+1})V Iz; = D).

We will see that considering Iz; =@ only for j =1 we already
obtain the desired result but that a different choice of I will be
necessary to obtain the generalizations presented in the following.

Because of the fact that condition d) is not satisfied we can say
that & induces a well founded relation on V on which it is possible
to define by recursion a function M as follows:

3) ' Mz;=Iz; U{Mz; : z;€x;}

We now show a lemma on the ground of which it will be possible

to prove the previously stated result.

LEMMA 2.2.
a) for all j, ke {1,... ,n} Mzc#;
b) if for all j € {2,...,n} we have Iz; = {i;} then M is injective.

Proof.

a) If Izg = {1} then i, is an element of Mz, but it cannot be an
element of any i; from the very definition of {i;}, and therefore
Mz is different from {3,}. If, instead Iz, = § then either Mz, = §
or MCL‘;C = {MLII,' . m;éwk}.

If it was Mz, =14; we would have that for some z;, Mz; =n+1,
but any Mz; has at most n elements (this is because of (3)
noticing that |V| = n) whereas n+1 has n+ 1 elements.

b) To prove that if for all j € {2,...,n} Iz, = {1;} then M is
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injective, it is enough to observe the definition of M and the fact

that j#k — i;5.

Now we show that if the function I is such that the assignment
M is one-to-one then we have that:

@zl,...,zn(MfEl) ceey Mz,)

is derivable in ZFA (that is the formula ¢ with free variables
z1,...,%, is satisfied by the closed terms Mzx,..., Mz, definable in
ZFA). | |

We show that the terms M z; satisfy the literals in $ from which
the thesis will follow because of the definition of &, . -, (Mz1,..., Mz,).

If z#y then from the fact that a) is not satisfied we have that z
and y are distinct and therefore Mz#My.

If &y from the definition of M it follows that Mz € My and
therefore M satisfy z € y.

If z¢y then the from the fact that c) is not satisfied, it is not
zé&y. Moreover if Mz € My then Mz = Mw with wé&y and since it
is not z€y, it means that r and w are distinct whereas Mz = Mw:
contradiction. Therefore M satisfies z&y.

Now it will suffice to define Iz, =@ and Iz; = {i;} for all
Jj €{2,...,n} to obtain from Lemma 2.2 that M is one-to-one.

Observation 2. All the proofs presented above can be carried out
in ZFA and therefore in case conditions a)-d) are not satisfied it
follows that ZF A 3Tp.

Now we only need to prove that we can drop the hypothesis
relative to condition d) still having Con(Z F A + dAzp).

Let us suppose that ¢ contains cycles and let us show how it is
possible to build an internal representation in ZF A that satisfies the

formula (sentence) Jzp.
As we said in the introduction, we will use the method of the

permutations of the universe.
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Let us consider first the case in which the formula ¢ contains
only one cycle, then we will deal with the general case.

Let ¢’ will be the formula obtained from ¢ dropping one of the
literals in the cycle, say = € y.

The formula ¢ will not contain cycles and therefore it is
satisfiable with a finite succesion of terms of the kind M 2.

Among the M2’s we must find also Mz and My (because of the
fact that in the.cycle there were two literals of the form y € v and
u € x). '

The succesion of M2z’s will satisfy, in particular, the cycle of @
deprived of the literal z € y, that is:

Mye MuvAN..NMue Mz

Let us consider a functional bijective relation F (permutation of
the universe) that swaps the sets My and My U {Mz} and does not
touch any other set.

‘Observation 3. For any variable z in ¢ different from y we have:
MyU{Mz}#M=z

because i, € My U {Mz} and 1, € Mz with i;%i, (apply lemma 2.2).
Let & be the following relation:

(4) ' agb < a € F(b)

Let us consider the universe of sets 7/ as domain and ¢ as
interpretation of the membership relation.

We have that the structure (7]e) is an internal interpretation
for ZF A (see [4] chapter 7) in which 3¢ is satisfied.

In fact: if in (4) for b there is an element for which F is the
identity then the relation e coincides with €; therefore let us analize
only the case in which b is My or My U {Mz}.



COMPLETENESS AND DECIDABILITY,... 57

Notice that from observation 3 we can conclude that My U {Mz}
does not appear among the terms satisfying ¢’ and therefore we are
only interested in the case in which b is My.

Because of the fact that My C F(My) we can say that if
Mz e My then MzeMy; moreover, from the fact that Mz € F(My)
we can also conclude that M zeMy, that is the assignment M satisfies
z € y with respect to the relation «.

If 2¢y then Mz¢M, from which Mz¢My because the only
element that is in relation with My with respect to ¢ and does not
belong to My is Mz and if Mz = Mz then z =z, but we supposed
z¢y and therefore we would have z¢y, we also have z&y and this is
a contraddiction because c¢) is not satisfied.

The observation 3 solves the case of literals of the form 2y
and therefore the assignment M satisfies, with respect to &, all the
literals that it satisfies with respect to €; moreover it satisfies also
z € y and therefore it satisfies . |

Observation 4. The proof now presented is valid also in the case
in which the variables z and y coincide. It will suffice to define
Mz = {i;} if = does not appear in any other literal in ¢ and then
proceed with the very same argument.

The case in which the formula contains more than one cycle is
solved by induction on the number of cycles:

if ¢ contains only one cycle we will repeat the previous proof,
if ¢ contains n cycles let us eliminate one literal per cycle and let
us suppose that we already defined the relation ¢, ; with respect to
which the first n— 1 cycles are satisfied.

Let z € y be the literal eliminated from the n-th cycle, let us
define ¢, as follows: -

agnb & ag,_1 F(b)

where F' permutates M, with My U {M,}.

Letting €, and ¢, 1 play the roles of ¢ and & respectively in the
previous proof, it is easy to check that the terms of the form Mz
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satisfy the formula ¢ with respect to the relation .
We have showed that for any formula ¢, conditions a) b) ¢) do
not hold iff Con(ZF A + 3Zp).

Moreover we have that:
CodlZFA+33p) & ZFAYYT-p

and therefore, recalling that the negation of a conjunction of literals is
a disjunction of literals, we have a decision algorithm for disjunction
of literals in the class of formulas 73.

Let us note now that all we did till now is perfectly adaptable
to the theory ZF, it will suffice to add to conditions a) b) c) of
lemma 2.1 the condition d) that will have the only effect of declaring
deducible negations of formulas containing immediate contradictions
to the axiom of foundation (i.e. cycles).

This observation allow us to conclude that not only the class T}
is decidable with respect to ZF but, moreover, that ZF is complete
with respect to 77; this fact alone implies the decidability; notice that
in general the viceversa does not hold and T; with respect to ZF A
1s just an example of this fact.

Let us now prove the completeness of ZF with respect to 7;: if
p a disjunction of literals and if -y satisfies one among a)-¢) then it
follows that (ZF A+ 3T-¢) is not consistent, from which ZF - Vi;
on the hand, if —¢ satisfies d), then it follows from the axion of
foundation that ZF F VZp. Finally, if —¢ does not satisfy any of
the four previous conditions, by an argument similar to the proof of
Lemma 2.1 it follows that these hypothesis ZF + 37—¢ and therefore
ZF F —~(NTp).

Let us conclude by giving a proof of the metatheorem stated in
the introduction.

The only if part is trivial; the converse let us suppose that
ZFAt o, that is Con(ZFA+33-p) and therefore —¢ does not sotisfy
neither a) nor b) nor ¢), moreover —p does not satisfy d) from the
hypothesis and hence ZFA F 37—¢ from which F F 3i-¢ which
implies F |/ ¢ from the consistency of F.
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3. A satisfiability algorithm D

Syntactivally we say that a formula is satisfiable with respect to
a certain theory P if P together with the existential closure of ¢ is
consistent, that is if Con(P + ITp).

Let us note that Con(P +33yp) iff P ¥ =(3Zyp) iff P If (Vi—yp) and
therfore we can conclude that if C is a class of formulas such that

pelC el

then the problems of satisfiability and deducibility for C are equivalent.

In this section we will introduce an algorithm that will allow us
to solve (in the next section) the satisfiability problem for a particular
class of quantified formulas that has the previous property and hence
we will be able to say that for this class, the deducibility problem is
solved. :

We will say sound an algorithm that transforms a satisfiable
formula ¢ in a satisfiable formula ¢'; we will say complete an
algorithm that is such that if ¢’ is satisfiable then also ¢ is
satisfiable. '

Let T be a class of unquantified formulas closed with respect to
the propositional connectives.

We will call prenex-T-formula any formula of the form:

Qu,--,UnR

where all the Q;’s are equal to Vz; or dz; and R € T.
Let Z+ be the propositional closure of the set of prenex T-formulas.
Let X7, be the set of T-formulas of X of the form:

ﬁl/\-.-/\ﬂn

where all the §;’s are prenex T'-formulas.

Clearly the satisfiability problem for Z; is solved if it is solved
the satisfiability problem for X, and, moreover, we can suppose that
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in any prenex T-formula two different quantifiers will bound two
different variables and that no variable will occur both free and
bounded (possibly renaming the variable and passing to a logically
equivalent formula).

The algorithm D that we are now going to describe will transform
formulas ¢ in X7, into formulas in T'; we will see that it is sound
but, in general, not complete (we will prove the completeness in a
particular case presented in the next section) and for any ¢ € 2, it
will answer to the question if ¢ satisfiable or not with respect to a
theory for which 7" is decidable.

Let us initialize V to the set of free variables in ¢ (if V =0 we
put V = {z} for a new variable z). |

Notice: V' will be modified during the procedure by adding the
variables that will then result in the formula we are going to obtain.

Step 1. Substitute the conjuncts of the form dx(z) with PY(z);,
(that is the formula obtained substituing all the occourrencies of z by
2z) with 2, new variable that we add to V.

Repeat the step as many times as possible.

Step 2. Let ¢ be the formula obtained after all the applications of
the previous step; if ¢ belongs to 7" then apply the decision algorithm
for T and if Con(ZF A + 3jp) we can say that Con(ZF A +3%yp), if
otherwise ~Con(Z F A+3%%) the algorithm will answer I do not know
(this is the case in which the algorithm reveals its incompleteness).

Step 3. If ¢¢T consider a disjunct fo the form Vz)y(z) and
substitute it with Ayey9Z.

Go back to step 1.

Clearly Step 1 is both sound and complete whereas it is easy to
verify that Step 3 is still sound but, in general, not complete (see [1]
for a complete discussion).

We now introduce the notion of Special Set of Variables that we
will use in the next paragraph to show that in some particular case
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the algorithm D is complete.

DEFINITION 3.1. A set S of variables is sqid to be special if the
following conditions hold:

1. §eS;
2. for all ©,y € S there exists a z € V such that (zEx « —2Ey)

Observation 1. Strictly speaking the previous definition should
specify also the formula with respect to which S is said to be special,
but this will always be clear from the context.

LEMMA 3.2. if ¢ does not satisfy conditions a)-d) of lemma 2.1,
the following facts are equivalent:

A) the function I is defined in such a way that if * and y are
distinct then Mz#My.

B) the set S ={z : Iz =0} is special.
Observation 2. S = {§} is special.

Proof. (of the lemma 3.2) If A) holds then I = § by definition
and therefore § € S.

Moreover if z and y are distinct in S but, by contradiction, such
that

2€x & 2Ey
then from the fact that they are in S we can conclude that Iz = | y="0
and moreover
{Mz:2Ezx}={Mz:z2&y}

that is Mz = My which is a contradiction and therefore B) holds.

If B) holds let A(z) be the number associated to z in the
enumeration of V and let us call h(z) the height of the variable z.

Let us prove A) by induction on k£ = max(h(z), h(y)).

If k =0 then z and y cannot be distinct and therefore there is
nothing to prove.
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Let now A) be true for m < k with (k > 1).
If z,y € S then for some z it must be that (for example) z&x
and —z€y, from which it follows that Mz € Mz.

If, by contradiction, Mz € My then Mz = Mw for some w such
that w€y and because of the fact that it is not z&y we have that w and
z are distinct and by inductive hypothesis M w#M z: contradiction.

Therefore Mz¢My from which Maz#My.

If ,y¢S then Iz#Iy and therefore M TFMy.

COROLLARY 3.3. Let S be a special set of variables.

If I is the function such that Iz; =@ when z; € S whereas
Iz; = {1;} otherwise, then the corresponding M satisfies Iy whenever
p does not satisfy conditions a)-d) of lemma 2.1.

Observation 3. (important) if z € § and S is special, then
Mz = {Mz: 2&z} (that is every element of Mz is a Mz with z
variable of ).

4. A case in which the algorithm D is complete.

Now we define a class of prenex formulas for which the algorithm
D is not only sound but also complete.

DEFINITION 4.1. a Ty-formula ¢ is said to be simple iff q is of
the form

Q1,...,QnP

and moreover:

a) every Q; is of the type
Vyi € 2)

or every (Q; is of the type

(Jyi € )
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and P is a formula in T1.

b) no y; is a z; (that is every z; is free).

Let T'; be the proposition closure of the class of simple prenex
T1-formulas.

From now on let V) indicate the set of free variables in the
formula y.

Let also @ be the formula before applying the algorithm and ¢
be the corresponding formula after applying the algorithm D. We will
suppose ¢ to be satisfiable since we want to prove completeness.

As usual, given the formula in Iy that we want to test, we
will bring the formula in disjunctive normal form (let us note that
the negation of a simple prenex T)-formula is still a simple prenex
Tl-foi'mula) and we wil test each one of the disjuncts, which will
result to be conjunctions of simple prenex 7)-formulas.

Hence it is not restrictive to describe the algorithm (and to show
its completeness) in the case in which ® is of the form

BiA...N\ B

where for all 7, §; is a simple prenex Ti-formula.

Let us recall that the only step of the algorithm which could
create problems was step 3 (the others were sound and complete).

First of all let us consider the following example that will show
why it is necessary to apply a normalization procedure to the formulas
to which we want to apply the algorithm.

Let @ be the formula:
Vz € y)(xgy) A Vw € z)(wéz) A y#z.

The formula is clearly unsatisfiable, but if we apply D we obtain
the following ¢:

(z€y — 28y Ay €y — yy)A

Ny €z —ydz)A(z € 2z — 2¢2) N\ y#2
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which is equivalent to:

(z€y) N (WEY) A (y€z) A (22) A 25y

which, in turn, is clearly satisfiable.

In this case we have that ¢ is satisfiable whereas ® is not and
therefore the algorithm D is not complete.

The necessity of applying the normalization procedure before the
algorithm D will imply that, even if we will say that D is complete,
actually the procedure D’ consisting of the normalization procedure
followed by the algorithm D will be complete with respect to T7.

Normalization Procedure: for every pair of distinct variables z,y
in Vo add the following conjunct:

(T=yV(zzy € TA 25,y V (25 ,&T A Zzy € Y))

where z;, is a new variable.

Clearly the normalization procedure transforms formulas in
formulas equisatisfiable; moreover let us suppose that the formula ©
turns out to be satisfiable. -

The normalization procedure will allow us to conclude tha the
set of variables Vo is special for ¢ and therefore we can define an
assignment I such that

It=0 —x€ Vp

Using the assignment [ we can define an interpretation M such
that:
(*) for all z € Vo if Mz has only elements of the form Mz for some

zeV, |

Let us suppose that ¢ does contain cycles. In this case we can
apply the procedure described in section 2 by eliminating a literal
from every cycle but making sure never to eliminate a literal of the

form:
2oy €T
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with z € V. v

At this point we can conclude that Ve is special for the formula
¢’ obtained from ¢ after breaking all the cycles.

Using the interpretation M which satisfied (*) and defihed for ¢/
we can then define the relations g, as we did in section 2.

Let us note that for every n, if for some z the elements for which
relation &, 1 holds between them and Mz are all of the form Mz,
then the same is true also for the same z and the relation ¢,, and

therefore (*) continues to hold.
At this point it is clear that if z; € Vo and if

NG AG)

heVy

holds, fhen also
Vy; € 2)p(y:)

holds, and therefore Step 3 is complete.

We can finally observe that if the class 7% from which we started
was complete with respect to the underlying set theory, then the
previous algorithm shows the completness of the class I'y, and this 18
the case for the theory ZF.
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