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ON THE CONVERGENCE OF VARIATIONAL PROBLEMS
WITH STOCHASTIC UNILATERAL OBSTACLES

PLACIDO LONGO (Catania) (*)

This paper presents a study about the I'-convergence of a sequence
of variational stochastic obstacle problems to a deterministic one.

The aim of this paper is to compute explicitely the T'(L%(Q)™)
limit of the sequence of variational functionals defined by

T (w, A) = [Jul[f gy + P (u, A)
where @} is a stochastic unilateral obstacle functional

0 if i(z) > ¢} (z) cap a.e. on A
DY (u, A) =
+o0o otherwise

Here

Q =]0,1[x]0, 1[; by various amount of technicalities it could be
taken as any open subset of R", even unbounded (see e.g. [2]); w

(*) Entrato in Redazione il 16 novembre 1988
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runs over some probabilized space £, with probability P; A is an
open subset of @Q; u runs over H(Q); %(x) is any quasi-continuous

representative of u, e.g. (see [2])

t(z) = lim iglf[meas{y EQ:ly—z|< p}]_I/ u(y)dy;
~ {yeQ:ly—al<p}

the capacity is defined, for any Borel subset of ) by
cap B = inf{||w|[31q), w € H'(Q),w Ls.c., w > 1 on B};

a property is said to hold cap. almost everywhere (cap. a.e.) if the
capacity of the set where it does not hold is zero. Finally ¢% : Q — IR,
Vh € N Vw € Q, is the obstacle function, that will be specified later.

It is known (see [2]) that J/’(u, A) has a unique minimum point on
HY(Q), for any fixed h € N and w € Q, provided it is not indentically
+00. '

In the following we study the asymptotic behaviour of the minima
of J’(u, A) for a sequence of stochastic obstacles that is closely related
to the sequence studied in [1].

More precisely, denoting by v} the minimum point of J;’(u, A) in
HYQ), it will be shown that there exists a «deterministic» u € H'(A),
i.e. independent of w, such that

u‘;—l’ — uin LZ(Q)

for almost all fixed @ € Q. Moreover u is the minimum point of a
deterministic «limit» functional, in the sense of I'-convergence.

The main theorem.

Let Q =]0, 1[. For each fixed h € N divide Q into h? equal squares
Qi,i=1,2,...,h% Let B and zi be the circle inscribed in Q} and its
center, respectively. Let .S’;; be the circle centered at :1:}1 with radius

e—". Set
a};(w) if £ € S,‘;
op(z) =
—oo  otherwise
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where o} (w), h € Ni=1,2,...,h% are independent random variables,
having the same distribution function of some fixed random variable
a(w), i.e.

Plw e Q:af(w)>ty=P{weQ:aw)>t}
for any h € N, any 1=1,2,... A% and any t € R.

1
Finally let a, = E(a +|a]) and a,% = (as)? Va € R.

THEOREM. Let (p%),cN> w € Q be defined as above and suppose
that /a4(w)dP < +o0.
Q
Then

w—u A Q
for any u € HYQ), any open set A C Q such that meas(0A) =0 and
almost all w € Q.

As it will be seen in Proposition 0.2, this result implies the
stated convergence of minima.

The proof of this theorem requires some lemmas and preliminaries
contained in the following section.

It must be noted that the stochastic I'-convergence studied in this
paper, i.e.the almost-everywhere-in-Q-convergence, is not the only
resonable one. For another relevant kind of stochastic convergence

and its applications see, e.g., [3].
The author wishes to thank prof E. De Giorgi for his suggestions
and comments. '

0. Preliminaries.

In the following, the class of the open subsets of () is denoted by
A(Q). Furthermore the norms || - [|g14) and || - ||z2cay Will be denoted
by || - |l,4 and || -]lo,4-
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Abstract T'-convergence.

In separable metric spaces, I'-convergence is characterized by the

following proposition.

PROPOSITION 0.1. Let X be a separable metric space. Let fi, f be
functionals from X to R.

Then
£w) = TCC) Jim sup fo(w)

if and only if
1) for every sequence (wy) of X, such that wy, — u in X,

f(w) < limsup fp(ws)

h—oo

2) there exists a sequence (up) of X, such that

up, — uwin X and f(u) = limsup fj(up).

h—o0

The characterization of the T'(X “)li}fninf fu(w) obtained from the
above one by replacing limsup by liminf.
Finally, if
F(X*)Iirhriinf fr(w) =T(X7)limsup f(w)

h—oco
w—u
w—u

their cammon value is denoted by T'(X™) }EE fr(w).

In this paper only I'(L%(Q)~) convergence will be used. Thus the
symbols’I“lim, I'limsup, I'liminf will denote the corresponding limits
in the L%(Q) topology.

There is an extensive literature regarding theory and applications
of I'-convergence. Here only the necessary definitions and properties
will be quoted. For more information on this subject see [4].

Perhaps the most relevant property of I'-convergence is its
relationship with the convergence of minima and minimum points.
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PROPOSITION 0.2. Let f(u) =T(X™) }im frn(w). Suppose also that

fn has a minimum point u, in X and that there exists a fixed compact
subset K of X such that u, € K Vh € N.

Then f has a minimum points u,ur — u in X and fr(up) — f(uw).
A useful tool in computing I'-limits is the following formula.

PROPOSITION 0.3. Let X = LZ(Q). Let (f) be a sequence of l.s.c.
convex functionals. Suppose that f, are equicoercive, i.e.

Vt € RIK; C X K; compact: {w € X @ fa(w) <t} C Ky Vh € N,

Thus

['(X ™) limsup f,(w) = sup lim sup mln[fh(w) + M|w — ullo, Ql-
h—oo zelN h—oo

w-—ru

Analogous formulae hold for T'liminf and T'lim, by replacing
limsup by liminf and lim, respectively.

It is not hard to prove that the last proposition remains valid if

one replaces ||lw — u|log by ||w — uHOQ, or sup by lim.
xelN A—00

Obstacles.

The definition of capacity already introduced is different from
but equivalent, for our purpose, to the classical one. In fact the Borel
subset of capacity zero are the same for both definitions.

The definition of obstacle given in the previous section gives rise
to an H(Q)-l.s.c. functional, without any assumption of regularity on
¢. Therefore the variational problem

. 2
min [||lw + O(w, A
i g + ®w, A)
hag a unique solution for each given A € A(Q). More information
about obstacles is in [2].
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A positive Borel measure y will be said to belong to H~}(Q) if

the linear functional ¢ — / pdy is continuous in C§°(Q)) with respect

to the H'(Q)-topology. The basic property of these measures is that
they are null on each set of capacity zero (see [2]).

Finally a class B of Borel subsets of Q) will be said to be rich if
for any family of Borel subsets of @ (By),cR, such that ¢ < s implies
B, C BS, B; € B holds for all ¢t € R, except a set at most denumerable.
As an example of a rich class may be considered the class of the
Borel sets B such that y(98B) =0, where 4 is a fixed Radon measure.
Remark that denumerable intersection of rich classes is rich.

Moreover, a rich class B is dense, i.e. for any B,, B,, Borel
subset of @, such that By C Bz, there exists B € B such that
B C B CBC B2

More information about rich classes and increasing set fun/ctions
can be found in [2] and in the bibliography given there.

Two important results about I'limit of obstacles are the following

theorems (see [2]).

THEOREM 0.4. Let (py) be any sequence of obstacles.

Let
Fi(u, A) = T lim sup[||w||} ¢ + Pulu + w, A)]
h—ooo

w—0

and ' .
- F_(u, A) =Tliminf[|jw|[f g + ®r(u +w, A)].

w—0

Then

T lim sup[||w|f? o + @n(w, A = ||ul[} g + Filu, A)
h—00 .

w—rYy

T liminf[||w([} g + @n(w, A)] = |ulli g + F-(u, A)

w—u

THEOREM 0.5. (Integral representation of I'limit).
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Let (pp) Fi, P be as above. Moreover suppose that there exists
M € R such that

(%) Jin [l g+ @rtw, Q1< M YheN.

Then, there exist
- two positive Radon measures i and v such that p € H Q)
- a Borel function f:Q x R — R such that f(z,-) is ls.c,

positive, decreasing, convex, for u-almost all x € Q.
-a rich family ﬂlg ﬂ(Q) |
such that '
Fulu, A) = P, A) = [ o, a@di + ()
A

for any u € HY(Q) and any A€ 4

For the proof see [2]. For a complete characterization of I'-limits
of obstacles see [6].

By this theorem, computations done for constant u extend easily
to any u € HY(Q).

Finally the following two lemmas are needed.

LEMMA 0.6. (see [5]. Let B C B’ be two concentric circles and let
v be the solution of :

(—Av+Av=0 on B\B
ﬁfv=1 on B

QE:O on 0B’
\ Ov

Then
-0<v<1lon B

- v has spherical symmetry;
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- decreases when the distance from the center increases.

Remark that v, defined as above, is the minimum point in H L(BH
of the functional |[u|[} 5 + M|ul[} 5 + P(u), where

0 if u(z) > 1 a.e. on B
O(u) = {

+oo otherwise

Probability.

Recall that a probabilized space is defined by a set Q and a
measure P in Q such that P(Q)=1; P is defined on some c-algebra
of subsets of Q, whose elements are called events.

A property will be said to hold almost surely (a.s.) if it holds for
all w € Q, except a set of probability zero.

A random variable is just a measurable function from Q to IR.
Given a random variable the expectation E(a) and the variance Via)

are defined by
Fla) = /a(w)dP
Q

and

V(o) = E((a — E(@)?) = / (o — E(a))*dP.
' Q

Remark that the variance is finite if and only if o € L2 5(Q), i.e.

/ a?dP < +co.
Q
The following Lemma is known as Borel-Cantelli’s Lemmia; it

provides a useful tool in avoiding «exceptional» situations, at least

almost surely.
LEMMA 0.7. (Borel-Cantelli). Let (A,) be a sequence of events such
that EP(A ) < +00.

Then for P-almost all w € Q, there are only finitely many 7 € N
such that w € A,,.
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In other words, for every «history» w, except a set of probability

zero, only a finite number of the events (A4,) actually occur.
The application of Borel-Cantelli’s Lemma needs often an

estimate of P{w € Q : |a(w) — E(®)| > t}. It is supplied by the
following inequalities.

LEMMA 0.8. Let « be a random variables and suppose that
F(a) < +oo.
Then

E
P{w69:|a|»>t}g———§g—)-

moreover, if V(a) < +oo then

P{w e Q! |aw) — El@)| >t} < Vt(zoz),‘

Some book on probability theory refers to the former estimate as
to «Markov’s inequality» and to the latter as to «Cebysev’s inequality».

In order to state, in lemma 0.11, a suitable form of the so called
«strong large number law», we give an important definition.

DEFINITION 0.9. Two events A, B C Q are said to be independent
if PLAN B)=P(A)- P(B). ,
Two random variables «,f are said to be independent if the

- events

{w:s<aw)<tland {w:s < Bw) <t}
are independent for every s,t,s',t' € R.

If o« and B are independent it is not hard to verify that each event
belonging to the o-algebra generated by {w :s < a(w) < t}, ;R is
independent from each other one belonging to the o-algebra generated
by {w:s < pw) < t}s,tEIR'

One of the most important property of the independent random
variables is the following formula.
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PROPOSITION 0.10. If o, B are independent random variables then

Vie+B)=V(a)+ V()

The followirig Lemma is an application of the previous results.
It will be essential in the following.

LEMMA 0.11. (Strong large number law). Suppose that, for any
h €N, Ju is a subset of {1,2,3,... h?} such that the number of its
elements #1J}, verifies hfl,n h2@#J5) > 0.

Suppose also that of(w), h € N, i=1,2,... h% are independent
random variables having the same expectation E and the same
variance V < +oo.

Then

- ~1 0 N_ F
hll»rrolo(#Jh) ; apw)=FE a.s.
1€J4

Proof. Set Sy(w) =) o (w) and fix ¢ > 0. By Cebysev inequality
i€J,
it follows that
Sk A V(Sh)
P{w : I#Jh — E| > 8} < 2@ R
Since a;; are independent, by 0.10 V(S;) = #J,)V and therefore
Sh el V -1
: Ve — —(# .
P{w I#Jh B >e} < 52( Jr)

Since hlim RT2@#T,) > 0, it is possible to apply Borel-Cantelli’s
—00

Lemma to the events {w : l;jh— — B> E} and Lemma follows
h

immediately.
Without any information about the variance of ot, a weaker
result holds.
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LEMMA 0.12. (Weak large number law). Let (oi) h € N, i =
1,2,...,h% a sequence of indipendent random variables, having the
same distribution function of a fixed-random variables c.

Assume also that E(x) < +oo.

Then, for any t € R,

h2
limP § w A7) (W) — E@)| >ty =0

=1

The proof can be obtained in the same way of the classical weak
large number law (see, for instance, W. Feller: «<An introduction to
Probability Theory and its Applications» J. Wiley, New York, pag. 195).

1. Proof of the main theorem.

It will be used a modification of an argument already used in
[5], in a different context.

It starts by proving that, for any t € R and A € A(Q) such that
meas (0A)=0
(1 Fe(t,A) = F“(t,A)=2m / / (a(w) —t)2dPdz  a.s.

AYQ

For, fix t € R and A € A(Q); let 7, denote the set of the indices 1
such that Q% N A=0.

Assume, at first, the additional hypothesis

h2
lim h2 Z}(a;(w) — )t = E((aw) — )Y  as.

Moreover, let v, be the solution of the problem
Aw=0 on B;\S,

w=0 on 0By

w=1 onS,
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where Bj, and S, are the open circles centered at the origin with
radius (2h)"! and e, respectively.

It is easy to determine explicitely v, by using the logaritmic
potential.

Set

[vi(z — 73)] - (b (w)—1t), ific I, T € B}
wy, (z) =
0 otherwise

and remark that

DYt +wi, A)=0 VAEN Ywe Q.

In order to obtain estimates for FP(t, A), we verify that wy — 0
in L2(Q) a.s.. In fact

lwillog = 3 lloalm — illo i - (@) — 1)y =
i,

= ”'WJIO,B;, Z(a},(w) — 1) <
ic],

h2
< llvallo,z, - A* (h2 PCAGE t)+> .
1=1

A direct computation shows that 1i}1;n[ [vallo.B, - h* = 0.

Therefore it will be endugh to verify that

h2
2) lim ;(a;(w) — ) = E((a(w) — 1)) a.s.
and
(3) E((afw) — 1)4) < +o0.

Infact, since (o)), h € N and 1,2,...,h?, are independent and
T — (T —t); is a Borel function, it follows that (W) — 1)), h € N
and 1=1,2,..., A% are independent.
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Moreover, oz;; have the same distribution of the fixed random

variable «. Therefore, for any s > 0

Pw: (ai}(w)-—th > s} =P{w :a};(w) >t+s}=

=P{w:aW)>t+s}=P{w: (aw)—1t) > s}
and if s < 0 one has
Plw: (@)=t > s} =1=P{w: (aw) —t); > s}.

Hence the random variables (ae}"1 (w)—1), have the same distribution
function, and, a fortiori, the same expectation and the same variance
of (a(w) — t)s.

By Lemma 0.11 it follows (2), provided V((a(w) — t).) < +oo.
Remark that this condition, by Schwartz inequality, implies also (3).
It is an immediate consequence of V(a) < +o0, and thus (2) and (3)
are verified and w¥ — 0 in L%(Q) almost surely.

Now remark that }Llir(l) h_ZHVvhHo,Bh: 2m. It can be proved by
direct computation. Thus, by Proposition 0.1 it follows that

Ff(t,A)gliznsupHVwZHaQ=lihmsup IV unllo 3, - D () — )| <

< 2m - lim sup(# )k~ - lim sup(@ )~ Y (W) — 7

h h .
00 —00 ic ]h

almost surely.
Since lim h™2(#J,) = m(A), by Lemma 0.11 (#%,)"" Y (W) —t)?)
icJ,
converges a.s to F((a(w) — t)%), and finally one obtains

@ F(t, A) < 2mE(aWw) — 1)) - m(A).
The next step is to prove that

F¥(t, A) > 2nE(a(w) — t)2) - m(4).
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These inequalities are actually equivalent to (1), being FY > pv,
By Proposition 0.3, there exists a function A(\), h: N — IN, such
that A(\) > X and

w - 13 . 2 2 w
FZ@, A) = lim min [Vl +Mlwllog + Pioy +w, A

Now, set J, = {1 € {1,2,...,h%} : Q) C A} and remark that, for
any A, h € N,

min_[[|[Vo|fjq +Mlwllq + O +w, A1 >

weH Q)
> min | Vw|* -+ N |w]]? .+ D <t+w, B} |l
1_ o, | Bi o, Bi iyh
weH! U By, i€y iEJ
1€J, |

Being B} pairwise disjoint the minimum problem on U B} can
' ' i€y
be splitted into the corresponding problems on each circle B, 1 € J;.

Then
F“(t, A) > lim min [[|[Vw|? .; +
“A)> Jim 3D min (Vulf
1€JR0) 1o

(5)

+ >\H’U)”%)Bzo) + (Dcﬁ(k)(t + w, B;ZO\))]

Denote by M} and u} the (stochastic) minimum and minimum
point of the functional in the right hand side.

Remark that
MR 5 < M.

Ry T

Since, by (4)

FU(t, A) < FU(t A) < +00  as.
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- it follows by (5) that E M} is bounded from above, as )\ tends to

1€Jh0)
infinity and then
6 lim Z ul|? ; =0a.s.
©) Jim SR g
1EJh00

Now, fix & > 0 and let A{ be the union of the cubes Qi
contained in A such that

”umgﬁ;w < e meas (Bj,)).
By (6) it follows that
7 l\lirgo meas (A\A5)=0. a.s.
In order to obtain an estimate from below of the right hand side

of (5), Dirichlet’s principle will be used.

Set ¢} = inf u} and remark that, by Lemma 0.6, ¢} is equal to
:):EB,‘;(A)

the (constant) value of the trace of u} on 8Bj,,. Thus
U,'A (z) = C? + [(Oi;;(x)(w) — 1)y — CQ\]Uh(A.‘)(CU - 1132@))

is the harmonic function that agrees with u} on 85}, and 0B}y
Therefore, by Dirichlet’s principle one has

N .
IIVU?H&B:' > |[Vv; H(Z),B;;(A) > (ahpyW) — t)-%-”VUh()\)H(Z),B;;Q)_

h()\)

- 26?(@2(»@) - t)+”VUh(k>H3,B;m-

By (5) and hlim h2||VUhH(2),B,, = 27, one obtains
—00

F2(t, A) > 2mlim | [hOV)]2 JE (@hon@) — 17 | —
1€Jh0)

®)
—4nlim | [hO)] 7 3 (@hoy @) = s

1€EJR)
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Now

Jim | [R()] 7 - D (@hpyw) = 17| = E(aw) — 1)) - meas (A). as.

1€Jh00

The last equality follows by Lemma 0.11 and by

Jim [A()] 72 - #Thy) = meas(A).

Thus, (1) follows immediately, provided the second term in the
right hand side of (8) is zero. Let L = [A()]™2 - ) _ ¢} (athpy(W) — s
, 1€Jy
Remark that

LI < |IOOT2 - DT aahoy@) — )|+

i:B;lmgAi

+HOT? - Y ko) — DY
1B, CA\AS
By Lemma 0.6, 0 < ¢} < (a},,,(w) — t)+ and therefore 0 < &} < 1.

Moreover being ¢} = inf u}, from B}, C Af it follows that 0 < ¢} < eV/%.
A0

Thus

ILI < [h(k)]—z | Y2 Z (QZ(A)(W) — 1)+ Z (OJZ(/\) —_ t)i

1€JR i:B;;(,\)gA\Af\

Since Alim h()\) = 400 it follows by Lemma 0.11 that

im (A1 ) (@hoy@) = B = B((aw) — 1)) as.

1€Jh00
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Set xhoyw) =1 if BZ’;;Q) C A\A§ and xj,, = 0 otherwise. By
Schwartz inequality in R* ™ it follows that

B2 3 (W) — 02
W)CA\A

= 1RO 3 xhon @)@y @) — 2] <
1€Jhp)

< | 1hOOI? Z(O‘Z(X)(W) —03 ] - (ROOITH#{i : By, C A\ASHY2.

i=1
By (7) one has liin [AOOT#{i Bioy C A5} =0 as. and Ey the

additional hypothesis h}{n 2 Z_:(ah(w) — t)i < oo a.s.

Hence it follows that

lim|L| < 2 E(a(w) — t)).

Being ¢ arbitrary, (1) is verified.
Now, in order to drop the additional hypothesis

h2

(H) lim h? ;(a;(w) ~ 0! = E((aw) — t)*) as.

remark that any subsequence of the original sequence of obstacles
has in turn a subsequence that verifies: (H). . '

In fact, since V(a?) < +co0, Lemma 0.12 implies that (H) holds in
probability; hence it holds also almost surely, by taking a suitable
subsequence.

Thus, the previous argument shows that any subsequence of the
given sequence of functionals admits a subsequence I'-converging to
some limit, independing of the choice of the initial subsequence.
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Since I'-convergence in the class of the functionals greater than
|lw|)%: (more generally, in the class of L%(Q)-equicoercive functionals)
1s induced by a metric, the whole sequence I'-converges to the limit,
and the theorem follows, at least for constant w.

Now, it is possible to accomplish the proof by using a suitable form
of a standard argument using the integral representation theorem:.

In fact, fix w € Q such that F¥(0,Q) < +oo. Since the hypothesis
(*) in theorem 0.5 is fullfilled there exist f* and p¥, v¥, 4“ such that

F?(u,A) = /f“’(a:, a(x))dp® + ¥ (4) Yu e HY(Q), VA € 2, 2 rich.
A .
By (1) it follows that
©) 2 [ BCa) - 00)dz = [ 1@, + ()
' A A

for every t € IR, A€ 2N {B C Q : B Borel set, meas (4B) = 0}.

Now, for each t € R both sides of the last equality are finite
Radon measures, with respect to the set variable A.

They coincide on a rich subset of A(Q). Since a rich subset is
dense they actually coincide everywhere in A(Q).

Let p* = 4“ + g% and v = 0¥ + 0¥ the decomposition into the
absolutely continuous part and the singular part with respect to the
Lebesgue measure of y“ and v, respectively. Moreover set

dp¥

w ___d/j’w w -
9" (z) = dm’h ()= o

Remark that from (9) it follows immediately that

/f“’(a;,t)dﬁ‘:g’ =pg(A)=0for all A € AQ)
A

and thus one obtains

(10) f(z,t)=0 [gg— a.e. on supp 4
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and

2 / E((aw) — t)2)dz = / [ (z,t)g" (z) + h* (z))dz
A

A
for all t € R, for all A € A(Q).
Therefore
Yz, )" (z) + h¥(z) = 27 E((c(w) — t)%), a.e. in ¢, for any t € R.
Moreover, by (10), it follows that

[4 FUz, w@Ndas +72(A) =0 VA€ AQ) Yue HYNQ).
Then, since
F¥(u, A) = A [F“(z, u(z))g" (z) + h* (z)]dz + l (=, ﬂ(z))du‘: +vg(A4)
one obtains
(11) F“(u, A) = 2 / / (W) — u(z))2dPdz
e

for each u € H 1(@Q) and each A € A, where

A’ =2"N{ACQ, Aopen, meas (DA) = 0}.

Finally we prove (11) for all A C @, A open and verifing
meas (0A) =0. :

For, remark that if A4;,A; € A(Q) and A; C A;, the following
inequalities hold

(12) FOC, AL < F¥C, 4g)
| FO( AD < FOC, Ay).

Now, fix any A € A(Q) such that meas (0A4) =0. Let K, A’ be a
compact and an open subset of (), respectively, such that

KCACACA meas(4/K)<e.
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Since A” is rich, it is also dense. Then there exist 4, A4, € &’
such that
KCACACACACACAHCA.

Obviously meas (A3\A41) < £. By (12) one obtains

o / / (@ — w2dPds < F*(u, A) — 20 / / (@ — widPdz <
4/A; Y02 490

< F9u, A) — 2m / / (o — u)dPdz < / / (@ — u)2dPdz
AYQ Ay /A

- for any u € HYQ).
By the absolute continuity of the integral, being A\ A4; and A\ A
subsets of Aj\ Ay, it follows that

F¥(u, A) = 27r//(a — w)?dPdz = F¥(u, A)
AYQ

since w is arbitrary in Q, except for the set of probability 0 where
FP(0,Q) = +o00, the proof is accomplished.
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