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CONSTRUCTIONS OVER LOCALIZATIONS OF RINGS
ALESSANDRO LOGAR (Trieste) (*)

In this paper we construct a category of effective noetherian rings
in which linear equations can be «solved». This category is closed with
respet to some important constructions like trascendental extensions,
quotientations, finite products and localizations with respect to a large
class of multiplicatively closed systems. Hence it gives a definition of
«constructive» rings.

1. Introduction.

Motivated by the success of the concept of Grébner bases to
attack computational problems in the ideal theory for polynomial
rings over a field, several authors have recently suggested different
notions of effectivity over a ring powerful enough:

1) to guarantee ideal theoretic computations;

2) to be preserved from a ring A to its polynomial extensions
AlX(, Xo, ..., X5

3) to allow for a generalization of Buchberger algorithm for Grébner

(*) Entrato in Redazione il 16 gennaio 1989
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bases to polynomial rings with coefficients in a ring satisfying
such a notion. ’

One of the most general of these notions, however quite powerful
to produce feasible algorithms in many situations, is the one proposed -
by Zacharias ([15]; cf. also [4] and [8]).

We recall that if A is an effective noetherian ring, A satisfies
Zacharias’ conditions if, roughly speaking, in A we can solve linear
systems. In this paper we first consider the category Z whose objects
are all effective noetherian rings which satisfy such conditions. The
category Z results closed with respect to some important constructions
like: trascendental extensions, quotientations, finite products, and it
1s possible to compute the first n-modules of a free resolution of an
ideal of an object of Z.

A class of rings, which are significant in algebraic geometry
applications, is obtained by localizing rings (usually quotients of
polynomial rings over a field) at multiplicatively closed systems
(usually either finitely generated systems, or complements of a prime
ideal [12]). Clearly it is of interest to have effective ideal theory on
such rings. However only partial results are known, generally without
explicetely given proofs (cf. [14], [8], [4]).

We propose here a class of multiplicatively closed subsets of rings
which seems to be sufficiently large to contain all the interesting
examples known but which is sufficiently specific to guarantee that
Zacharias’ conditions are preserved under localizations. In such a way
we can construct a subcategory A of Z which contains all the most
common rings usually considered and which is closed with respect to
localizations (as well as the previously mentioned operations). Hence
it probably gives a good example of definition of «constructive» rings.

The author is greatly indebted to Teo Mora for his suggestions,
encouragements and patient help.
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2. Preliminary results.

Throughout the paper, a ring A is assumed to be Noetherian,
commutative, with identity and «explicitly given», meaning that:

— we can represent (with a finite expression) every object of A;
— operations: +, —, - are constructive;

— given an element in A it is possible to decide whether it is 0 or
not (and so, given two representations we can say if they give
the same element).

We will say that an ideal I of A is «given» if we are givén a
finite set of generators of I.

DEFINITION 2.1. We will say that A satisfies Zacharias’ conditions
if the following hold:

i) given a,a1,02,...,0., € A it is possible to decide whether o is in
the ideal (a1,as,...,am) and if so, find bi,b2,..., by such that
a =) bia;; (that is A is detachable);

i) given ai,a2,...,am € A it is possible to find a finite set of
generators for the A-module {(by,bs,...,by) € A™|a = > bia}s
(that is we can determine the first module of syzygies of an ideal

(Cf. [15]).

PROPOSITION 2.2. The following conditions on A are equivalent:
i) A satisfies Zacharias’ conditions;

it) If the following linear equation:
a1T1+ 2T+ ...+ ey =a With a,a1,a2,...,0, € A

is given, then it is possible to determine all its solutions (or it is
possible to see that there are none); |

1it) A satisfies condition i) with a =1 and condition ii) of definition
2.1
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Proof. i)=+ii) by definition; i)=>iii) obvious; iii)=-1): let a € A, let
By = (Bu,B12,-++, Pim, Pims+1), B2 = (Ba1,P2,--+, Bom, Pom+1), -+, Br =
(Br1,Bra, - -, Brm, Brms1), @ finite set of generators for the first module
of syzygies of the ideal (a1, as,...,am,—a). Then a € (al,vaz,...,am)
iff a1b; + asby + ...+ apby + (—a)l = 0 that is iff (b1,02,...,0m,,1) €
(B1,Bs,...,B;), hence iff 1 € (Bim+1, Poamst, -, Brmsr). S0 if we can
determine Ay, A, ..., A, such that )~ \;Bim+1 =1, then we can determine
b1, bz, ey bm such that ¢ = 0,1131 + a262 +...+ ambm.

We call Z the category whose objects A are all the commutative,
Noetherian, explicitly given rings with identity, that satisfy Zachariag’
conditions.

Remark 2.3.1) If A € Z then we can define the concept of
Grobner basis for any ideal of A[X 1, X3,..., X,] (where X1, X>2,..., X,
are indeterminates) and we can define an algorithm which constructs
a Grobner basis of any given ideal as it is shown for instance in [14],
(15], [10]. '

2) If A is a field, it is shown in [3] and [11] that Grobner basis
for a module U C A[X, X>3,...,X,]" can also be defined. It is not
difficult to see that in the same way we can give the concept of
Grobner basis for any module U C A[Xy,X2,...,X,]” where A is in
Z. It is also possible to construct an algorithm which gives a Grébner
basis from any system of generators of U. The details are very easy
but cumbersome, so we omit them.

LEMMA 24. Let A€ Z. If I C A[X,,X,,...,X,] is a given ideal,
where X1,X,,..., X, are indeterminates, then it is possible to determine
a system of generators for the ideal I N A.

Proof. 1t is easy to see that if G is a Grobner basis of I then
G'N1I is a set of generators of I N A (See [4]; prop. 3.3).

PROPOSITION 2.5. A€ Z, f€ A, and I,J C A are given ideals,
then we can determine a finite set of generators jfor the jfollowing

ideals:
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) INJ;
i) I+J;
i) (0): f;
w) I:f;
v I:J;
and it is possible to decide if I C J (See [4], corollary 3.2).

Proof. 1) We have: INJ = (¢I,(1 — t)J)A[t]N A, where t is an
indeterminate and so a system of generators for INJ can be computed
by lemma 2.4. An other proof is as follows: let I := (f1,f2,.-., fm)
“and J = (91,92,---,9%) By hypothésis we can compute a system of
generators of the module {(u1, u2,..., Um, v1, v\z, ey Uk) € A™R ST u fi
Z vi(—g;) = 0}. Let’s call it: (ci1, ciz, ..+, Cim,di1, di2, ..., dik), 1 =1,... .8
Then it is easy to see that I NJ is generated by ZC;']'Q]', 1=1,...,s

J

i1) trivial.

iii) (0) : f ={a € Alaf =0} and a set of generators for this ideal
can be determined because of ii) of def. 2.1.

iv) I : f={a € Alaf € I}. Let {ui,u2,...,un} be a set of
generators of I N(f), (it can be computed because of 1)), then u; = fu,,
~ for suitable v; € A (v; can be computed because of i) of def. 2.1). Then

I:f=(0):f+@1,v. . V)
VI T =(fi, fa,-es f), then T2 J =T = fi).

i=1
LEMMA 2.6. Let A €Z, reN M,NCA :A-modules (given via
a finite set of generators); then it is possible to compute a finite set of
generators for the A-module M N N.

Proof. We have: M NN =[(M,(1 - IN)A[t]']N AT, where t is an
indeterminate. As we have remarked previously, we can compute a
Grobner basis of the module (tM, (1 —t)N)A[t]". Then (as in prop. 2.5
1)) we can see that the elements of this Grébner ba31s that are in A"
are a set of generators of M N N.
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PROPOSITION 2.7. Let A€ Z, n€ N then:

i) given B, By,B,,..., B, € A", it is possible to decide wether B is
in the A-module (By, By, ..., By) C A™ and if so, find €1,C2y v+, Cm
such that B =3 ¢;B;;

i)) given Bi1,By,...,B, € A% (with B; := (b, ba,... bw), G =
1,...,m), it is possible to find a ﬁnzte set of generators for the
Amodule M = {(Cl,CZ,.. ,Cm)EAmIZC, i —O}.

‘ ‘Proof ii) is a conSequence of lemma 2.6 in fact:

M= {C= (c1, Cz, - (Cm.):E'AmI ZQB;‘ =0} =

{C= (1,02, .., cn) EA"‘I(GI,Bq)— q=1,..,n}=[ {C€A™|(C|B) =0},

=1
where

,Bq = .(blqa b2q3 ) bmq)~
1) is as follows:
B=ciBi+cBy+...+cpBy iff cBi+cBy+... +CnBm+1(-=B)=0
If D; :=(di1,das, ..., dimr1) € A™, i =1,... ris a set of generators

for the A-module {(di,dy,...,dn+1) € A™!|d\By +dyBy + ...+ dpy By, +
dm+1(—B) = 0} (Which can be computed by ii) of this proposition) then

B e (Bl,Bz, ceey B.,) iff 1 is in the ideal (d1m+1,d2m+1, ooy Qrmet). S0 if
we can determme AI, A2y eei, Ar such that >N dime1 =1, then we can
determine ci,ca,.. , Crm such that B = 1By + cyBy +. +cmBm

COROLLARY 2.8. Let A€ Z, I C A a given ideal and n € IN. Then
it is posszble to compute the ﬂrst n modules of a free resolution of I

Proof It is an obv10us cosequence of ii) of the previous proposition.

Remark 2.9. a) Prop 2.7 is enounced in [8] theorem 1.1.
b) Conditions 1) and ii) of prop. 2.7 are considered in [9].
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It is clear that Zacharias’ conditions and the two conditions of

prop. 2.7 are equivalent.

3. Properties of 7.

THEOREM 3.1. If A € Z and if X1,Xa,..., X, are indeterminates,
then A[X1,Xa,...,X,] € Z.

Proof. See [14] or [15].

PROPOSITION 3.2. Z is closed under quotientations, that is, if
A€ Z, and I C A is a given ideal, then A/l € Z.

Proof. If A € Z, every element of A/I can be represented if we
give an element of its equivalence class, so it is clear that +, —, . are
constructive in A/I. If an element [a] € A/I is given, [a] =0 in A/I
iff a € I, so we can also decide if an element of A/ is 0.

If [a],[a1],[a2],...,[as] € A/I, [a] € ([a1],[a2],...,[as]) in A/I iff
a € (a1,a2,...,0s f1, f2,..., fr) in A (where I :=(f1, f2,..., /) so i) of
def. 2.1 is satisfied.

Let [a1],[a2],...,[as] € A/I, and let J = (a1,0a2,...,a5) C A. In
the following commutative diagram we define the maps as follows:
ai([url, [ual, ..., [usD) =la1ur +aguz +.. . + asu,];
az(c1,€2,...,Cs,d1,d2, ..., dy) = ar1C1+0202+. . FasCotdr fi+do fo+. . +d, fr;
a3(uy, U2, ..., U, V1, V2, ..., Up) = arui+aguz+...+asus+ur fi+va ot o Sy
(1 is the canonical projection;

Balc1,c2,...,C5,d1,d2, ..., dy) = ([c1], [c2], ..., [cs]);

~1 and 7y, are the canonical immersion;

B3 and 3 are defined by the universal property of the kernel (and so
are the restriction of 8, and «, respectively).
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0 0 0
T T 7
0 —keray — (A/I) =5 T +J)/I—0
T 55 T8 T B
0—keray — AQA 25 I+ =0
T T Tm
0—okeras —» I A™ = 0
T T T
0 0 0

In this diagram every row is exact and also the last two columns,
and so, by 3 x 3 lemma ([13], 6.16), the first column is exact. Since
(33 is surjective, the image under B33 of a system of generators of ker
ay can be computed since A € Z and B, being the restriction of 3,,
is computable. We can then obtain explicitly a system of generators
of ker a; as an A-module and hence as an A/I-module, and so the
second condition of def. 2.1 is satisfied.

Remark 3.3. From corollary 2.8 and from prop. 3.2 it follows that
if A€ Z and I C A is a given ideal then it is possible to compute a
free resolution for an ideal of A/I. We observe however that there is
a faster way to compute such resolution, using the commutativity of
the following diagram (which is a straightforward generalization of
the previous one):

0 0 0
T T T
0—keray — (A4/1)° =5 M -0
T 5 T B T B
0 —-keray, —» A@®A" 2 M =0
T T Tm
0—keras — IP@A™ = ' 50
T T T

0 0 0
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where

M = (mil, [mal,...,[m¢) C (A/ D)

(Im;] indicates ([miil, [ma], ..., [miy) € (A/DY);

M’ = (my, ma, ..., ms, (f1,0,...,0), (£2,0,...,0), ..., ($,0,...,0), 0, fi,...,0),
©, f2,..,0), 0, 0, £, 0), ... (0,0, ..., F1),..., (0,0,..., F)

(m; indicates (mi1, miz, ..., mi)). |

We now define the maps as follows:
a1([ut], [ual, ... [us]) = [urmy +ugma + ... + uyms];

CVZ(CI)CZ;”-;‘Cs;dllydIZ;'”;dlr;"')dtladtZ,”')dtT) =

—_-EC,"mi+Zd1]-(f]-,0,...,0)+...+Zdt].(0’”_’0,fj);
; F ;

053(CI;C2;'--,Cs;dll,dIZ;“-;dlr,“-;dtl,dtZ,---ydt'r) =

=S ami+ > (5,0, 0+ > dyy 0,0, ).
i J J

ﬂl(mi) = [ml]a7‘= 1)"’73;/81(f‘i505"';0)=
. =B0,....0,f)=0i=1,... 7
,BZ(CI)C27"')C8>d111d12)'“:d_lra“'adtl;d’ﬁ;"')dt'r) = ([Cl];[CZ]a-'-)[Cs]);

~1 and v, inclusions.
As in the previous proposition, we can compute a system of
generators of keray which gives via 83 (or ;) a system of generators

of ker .
PROPOSITION 3.4. The category Z is closed for finite products.

Proof. If A, B € Z, then it is clear that +, —, - are constructive in
A x B and that it is possible to decide if (a,b) € A x B is 0.

1) of def 2.1 is trivial:

(CL,b)E ((alabl);”';(am;bm))¢>a S (ala---aam);b S (bl;“-;bm)-
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i1) is as follows: if (a1, b1),..., (@m, by) € A x B then

M= {((ty, 1),y Gy T)| D (i, 7)(as, b)) = 0} =
1=1

= {1, 1), .., G, 7)) Y tias =0, > 7bs = 0}.
i=1 i=1
Clearly the A x B-module M is isomorph to the A x B-module:
M/ = {(th ---:tm:Tl, --‘;Tm)lztiai = O) Zszi = O}
" i=1 i=1

If (tig,..-,tmg), ¢ =1,...,p is a system of generators for the

A-module {(tl,...,tm)lztia; =0p and if (ng,..., Tme) k=1,...,7 is a

1=1

m
system of generators for the B-module < (r,..., Ton)| E T;b; = O} then
i=1

(11, oo tm1,0,...,0), 00, Gipy - ooy i, 0,1, 0), ©,...,0,711, e, T1), -,
©,...,0,1j,...,7y,) is a system of generators of M.
We remark that by an effective PID we mean a ring 4 which is
a PID and, moreover, such that given o,b € A we can:
— compute d := MCD(a,b);
— compute u,v € A such that d = au + bu;
— if ¢ € A decide if ¢ is a multiple of d and in this case determine
k € A such that c = dk.

PROPOSITION 8.5. If A is an effective PID then A € Z.

Proof. (cf. [2], [4], [10]). Given a,a1,a2,...,a, We compute b :=
GCD(a1,a2,...,a,) and by, by,..., b, s.t. Y bia; =b.a € (ay,a2,...,a,)
iff @ = ¢b, in which case g = > cbia;. '

By [10], prop. 3.6, it is possible to compute a basis U1, U2,y ..., Ug

of (a1,a2,...,a,-1) : @y} uja, € (a1,02,...,a,—1) and it is possible to
compute bj; s.t. uia, =Y bja;. |
{(ai1,0i2, ..., air—1,up)|i = 1,...,s} is then clearly a basis for the

syzygies of (ay,as,...,a,).
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PROPOSITION 3.6. Let A € Z, S C A a multiplicatively closed
subset of A. Then if I C Ag is a given ideal, we can compute the first
n modules of a free resolution of I for every n & N.

Proof. The only thing to verify is the following: given uy, us, ..., ux €
(Ag)", we can determine a system of generators for the Ag-module

k
M i={(b1,ba, ..., be) € (Ag)¥| ) byu; = 0}.

i=1
Let U be the matrix whose rows are the vectors upi,us,...,ug

and let’s call Uy, Us,...,U, its columns.

Then M = {(b1,b2,...,bk) € (Ag)"l(B[Uj) =0,7 =1,...,7}, where,
as usual, (..|.) is the scalar product. If B € (Ag)* then we can
compute tp € S :tpB € A and s; € S : 5;U; € A%, j =1,...,r. But
(B|U;) =0 in Ag iff (tpB|s;U;) =0 in Ag iff there exists v € § such
that ('UtBB!SjUj) =0 in A.

Let’s consider in A* the A-module:
N ={C:=(c1,c2,...,cx) € A*|(C|s5;U})=0,7 =1,...,7}.

If C1,Cs,...,Cp is a system of generators for N (we can compute
it by prop. 2.7), then C,,Cs,...,C, is a system of generators of M as

1
an Ag-module: (C;|U;) = ;(C{!SJ'U]') =0 hence C; € M; and if B € M,
J

then tgB € A* and (tgB|s;U;) = tps;j(B|U;) =0 then tzB € N, so tgB
is a linear combination, with coefficents in A of C1, 0, ..., C, therefore
B is a linear combination, with coefficients in Ag of C;,Cs,...,C,.

COROLLARY 3.7. If A and S are as in prop. 3.6, then Ag satisfies
condition 1i) of def. 2.1.

DEFINITION 3.8. Let A be a ring and S C A a multiplicatively
closed subset. We wil call it admissible (a.m.c.s.) if

SI=Sl+O£

where o C A is a given ideal and where Sy is a multiplicatively closed
subset of the following kinds:
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~ Sy = (s1,82,...,5m) (that is S, is finitely generated by
81,82,...,8m € A). :
or
n
- S = CU P; with P C A given prime ideals.

1=1

Examples of am.c.s.: S =1+, S :=CP, S :=finitely generated.

PROPOSITION 3.9. Let A€ Z, S C A an a.m.c.s., then Ag is
detachable (i.e. it satisfies 1) of def. 2.1).

a ay ap a
Proof. We have — € | —, = ..., == | (where a,a1,q2,...,an, € A,
s s1’ s Sm /)
$1,82,...,8m € §) Uf a € S(a1,a2,...,a,) where S(a1,as,...,a,) =

{a € A| there exists t € S : ta € (a1,a2,...,an)} is the saturation of

(a¢1,02,...,a,) In A wrt. S.

. a ar a2 a o
Moreover, in case — € | —, == ..., =2 |, it is clear that we can
S S1 & Sm
: . a . . . o s
give a representation of — of the king required in def. 2.1 i) if we can

3
construct an element ¢t € S such that ta € (a1, a,...,an).

Case 1. Let S := (s1,82,..-,8m), and let I := (a1,a2,...,a,) be a
given ideal of A. In this case we have:

S(I)=(I,81T1—1,...,Sme—I)A[Tl,Tz,...,Tm]ﬂA

where 7',7T%,...,T,, are indeterminates. We can compute a Grébner
basis for the ideal (I, s, 77 —1,..., 8, T} — DA[TY,T3,...,T,,] and from
lemma 2.4 we can compute a system of generators of S(I).

Moreover, if a € S(I) then:
a =’Uf(T1,...,Tm)+(81T1 — 1)g1(T1,...,Tm)+...

+(S‘me - l)gm(le"-aTm);('U E I)

and a-s{ -s3 -... s € I where ¢; are the maximum of the degrees

of T3 in the polynomials f,g1,92,...,gm.
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Case 2. let § := CU P.. Then if a € A, a € S(I) iff there exists
i=1

s ¢ B; for every i such that sa € I iff (I : a) ¢ B for every ¢ and this
last condition can be verified using prop. 2.5. Moreover, if such an s
exists, then it can be constructed by induction as follows: if n=1,
then we have only to find one of the generators of (I:a) that is not in
P.

If n>1 and (I : a) ¢ & for every 4, then, by induction, we can
construct, for every j, z; s.t. z; ¢ B, for #j. If there exists j such
that z; ¢ P;, then s := z; is the desired element.

Otherwise we put s := Zzl'azz...czi_lzm...mn (cf. [G], prop.
i

1.11).

Case 3. S := Si+« then a € S(I) iff there exists s; € S and there
exists r € a such that (s;+7r)a € [ iff s;a € [+aa iff a € S;(I+aa) and
so we have reduced the problem to one of the two problems considered
above. Suppose « := (u1,us, ..., ur); once we have constructed s; € S
such that sja € I + aa then we can write sja =) bja; +)_ cjau;, that
is: (s1 — Y cjujda € I and s1 — ) cju; € S.

As an immediate consequence of prop. 3.9 and prop. 3.6 we have:

COROLLARY 3.10. If A€ Z and if S C A is an a.m.c.s. then
Ag € Z.

4. The category A.

Denote by Ag a class of domains which are contained in Z, and
denote by A the smallest category that contains Ap and closed for
the following operations:

1) trascendental extensions;

2) finite products;
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3) quotientations;

4) localisations w.r.t. an am.c.s..

Therefore A satisfies:
1) Aec A= A[X]€ A (X is an indeterminate);
2) Ac A, I C A agiven ideal = A/] € A;
3) A BEA=AxBeA;
4) A€ A, SCAis an am.cs. = Ag € A.

PROPOSITION 4.1. The category A is a subcategory of Z.

Proof. It follows immediately from teor. 8.1, prop. 3.4, prop. 3.2
and cor. 3.10.

Any object of A can be constructed from one (or more) objects of
Ao using a finite number of times 1), 2), 3), and 4).

The following propositions show that some of the operations 1),
2), 3), and 4) commutes.

LEMMA 4.2. Let A, B be rings, « C A x B an ideal, PCAXxBa
prime ideal, p: Ax B — A and ¢: Ax B — B the two projections.
Then we have:

1) o =pla) x ¢(a);

2) P=P x B (or P=Ax P) where P, is a prime ideal of A
(respectively P, is a prime ideal of B).

Proof. 1) is obvious. 2) P = p(?) x ¢(P) and (0,0) = 1,00, Hher
therefore (1,0) € P, for instance.

PROPOSITION 4.3. A, B be rings, S C Ax B an a.m.c.s.. Then we
can construct an a.m.c.s. T'C A and an a.m.c.s. U C B such that:

(Ax B)s ® Ar x By.
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Proof. Case 1. S = (s1,82,...,8n). Then (A x B)g ¥ Ar x By where
T :=(ps1,psz,-..,psm) and U= (gs1,¢sz,...,q8m).

Case 2. S = CU P,P, C Ax B given prime ideals. From lemma

1=1 o :
4.2 we know that 2, =R, x Bor B, = Ax Q; (R; and Q; prime ideals).
We can suppose that Z,=Ax Q; fori=1,...,m and 2, =R; x B for

i=m+1,...,n Then we have:COfP;= <G 0 K;) X (OOQi>,
| i=1

1=1 1=m+1
- ; .

(Ax B)gs ¥ Ar x By wher_eT:=O U Ri, U:=CUQ¢.

1=m+1 i=1

Case 3. S =1+a; a C Ax B a given ideal. Then from lemma
4.2 we obtain: § = (1 + pa) x (1 + ga) and so the thesis follows with
T:=1+pa and U :=1+ qa.

Case 4. S = S) + « with S finitely generated or S; = OU 2. If
i=1
we call B the extension of « in (4 x B)g,, we have:

(A x B)s = ((A x B)g )14

PROPOSITION 4.4. Let A be a ring, I C A an ideal, S'C A/I an |
a.m.c.s. and p: A — A/I the quotient map. If we define T := p 1S we

have:
1) T is an a.m.c.s. of A;

2) (A/Ds = Ar/Ir.

Proof. Let § := Sy +a with a C A/I ideal then p1S = p-1S; +p~la
and if S; is finitely generated with [s;], [s2],...,[sm], s; € A4, the
p~ 1S = (s1,82,...,8m)+ I; if S| = G’UQ’,- then p‘lSl = CUp“IZ’; and

p~!P; are prime ideals of A. = o

Observe that the localizations w.r.t. an a.m.c.s. do not commute,
in general, with the trascendental extensions, as it is showed by the
following example:
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EXAMPLE 4.5. Let PCZ, P:=(0); S :=C®Pis an am.c.s.. We will
prove that Z¢[X] is not isomorphic toZ[X]r for every T" a.m.c.s. of
Z[X].

SinceZ g =Q, it sufficies to prove that Q[X] is not isomorphic to
Z[X]r for every T. ,

Let’s assume on the contrary that ¢ :Z[X]r — Q[X] is a ring
isomorphism. It is clear that ¢(z) = 2 for every z €Z. To get the
contradiction it is enough to find a non costant polynomial g €Z[X]
invertible in Z[X]r. In fact in this case ¢(g) = %(a,b €Z), hence
¢ (bg) = a = ¢(a), therefore bg = a, a contradiction.

Case 1. Let T := (s1,82,...,8m) + @ with s; €Z[X], o CZ[X].

If there exists s; ¢Z, let g :=s;; if s; €Z for every 1 =1,...,m,
but a#(0), let be f € o non constant. In this case it is enough, for
example, to put g:= f+s,. f o = (0) Z[X ] =Z7[X], Le.Zp[X]=Q[X]
therefore'ZZT = @Q, a contradiction.

n
Case 2. T = CU P, +a and «#0). If f € « is not constant, let
i=1

g:=1+feT.
n
Finally we have to consider the case T := UfP,-. In this case

either X +r € T for some r €Z, and then we déﬁlne g =X+, or
X +r € B, for every r. In this last case there exist an 1 € {1,2,...,n}
and r,s € {1,2,...,n+ 1} with r#s, such that X +r, X +s € 7. Hence
r—s & F,NZ. But r — s must be invertible in Z[X ] since ¢(r — s)
is such in @Q[X], therefore there exist a €¢Z[X], b € T such that
(r — s)a =b, hence (r — s)a ¢ B, a contradiction.

As a consequence of the previous propositions and of the (obvious)
fact that, if U, V, W are rings, I C U is an ideal, and X is
an indeterminate, then it is possible to construct the following
isomorphisms:

(Vx WIIX]=ZV[X]x W[X]and U/I[X] ¥ U[lX]/IU[X],

we get that every object of A can be constructed as a quotient
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of a finite product of rings A;, where every ring A; is obtained
starting from an object of Ay localizing w.r.t. an a.m.c.s. and/or adding
indeterminates for a finite number of times as is showed by the
following scheme:

localizat. w.r.t, l

an a.m.c.s.

trascendental l ; -
extensions product quotient |- {A

Remark 4.6: 1) 1t is possible to take several different subclasses
Ao of rings: for instance all the effective PID (considering in such a
way every effective field). _

2) If the ring of integersZ is in Ay, then every finite field is in A.

3) If A€ A (or, more generally, A€ Z) and if f1,f2,...,fm €
AlX1,X5,...,X,] where Xl,Xz,_. .., Xn are indeterminates, then
Alfi, fa,o .o fm]l € A (or Alf1, f2, -+, fm] € Z). This is an immediate
consequence of the following isomorphism: |

Alf1, fa, .o, fm] = AN, Y2,..., Y]/ J where Y7,Y5,...,Y,, are in-
determinates, and J := Y1—f1,..., Y — f)ALX1, X2, ..., X5, Y1, Vo, ... ,
Y] NA[Y1,Ys,...,Y,] (Cfr. [4], corollary 3.2).

5. A particular case.

Let A = k[X1,X2,...;X,] and let M C A be a maximal ideal.
Let’s fix a Grobner basis of M and let r : A — A be the reduction,
that is 7(f) is the reduced of f w.r.t. the given Gribner basis of A/

Let v1,v2,...,v,, be a basis of r(A) as a k-vector space (and so a
basis of A/M as a k-vector space). |

Let S := CM and let o C A be a given ideal (o C M so to avoid
trivial cases). We want to see how to determine if ¢ € S(a) in this
particular case. This will allow us to find in some specific cases an
algorithm in general faster then the one given in proposition 3.9.
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PROPOSITION 5.1. If a € A, a € S(«) iff there exists s € S such
that r(s)a € (aM+ ).

Proof. If a € S(a) then sa € o with s € S. s —1r(s) € M and so
r(s)a € (aM+ ). "

Conversely: r(s)a € (aM+ «) then r(s)a = am +b with m € M,
b€ a so (r(s) — m)a € o and therefore a € S(«), since obviously
r(s) —m € S.

Moreover we have: r(s) = fivi + fava +... + fnv, With f; € k,
hence r(s)a € (aM+ ) iff there exist fi,f2,...,fm € k such that
(fl‘U1+f2’U2+. cF fvm)a S (aM+a). We fix a Grobner basis d1,92,---,0k of
aM+a, and we reduce r(s)a = (fiv+ fruz+. et fraUm)a w.r.t. this Grobner
basis; what we obtain is a polynomial F(X1,Xa,...,Xn, f1, f2, -+, fm)
where fi, f2,..., fm are all of degree at most 1. Then r(s)a € (aM+a) iff

there exist f1, f2,..., fm € k suchthat F(X1,X2,...,Xu, fi, f2,.-+, fm) 18
the zero polynomial in X, X5,..., X,. Hence we obtain a homogeneous
linear system in fi, fs,..., fin With coefficents in k.

Therefore r(s)a € (a M+ «) iff this linear system has a non-trivial
solution. ' o

Let now P C A be a given prime ideal of dimension d. It is
well known that there exist d indeterminates X, , X;,,...,X;, such
that PNk[X;,, X, ..., Xy = 0) and PNK[X;, Xsy, ..., Xiy, X, 12(0) for
J > d (cfr. [6], Cap II, 1 satz 1). In [7] and [5] it is shown that to
determine X, , X,,,..., X;, we need only to compute the Grébner basis
of P with respect to the lexicographical order on the'monomials.

Let M = PB (where B = k(X;,, Xi,...,Xi) [X1,-..,Xi1,
Xipe1, -y Xal). |

Let S :=C%P and let « C A be a given ideal (contained in P).

PROPOSITION 5.2.if a € A, then a € S(a) iff a € S'(B) where
B = aB, S'(B) is the saturated ideal of B w.r.t. S’ := B\'M, and a is
considered as an element of B.

Proof. a € S(a) iff % € aAp But Ap = Bgs (C Q(A) then
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a . a .
T € aAPiff 1 € ,BBM iff a € §'(B).

From this proposition and the previous consideration we have:

PROPOSITION 5.3. If a € A, PC A is a prime ideal, and «(C P
is a given ideal, then we can establish if a € S(a) (S := A\P) solving
a suitable linear system in K = k(X;,, X;,,..., Xi,).
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