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QUASICONFORMAL MAPPINGS
AND DEGENERATE ELLIPTIC
AND PARABOLIC EQUATIONS

FILIPPO CHIARENZA (Messina) - MICHELANGELO FRANCIOSI (Salerno) (*) (**)

In this paper two Harnack inequalities are proved concerning a
degenerate elliptic and a degenerate parabolic equation. In both cases
the weight giving the degeneracy is a power of the jacobian of a
quasiconformal mapping.

Introduction.

The purpose of this paper is to prove Harnack inequalities for
some elliptic and parabolic degenerate equations. The degeneracy is
in both cases given by a power of the Jacobian of a quasiconformal
(Q.C.) mapping. This kind of weights are of interest because they
allow some «large» degeneracies (e.g. one can take as a weight |z]|?,
a > —1). In the elliptic case the result is not new. It was proved by
E. Fabes, C. Kenig and R. Serapioni in their paper [7], obtaining
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appropriate weighted Sobolev estimates and then following the usual
d. Moser’s pattern.

Our proof however shows that in the elliptic case the Harnack
inequality can be obtained using only a Q.C. change of variable
and exploiting only one fundamental property of those mappings: the
Distortion Theorem (Theorem 1.2).

The same approach is not available for degenerate parabolic
equations because the form of the equation is not preserved under
such a change of variable.

Then, to prove our result in the parabolic case, we followed the
usual technique using an easy consequence of a weighted Sobolev
imbedding proved in [7].

Finally let us remark that we considered a parabolic equation
with weights in both sides (as previously considered with a different
kind of degeneracy in [2], [5]) because for the usual parabolic operator
(as in [4], [6]) no local regularity is to be hoped without requiring some
high integrability to the inverse of the weight (for some examples
and comments see [3], [4]).

1. The elliptic equation.

Let f: R®™ — R"™ bijective, n > 2. Assume that the components
of f, fi #=1,...,7n), have distributional derivatives which belong to
L{,.(R™). We denote by f'(z) the Jacobian matrix of f and by |f’| its
determinat.

f is quasiconformal if
. 1/2
DUE@| <K@

1,7=1

for some positive constant k (the dilation constant of f). The following
theorems are well known
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THEOREM 1.1. (see e.g. [1]) If f is Q.C. with constant k then f~!
is Q.C. with dilation constant k™!,

THEOREM 1.2. (Distortion Theorem, see e.g. the proof of Lemma 4
in [11]). Let S.(f(zo)) a quasicircle in R", i.e. S,(f(z0)) = f(B(zo, r))(}).
Then there exist \ = A(n) > 1 and positive numbers 7', s’ such that if

Yo = f(zo) and S.(f(xo)) = S,(yo) we have
Sr(yo) C B(yo, TI) C B(yo, S/) C ST(,\(\/',,;+1))k(y()).

7’ 1
Moreover: — < —=.
s~ \/n

Let Q2 a bounded domain in R", a;; : Q - R (i, =1,...,m)
measurable functions in Q satisfying

(1.1 uw(x)[§[2 < Eai,-(a:)f,-f,- < z/*lw(:r)lfl2 V¢ € R", ae.in Q
1,J=1

where we set w(z) = |f’(:c)|1“% for some Q.C. mapping f and v > 0.
Following [7] we denote by H1(Q;w) and H(} (Q; w) the completions of
C*(Q) and of C§°(€2) with respect to the norms

12
lull 51wy = [ / wX(z)w(z)dz + / IDulzw(a:)da:}
Q- Q

1/2
el 7w = [/IDUIzw(z)dzJ
Q .

respectively. We notice that as it is shown in [7] because of the
properties of the weight a vector valued function, denoted by Du, is
uniquely associated to any function u in H'(Q;w).

We now consider in Q the operator

L0 ou
Lu= E -a—:—x-’- <aija_m;>

1,/=1

(") Yzo € R", r €]0,+00[ we set B(zo, ) = {z € R : |z — zo| < 7).
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and local solutions of the equation Lu = 0 (see [F.K.S.]) Our first
result is the following

THEOREM 1.3. (Harnack inequality, see [F.K.S.] p. 97). It exists
d > 1, d =d(nk), such that if B(zo,c'r) is contained in Q and u is
any local solution of Lu =0 positive in B(zgy,c'r), we have

max u <y min yu
B(zo,r) —  Bl=o,n)

for some positive constant ~ independent of u, g, T.

Before proving Theorem 1.3 we make some easy remarks.
Let y = f(2), 2= [~/ (W) = 9(v), Q' = F(Q). We have |¢'(y)| =

and then if A = (aij) setting A@w) = |g'@)|(g' W)~ 1)tA(g(y))g !
have

1
|7 )l

1 -
1.2) —vleP < AWk € <arEP

(Obviously above M~! and M! denote the inverse and the transpose
matrix of a matrix M). |

(1.2) is a straightforward consequence of the quasiconformality of
g. Indeed because Q.C. if )\;(y) are the eigenvalues of ¢/(y)i¢’(y) there
exists a > 0 such that

<a Vi,j,=1,...,u.

We conclude that the original degenerate equation in Q has been
transformed through the performed Q.C. change of variables in the
non degenerate equation in Q 4

(1.3) div(A(y)Du(y)) = 0,

where v(y) = u(g(y)).
Concerning solutions of (1.3) we have
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THEOREM 1.4. (Harnack inequality on Quasi Circles). Let S, (yo)
a quasicircle in Y, such that S, /me1yWo) = Ser C Q' and suppose v
is a local solution of (1.3) v > 0 in Ss. Then

max v < 4/ minv
s, =S,

for some positive constant +' independent of r,v and .

Proof. With the notation of Theorem 1.2 being v > 0 in By we
have '

1.4 ' mi
(1.4) max v < «f miny

by the usual Moser’s Harnack Theorem for non degenerate equations
(v" independent of 7/, yp and v). Then

max v < 4 minv.

T T

We are now ready for the Proof of Theorem 1.3.

Let u be a local solution of Lu =0 in Q. Then v(y) = u(g(y)) is a
local solution of (1.3) in /. Let ¢ =¢, ¢ as in Theorem 1.4. Because
u > 0 in B(zg,c'r) we have v > 0 in Sy, and then, because Theorem

1.4
maxv < v/ r%inv

T T

which means, going back to u

max ¢ < 4 min_u.
B(zo,r) —  B(zo,m)

2. The parabolic equation.

Let Q a bounded open set in R”, T" > 0 and Q =Qx]0,T[.

In the cylinder ) we will study the degenerate parabolic operator
"\ 0 ou 0

Lu = Z 5;‘: <a,, _a—iL‘—> — éz(w(m)u)

J=1 J

)
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with the same-assumptions as in Section 1. on a;; and w.

“'We ‘will consider weak solutions u of Lu =0 in Q where v € W,
W ={ue L*0,T; H{(Q; w)) : %‘;— € L*0,T; L*(Q; w))}.

The meaning of weak solution is the usual (see eg. [2], [5]).
~ We need the following 1mbedd1ng theorem proved in [7] under
our assumptions on the weight.

THEOREM 2.1. It exists k > 1 such that for any ball B(zg,7) C Q
and any u € HO(B w)

Ce 1 B 1/2k ' | | . ‘ v 1/2 ‘
2% ‘
(T(B)élul wdm) ‘g cr (w(b)/lDul wdm) ;

where w(B) = / wdz and ¢ > 0 depends on n and w only.
AT B L

From Theorem 2 1 it is 1mmed1ately deduced

THEOREM 2.2, It exists k > 1 such that for any a,b € R, a < b,
B = B(zo,7) and for any u € L* (a,b; L*(B; w)) N L(a, b; HH(B; w)) we
have

b

. : ' 1/2k
2k
ul“"wdxdt <

1-1/k

|

b—aa

. 1/2

< (cr 1/k su ————/uzwda: :
< (er) m£<w@)3

1 b . 1//::
" 12
| (b_a[ w(B)/BlDul wdmdt) ,‘

where ¢ > 0 depends on n and w only.
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For any (zo,t0) € @, p > 0 we set

Dayto(p) = {(z,1) € Q : [t —to] < p°, |z — 0| < 2p}
: 3 2 _
Dy, 4. (p) = {(:E,t)EQ.to+Zp <t <to+p°, |z — 0| < p/2}

3 1
D@ ={()eq:t— sz <t <tg— sz, |z — @o| < p/2}.

We then have the following parabolic Harnack inequality.

THEOREM 2.3. Let u(z,t) be a positive solution of Lu =0 in
Dy, 1,(p). Then

2.1 sup u(z, 1) < ﬂy mf )u(a: 1)

IO 1o (p) 10 'to

Vp > 0 such that Dg.;,(p) C Q. v in (2.1) is a positive constant
independent of xg,to, p and u.

Because we have the parabolic Sobolev embedding given in
Theorem 2.2 all we need to prove (2.1) following the Moser’s technique
(see e.g. [10]) is an appropriate weighted local energy estimate with
constant independent of p.

This is guaranteed, exactly as in [5], by the special form of the
equation in which the same weight appears in both the sides. After
these remarks the proof follows by the same steps as in [5].
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