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SIMPLE WAVE SOLUTIONS
FOR A RADIATION DOMINATED MAGNETOFLUID

ORAZIO MUSCATO (Catania) (*)

Simple waves are studied for a radiating magnetofluid in s'pecial
relativity. For some of the Riemann invariants explicit expressions are
given. The behaviour of these solutions is also studied numerically.

0. Introduction.

Relativistic Magnetofluiddynamics (R.M.F.D.) is of relevance for
several areas of astrophysics (e.g. gravitational collapse and supernova
explosions [1], neutron stars and pulsars [2]) and plasma physics (e.g.
ionizing strong shocks [3], intense charged particle beams [4]).

Non linear waves in R.M.F.D. represent a fundamental chapter
of the theory. In this article a particular class of non linear waves
is investigated, i.e. that of simple waves, which, for quasilinear
hyperbolic systems, are the nonlinear analog of plane waves.

We shall restrict the analysis to that of a radiation dominated
magnetofluid, which is of considerable interest in astrophysics: the

(*) Entrato in Redazione il 16 gennaio 1989
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case of a monoatomic relativistic gas (obeying Synge’s equation of
state) has already been treated in [5].

In sec. 1 we briefly review the equations of R.M.FD.; in sec.
2 we introduce the basic quasilinear system describing R.M.FD. in
special relativity. In sec. 3 magnetoacoustic simple waves are treated
and their behaviour is investigated in sec. 4. Also we notice how by
using a suitable conformal transformation [6] we obtain from the
above solutions, other solutions which represent waves in a spatially
flat Robertson-Walker universe.

1. Test Relativistic Magnetoﬂuiddynamics.

When we neglect the gravitational field of the fluid in comparison
with the background gravitational field we deal with a «test fluid»:
the equations describing an elettromagnetically interacting fluid are

then [7]:

an  yreo
(1.2) V(o) = 0
O Y
(1'4) | | | - Vg Fag) =6

where T is the total fluid and elettromagnetic field energy-
momentum tensor, u“ the fluid 4-velocity, p is the rest mass density,
F°P is the electromagnetic field tensor, J* is the current four-vector;
the metric g,4 has signature +2.and the units have been chosen such
that ¢ = 1. , ‘

To -equations (1.1), (1.2), (1.3), (1.4) we must add Ohm’s law:

(1.5) J¥ =eu®+ ge®
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where o is the conductivity and ¢ the charge density of the fluid.
The electric and magnetic field with respect to a comoving

observer are:

(1.6) E, = Fpu”
1 ﬁ s
(1.7) by = 5 Eaprst 1

with b u® =0, E,u®=0.

In the magnetofluiddynamical approach o — oo (that happens for
hot and dense plasmas [14]), and we have necessarily E¥ =0 so that
the elettromagnetic field reduces to the magnetic field with respect
to the fluid; equation (1.3) defines J%, and equation (1.4) yields [7]:

(1.8) Vo (u®? — uPb¥) = 0.

For a perfect fluid (non dissipative), the total energy momentum

tensor writes:
T = (e +p+ |bHuu? + (p + |b|*/2)g* — b2bP

- with e the total energy density, p the pressure and |b[?> = b*b, > 0.
The fluid quantities p,p, e (all measured in the local rest frame)
are related by the first law of thermodynamics:

(1.9) dds = d <E> +pd’<—1->
p p

where s is the specific entropy and ¢ is the absolute temperature.

To the system (1.1), (1.2), (1.8) we must add an appropriate state
equation: in the following we shall limit ourselves to the case of a
radiation dominated gas, for which the state equation is

(1.10) p=c¢e/3.
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2. Quasilinear systems and Simple wave solutions.

The equations of test RM.F.D. (1.1), (1.2), (1.8) can be written
in the form of a quasilinear system [8]:

@2.1) AAUYVLUE =0 T
where the unknown field vector is:

U = (5, p, s)"

and the matrix 2% is:

Eu®8# | —b8E +phep, | mre | QE

besE —u%s# . foer Qo
24 =

née 0% , eu® , 0%

o0 02 .0 go

where 04, 0%, indicate tensors and vectors with vanishing components
respectively, n=e+p, E=n+ |b|2, DAY = WA+ uby®, hHY = ghY 4 by
mHe = (nh“"‘—eglblzu“u“+b“b°‘)/n, fre = (u“b“e;—u“b“)/n, e;, = (Oe/d)s,
and the thermal gas sound speed (without elettromagnetic effects) is
ct=1/ e, < 1. _

We shall consider a 1-dimensional flow in the space-time of
special relativity: then ¢®? =diag(—1, 1,1, 1) in Minkowski coordinates.
From Maxwell’s equations we obtain the first integral of the motion |

(2.2) | Ji =u! — u'p°

which, in the non relativistic limit, coincides with a well known
classical integral of motion [9].
For one-dimensional motion from the system (2.1) one obtains:

(2.3) - A%8,UP + a46,UP = 0.
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A class of relevant solutions for the system (2.3) is that of simple
waves [10], which depend on only one independent variable such that:

(2.4) U4 =UA($)

2.5) b =1 — MU

Then from (2.1) it follows:

dUB
mOA)
d¢
and in order to have not trivial solutions
(2.6) {det(ﬂm XA =0
du4 4
2.7 b [T ()R

where {R;} is a basis of eigenvectors associated with X and
IT1/(¢) are proportionality factors. With this ansatz we calculate from
(2.7), numerically or by an integration (in this case the solution
is equivalent to determining N — 1 first integrals called Riemann
invariants), U4 = U4(¢) and then (2.6) defines implicitly ¢ = ¢(z,t).

We observe that, at striking variance of the linear case, A in
general is not a constant, then the initial profile changes its shape
while propagates: the simple wave regular solution develops into a
shock wave.

In our problem equation (2.6) writes:

Ea’A’N,; =0

where a = u%a, ¢o = Oup, G = ¢%pa, B = b%bs, A = Ea® — B?
Ns = n(el, — Da* — (n + €, |b|)a*G + B*G.

The solutions of N4 = 0 correspond to magnetoacoustic waves,
slow and fast; A =0 correspond to Alfvén waves and a = 0 to material
waves. The associated eigenvector are given in [8].
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-

3. Magnetoacoustic simple waves.

In the following we shall limit ourselves to the magnetoacoustic
case (e.g. we shall consider the solutions of Ny = 0) and then we must
exclude the case in which a material wave or an Alfvén wave coincide
with a magnetoacoustic one: this implies

B#0
3.1 :
A = na® — G|[b|*#0

These conditions will be imposed during the integration. Under
the hypothesis (3.1) it is shown in [8] that N4 =0 admits 4 real and
distinct roots for \ (with |A| < 1): the corresponding eigenvectors are:

da
da+3
Ea?4A
0

R4 =

d* = Ea*(Bf* — am®) + Ea(B? — ey |b]2a*)($* + 2au®)/n
d*? =d*B/a+ EAaf*

FE ="y, m® =mg,

If we take, as independent variable ¢ = p, then equations (2.7)
write explicitly:

I'v,
(3.2)a d(d;) ) = a1 lv; + a1 /a + azb,
(3.2)b d(g:y) = ;Tv, + anb,
(3.2)c dlv.) _ a1Tv, + ayb,
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(3.2} CZIZ = G v, + Brby — (e; — I)BaZ/GA
db
(3.2)e —C—i—s = BiTvy, + Ba2by
db,
(3.2)f o = L1l + Bab,
D
ds
2 — =0
(3.2)g .
where

a1 = —a*(e, — 1)/AG, oy = aB(el, — )nA
p1 = Blar — 1/n)/a, B2 =e,/n+ Baz/a
then we have the obvious integral |

(3.3) Jo = s = const.

Let us obtain some useful integrals: from equations (3.2) follow

d , a?
(34) a‘;[r‘(vmbz - vzby)] = (ep "‘ I)Z[r(vxbz - U.zby)]

Now we suppose that such waves will propagate into a constant
state: then at the stagnation point py
(T'(vzb, — v, by)]po =0

hence, by the uniqueness theorem for ordinary differential equation,
(8.4) gives the following invariant:

3.5 - Jo =vgb, —v,b, =0

Similarly, it can be shown that

d b’y _ ,61F
bz b (vy — byvz/bz)
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whence another invariant
(3.6) Js =by/bz

Notwithstanding the knowledge of these invariants, the equations
(3.2) can be integrated analytically only in particular cases [11] and,
in general, a numerical integration is needed.

4. Numerical Integration and qualitative behaviour.

Now we have performed a numerical integration of the system
(3.2) in the case: |
v, =b,=0, p=¢/3
It is convenient to write our system in dimensionless form by

introducing the variables:

I B br - bz -
== br=— br=—2, B=
p Do J1 J1 J1 Do

, A=FEa* - LB?
where py is the initial pressure and L = J 2/po is a non dimensional
parameter. Therefore the results presented in this way are completely
independent of the scale and have a wide range of applications.

Then the system (3.2) reduces (we omit the bar) to:

dvug 243 aB 2
(-Da dp - Aerd Tt e
dv, 2a3\v, aBL 0
(4.1)b & = aart zpm(bz — 5%,)
» db, BTv, /2a* 1 b, 2Ea?
4.1 = — +—1+-=11
(3-De b a <AG 4p> 4p<+A>

together with an algebraic equation for )\:

4.2) Ny =014>\4+OJ3>\3+O£2)\2+051>\+O!0 =0



SIMPLE WAVE SOLUTIONS FOR A RADIATION DOMINATED MAGNETOFLUID 159

where the coefficient «; depend on
o = (P, Vg, Uz, by).

Moreover the system (4.1), (4.2) must satisfy during the integration
the conditions (3.1).
We start our integration assigning the initial data

vz(po) = v,(po) =0, b.(po) = bzo-

In this case, initially, N4y =0 reduces to a biquadratic equation
which admits progressive (\ > 0) and regressive (A < 0) fast and slow
magnetoacoustic waves.

Then we choose one root to be followed during the integration:
a suitable algorithm ensures that we are always following the same
root. In figures 1,2,3 we plot the results obtained for the progressive
fast wave (b,(pp) = 0.2), for various values of the parameter L. We
observe that the component v, of the velocity is a non monotone
functions of p, at striking variance with the non relativistic results.
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Fig. 1 - Pressure versus b, for several values of L.
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Fig. 2 - Pressure versus v, for several values of .
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Fig. 3 - Pressure versus v, for several values of L.
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This phenomenon can be explained as follows: in a relativistic
framework one has the limitations: ‘

2,,2
v, +v, <1

therefore if v, increases, the other éompbnént cannot be a monotone
function of p. |

This result could have interesting consequences for the solution
of the relativistic magnetic piston problem [12], where the solution is
constructed by patching together simple waves [13].

We notice that the above solutions could be extended to RM.F.D.
in a curved background, in the case of conformally flat spacetimes [6].

In particular, for the case of a spatially flat Robertson - Walker
universe, with the metric:

(4.3) ds® = a2 (t)(—dt? + dz? + dy? + dz?)

with the trasformation (u®, 6% p are the new variables in the metric

(4.3))
u®* =u%/a, b*=b%/a’, p=p/a*

one obtains solutions representing «simple waves» propagating in
this spacetime.
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