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ON CONTINUOUS PARAMETRIZATION OF A FAMILY
OF SEPARATORS OF A LOCALLY CONNECTED CURVE

JANUSZ J. CHARATONIK (Wroctaw) - ALFONSO VILLANI (Messina) (*)

The question (raised in [7]) whether every homogeneous family
of separators of a locally connected metrizable space 'Y, which is a
partition of ¥ and has the continuum power, admits a continuous
parametrization, is studied in the realm of locally connected curves.

In [7], p. 224, B. Ricceri has asked the following question (Q)
which is quoted below in a simpler, and slightly modified, form.

(Q) Let a topological space Y be locally connected and metrizable
and let {C; : 1 € I} be a homogeneous family of separators of ¥ which,
moreover, is a partition of ¥ and has the continuum power. Then, is
there some continuous function f:Y — R for which the equality

€y {Ciriel}={f"'®:te fI)}

holds?
The question is related to some studies lying in the common
border of topology and functional analysis, and arose in a natural

(*) Entrato in Redazione il 17 febbraio 1989
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way in B. Ricceri’s research in this field (see [7] for details). In this
paper a further study is made that concerns this topic. Namely for
some acyclic as well as for cyclic locally connected curves we exhibit
partitions of these spaces that do not admit any continuous function
f satisfying (1). This answers (Q) in the negative. Furthermore,
an upper semicontinuous monotone decomposition of an arbitrary
dendrite is found for which a function f in matter does exist and
which is minimal in the sense that it cannot be further refined. Also
some questions are asked.

We start with necessary definitions which are recalled here after
[71, p. 223. By a partition, or a decomposition, of a space ¥ we
understand a family of pairwise disjoint closed subsets of ¥ whose
union is Y. If all the members of the considered family are connected,
then the decomposition is said to be monotone.

A subset C of a space Y is called a separator of Y if there
exist two nonempty disjoint open sets A and B in Y such that
AUB =Y\C. The sets A and B are said to be associated to C. In
other words a set C C Y is a separator of Y if it is closed and Y \ C
is not connected. If, moreover, there is a connected set S C Y such
that AN S#0=#B N S, then C is said to be a strong separator. We say
that a family {C; : i € I} of separators of Y is homogeneous provided
there exist two families {A; :7 € I} and {B;:i € I} of subsets of ¥
such that for each 5 € I the sets A; and B; are associated to C;,
and for every open connected set U C Y intersecting both A; and
B; there is an open set V containing C; and such that if C; C V
for some j € I, then A; NU=#P=B; NU. To illustrate this last concept
let us observe that all concentric circles with the center at a fixed
point form a homogeneous family of strong separators of the plane
IR2. On the other hand, to see an example of a nonhomogeneous A
family of separators of the plane, put L = {(z,y) € R* : y = 0} and, for
an arbitrary positive integer n, let C, denote the circle with center
(0,27™) and radius 27" 2. Then {L}U{C, : n € N} is the needed
family.

A continuum means a compact connected metric space. A dendrite
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is defined as a locally connected continuum which contains no simple
closed curve. Note that for locally connected continua this condition
is equivalent to hereditary unicoherence, the property demanding that
the intersection of any two subcontinua is connected (compare [8],
(1.1), (v), p. 88). 4

Let m be a positive integer. A point p of a metric space X is said
to be a point of order m in X (writing ord,X = m) provided there
exist arbitrarily small neighbourhoods of p in X the boundary of each
of which consists of m points and there are no such neighbourhoods
whose boundaries consist of a less number of points. A point of order
one is called an end point of the space. The set of all end points of
a space X is denoted by FE(X). A point of order m > 3 is called a
ramification point.

The reader is requested to follow Whyburn’s book [8] for the
definitions of other concepts used in the paper.

A. Acyclic spaces. In this section we deal with spaces which
are homeomorphic to a connected subspace of .a dendrite. Hence these
spaces are acyclic in the sense that they contain no simple closed
curve. For this class of spaces a negative answer to question (Q)) can
be seen by the following proposition.

PROPOSITION 1. Let a nondegenerate dendrite X be different from
an arc, and let Y = X\E(X). Then the family ¥={{p}:p €Y} of
singletons of Y is a homogeneous family of strong separators of Y
which is a partition of Y, has the continuum power, and for which
there is no continuous function f:Y — R satisfying condition (1).

Proof. First note that Y is a connected subspace of the dendrite
X. Hence Y is arcwise connected (see [8], (1.3), (ii), p. 89), and thus it
has the continuum power. Second, observe that the considered family
F of singletons of Y is a partition of Y. Third, note that each point of
a dendrite X is either an end point of X or a cut point of X (see [8],
(1.1), (i1), p. 88), whence it follows that if p € ¥ = X\ E(X), then {p}
is a strong separator of Y. Thus ¥ is a family of strong separators of
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Y. Since the decomposition of a dendrite into singletons is obviously
continuous ([8], p. 129), the family ¥ is homogeneous.

Let f:Y — f(Y) be any continuous function such that condition
(1) is satisfied. Since the dendrite X is not an arc, there is a
ramification point r € Y = X\ E(X). Thus r is a cut point of X and
X\{r} has at least three components (see [8], (1.1), (ii) and (iv), p. 88)
whose closures are subcontinua of X having r as the only common
point. Hence there exist three arcs having r as their common end
point, which are disjoint out of » and whose union is a triod T C Y.
Since f is one-to-one, the partial mapping f|T": T — f(T) C f(¥) is
a homeomorphism. Hence f(Y") cannot be a subspace of IR. The proof
is finished. |

Recall that a continuum is called a linear graph provided it is
the union of a finite set of points, called vertices, and of a finite
number of open free arcs, called edges, such that two end points of an
edge are distinct vertices. By a generalized linear graph we mean any
connected subset of a linear graph. See [3], Theorem 1, p. 337, for
some characterizations of these spaces, from which it follows that if a
dendrite X has finitely many end points, then X\E(X) is an acyclic
generalized linear graph, and inversely, any acyclic generalized linear
graph admits a compactification which is a dendrite X with E(X)
finite (see (iii) of Theorem 1 of [3], p. 337). Thus as a consequence of
Proposition 1 we have the following corollary.

COROLLARY 2. Let an acyclic generalized linear graph Y be given
which contains a ramification point and which has no end point.
Then the decomposition of Y into singletons is a homogeneous family
of strong separators, it has the continuum power and it admits no
continuous function f:Y — R satisfying condition (1).

Now we give some positive results concerning a construction
of special homogeneous families of separators of a dendrite each of
which admits a continuous real-valued function satisfying condition

(1).
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Let a dendrite X be given, and let a and b be two distinct end
points of X. Denote by ab the (unique) arc in X joining a with b. For
each point p € ab let C(p) mean the union of the singleton {p} and of
all components of X\{p} which contain neither a nor 5. Observe that
p belongs to the closure of each such component, and therefore C(p)
is a connected subset of X.Furthermore, since X\{p} is an open
subset of a locally connected space X, its components are open ([8],
(14.1), p. 20), whence it follows that C(p) is a closed subset of X.
Being both connected and closed, C(p) is a subcontinuum of X. Recall
that each subcontinuum of a dendrite is itself a dendrite (see [8],
1.8), (i), p. 89). So C(p) is arcwise connected. Note that C(a) = {a}
and C(b) = {b}, and that C(p) = {p} for p € ab\{a,b} if and only if
ord, X =2. Since the set of all ramification points of a dendrite is at
most countable ([8], (1.2), (iv), p. 89), the condition ord,X =2 holds
for all but at most countably many points p of the arc ab. Further,
for each p € ab we have C(p)Nab = {p}.

Now let an arc L C ab be given. Put C(L) =U{C(p):p € L} and
observe that C(L) is a closed set for each arc L, just by the same
argument used for C(p); indeed, it is easy to check that C(L) is the
union of L and of all components of X\L which contain neither a
nor b. Hence C(L) is a subcontinuum of the dendrite X (and thus it
is arcwise connected by the same argument as above). Consider an
arbitrary monotone partition II of the arc ab. Thus members of II
are either arcs (there are at most countably many of them) or single
points of ab. Recall that, by the definition of a partition, members of
I1 are disjoint. A partition IT is said to be nondegenerate if it consists
of more than one member. We denote by L(p) the (unique) member
of IT which contains the point p of the arc ab.

The following result holds true.

THEOREM 8. Let a dendrite X with end points a and b be given.
Then for each nondegenerate monotone partition Il of the arc ab the

collection D(IT) defined by

@) DAY = {C(L) : L € TT}
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Is an upper semicontinuous monotone decomposition of X such that
3. F(I) = {CWU) : L € I\{L(a), L(®)}} C DAT)

isa homogeneous famzly of strong separators of X which is a partition
of X \(C(L(a))U C(L(b))) of the continuum power, and for which a
continuous function f: X — R exists such that

4) ce DD ={f'®) : t € f(X)}.

In fact, X/D(II) with the quotient topology is an arc, so that
such a function is just, up to a homeomorphism, the natural quotient
mapping from X into X /D).

o Proof Observe that each element [ of H\{L(a) L(b)} separates
the arc ab into two components Thus, for each such L, the continuum
C(L) is a separator of X, and the open sets A(L) and B(L) associated
to C(L) are Just the two components of X\C(L) containing the end
pomts a and b respectively. Therefore FAID is a famlly of strong
separators of X (and of X \(C(L(a)) U C(L(b))) as well).

Smce the dendrite X is hereditarily locally connected (i.e. each
1ts subcontmuum is locally connected see [8], (1.3), (i), p. 89) and
since 1t can be embedded 1nto the plane (cf. [5], §51, VI, (v), p. 300;
compare [5] 861, 1, Corollary 11, p. 509), the theorem of Gehman
(see [5] §61 II Theorem 13, p. 519) 1s applicable to X, from which
it follows that each countable family of pairwise disjoint subcontinua
of the dendrlte X is a null- -sequence. Slnce there are only countably
many nondegenerate (i.e. distinct from singletons) members of D(IT),
the whole D(IT) can be divided into two subcollections, one of which
is a null-sequence and the other consists of single points. Now upper
semicontinuity of D(IT) follows from statement (1.11) of [8], p. 122.

~ As a consequence of upper semicontinuity of the decomposition
D(1) we conclude that the quotient space X/D(I) (i.e., D(IT) endowed
with the quotient topology) is a (metric) continuum (see [8], Theorem
(2.2), p. 123 and Corollary (3.11), p. 125). Now consider the natural
quotient mapping f : X — f(X)= X\D(II) which by its definition
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shrinks each continuum C(L(p)), that obviously is an element of D(II),
to a point. Of course f is both continuous and monotone. To describe
its range space f(X) observe that f(X) = f(ab), which implies that
the range spaces of f and of the partial mapping f|ab are the same.
Since a continuum X is hereditarily unicoherent if and only if for
each monotone mapping g : X — ¢g(X) and each subcontinuum K of
X the partial mapping g|K : K — ¢g(K) C g(X) is also monotone (see
[2], Lemma 1, p. 932; compare [6], Corollary 3.2, p. 126), we conclude
that f|ab is a continuous monotone function defined on the arc ab,
whence it follows that f(ab) is either an arc or a point ([8], (1.1),
p. 165). The latter possibility does not hold because the considered
partition Il is nondegenerate. Thus f(ab), and therefore f(X), is an
arc, and consequently the family F(IT) has the continuum power.

Finally, to show that F(II) is homogeneous, fix an element L of
IM\{L(a), L(b)} and let A(L) and B(L) be the two open sets associated
to the separator C(L) € F(I). Let U be an open and connected
subset of X such that U N A(L)#0+U N B(L). Note that the sets U,
A(L) and B(L) are arcwise connected ([8], (5.3), p. 38). Pick two
points ¢ € U N A(L) and d € U N B(L), consider the unique (possibly
degenerate) arcs ac C A(L) and bd C B(L), and denote by ¢ and d
the points in the arc ab such that acNab=acd and bdNab=1bd. It
follows that cd = cc' Udd Ud'd. Since cd C U, we see that ¢ and d'
are in U, so that

(5) U N AWL) Nab2+U N B(L) N ab.

Also, again by arcwise connectedness of U, we infer that the
intersection S = U Nab is a connected open subset of ab. Then it
follows by (5) that L ¢ S. Put V =U{C(p) : p € S}. It is easy to
show that V' is an open subset of X. Obviously L C V. Moreover, if
C(L"y c V for some L' € II\{L(a), L(b)}, then we have L' C S, and
it is easy to verify, as a consequence of this, that S, and hence V,
meets both A(L") and B(L’). The proof is then complete.

Remark 4. Note that the conclusion of Theorem 3 is no longer
true if we omit the assumption of monotoneity of the partition II.
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This can be seen by the following example. Let X be the closed
interval [a,b] of reals. Take two distinct points v and v in Ja,b[,
and consider the partition IT of X that consists of all singletons
{t}, where t € [a,b]\{u,v} and of the set {u,v}. Then D{II)=1II and
FAD =II\{{a}, {b}}, and it is easy to recognize that no continuous
function f :Y =]a,b[— R exists such that {f~1(t) :t € £(¥)} = F().

Note that in this example F(II) is a homogeneous family of strong
separators of Y =]a, b[. So we have another easy example which solves
question (Q) in the negative, and which complements the negative
answer to this question furnished by Proposition 1. In fact, in that
proposition the negative answer is essentially due to the nature of
the space, while in the example above it is just the nature of the
family which works.

Taking in Theorem 3 the collection of singletons of the arc ab as
the partition IT we get the following corollary.

COROLLARY 5. Let a dendrite X with end points a and b be
given. Then

6) Dy ={C(p): p € ab}
Is an upper semicontinuous monotone decomposition of X such that
7 F={C():pe€ab\{a,b}} C Dy

is a homogeneous family of separators of X which is a partition of
X\{a, b} of the continuum power. The function f:X — ab defined by

(8) @ =C(p) foreach peab

Is a continuous monotone retraction satisfying condition (1). In

particular we have

©) f i@ ={a} and f7(b)={b}.
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Proof. We already know that the quotient space X/Dy is an arc.
Neglecting a homeomorphism between X/D; and the arc ab, we
can treat f : X — ab as the quotient mapping. Now, only the new
property of f, namely being a retraction, needs an argumentation.
But it follows from the definition of f that the partial mapping
flab : ab — ab is the identity. Finally (9) follows from (8) and the

definition of C(p).

Remark 6. A mapping from one space to another is said to be 1°:
open, if it maps open subsets of the domain onto open subsets of the
range; 20: inductively open, if there is a subset of the domain such
that the partial mapping restricted to this subset is open, and it maps
the subset onto the whole range space ([1], Chapter 2, p. 234). Note
that each retraction is an inductively open mapping. So, under the
assumptions of the above corollary, f is inductively open. This fact is
related in a way to Theorem 3.5 of [7], p. 232, where the conclusion of
inductive opennes of f needs — unlike in our situation — an additional
assumption, namely the nowhere density of the separators.

Consider now a family ¥ of some decompositions of a given
space X. Let two decompositions D; and D,, both members of ¥, be
given. Then we write D; < D, if every element of D; is contained
in some element of D, i.e., if D; refines D,. Clearly < defines a
partial ordering on the family #. A decomposition D € ¥ is called 1°:
the smallest member of ¥, if D refines each other member of ¥, and
29: a minimal member of ¥, if no member of ¥ properly refines D
(compare [4], p. 32). Obviously, the smallest member of a given family
is unique (when it exists), and if a member is the smallest one, then
it is minimal. The inverse implication does not hold in general, as
the reader can see by easy examples.

Let us recall that there is a one-to-one correspondence between
upper semicontinuous monotone decompositions of a given continuum
X and monotone mappings defined on X (see [8], Theorem (4.1), p.
127). Namely to an upper semicontinuous monotone decomposition D
of a continuum X corresponds the quotient mapping ¢ : X — X/D
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which is monotone; and to each monotone mapping f: X - f(X)
corresponds the upper semicontinuous monotone decomposition D =
{f ) :yefx )} of X for which f serves as the quotient mapping.

THEOREM 7. Given a dendrite X, let M be the family of all upper
semicontinuous monotone decompositions of X such that for each D
in M the decomposition space X/D is an arc. Then for each two end
points a and b of X the decomposition Dy of X which corresponds to
the quotient mapping f defined by (8) is a minimal member of M.

Furthermore, if M* C M denotes the family of all decompositions
D in M for which

(10) X/D is an arc from q(a) to q(b),

where q : X — X/D is the natural quotient mapping, then the
decomposition Dy described above is the smallest member of M.

Proof. Assume that a decomposition D € M of X refines Dy. Thus
if ¢ : X — X/D is the natural quotient mapping that corresponds to
D, then for each t € X/D there exists a point p € ab such that

(11) ¢\ C o).

Note that the point p is uniquely determined by inclusion (11).
In particular, for ¢t € {g(a), ()} C X/D we have

e €¢7(ga) C f'(P)=Cp) for some p € ab,

whence p = a. Therefore ¢g=!(g(a)) = {a}, and similarly q ~Hg() = {b}.
So 'g(a) and ¢(b) are distinct points of the are X/D. It is easy to
verify that they are end points of X/D. In fact, if not, then there is
an end point y of X/D such that q(a)#y=q(b). If q(a) € yq(b) C X/D,
take z € ¢7!(y) and note that the arc zb does not contain the point
a. Since the partial mapping ¢|zb is monotone ([2], Lemma 1, p.
932), and since monotone mappings preserve end points of arcs ([8],
(1.1), p. 165; cf. [5], §48, I, Theorem 3, p. 192), we have g(zb) = yq(b).
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Therefore the condition ¢(a) € yq(b) contradicts to ¢~'(g(a)) = {a}.
Similarly if q() € yq(a), we apply the same arguments to get a
contradiction with ¢~ !(q(d)) = {b}. Therefore X/D = g(a)q(d) = q(ab).
So, for each t € X/D we have abN g 1(t)#0, whence p € ¢~ (t) by (11).

Suppose by contradiction that for some t € X/D the inclusion
in (11) is proper. Thus there exists a point z € f~(p)\¢~* (). Putting
to = q(z) € X/D\{t} we see that ¢ '(t¢) C f~'(p). Thus p € ¢~ '(to),
and so ¢ '(to) N ¢~ 1(t)#0, a contradiction.

To prove the second part of the conclusion, take an arbitrary
decomposition D € M, i.e. such that (10) holds. We have to show
that Dy < D, i.e., that for each point p € ab there is a point
t € X/D = g(a)q(b) such that

(12) o) c gt

With this end in view we define an auxiliary mapping 4 :
ab — q(a)q(®) by h = g|ab. Note that h is monotone as a restriction
of a monotone mapping ¢ to a subcontinuum of the hereditarily
unicoherent continuum X (see again Lemma 1 of [2], p. 932). We
claim that ¢ = hf. In fact, for a point z € X let p = f(z) € ab. Then
h(f(z)) = h(p) = (g|ab)(p) = q(p). Further, p € axz N xb. Since a monotone
image of an arc is an arc and end points of the domain are mapped
to end points of the range ([8], (1.1), p. 165), we conclude that
q(p) € qlaz N xb) C qlaz) N ¢(zb) = g(a)q(z) N q(z)q(b) = {q(z)}, whence
the equality h(f(z)) = q(z) follows for each z in X. So the claim is
proved. |

Now, given a point p € ab, let us put t = ¢g(p) € X/D. To
show (12) take a point z € f~!(p). Thus f(z) = p and we have
q(x) = h(F(z)) = h(p) = (glab)p) = ¢(p) = t. So z € ¢~'(t). The proof is
then complete. :

Remark 8. We shall show that neither the former part of Theorem
7 can be sharpened replacing «minimal» by «the smallest» nor
assumption (10) can be deleted from the latter part of the theorem.
This can be seen by the following example. Consider a dendrite
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X = AUBUC in the plane R?, where
A={(z,0):z € [0, 21},

B = {(:1:, :z e [0,2]},
C={1,y):y€l0,1]}.

Put o = (0,0) and 5 = (2,0), and let f X — ab be given by
formula (8), i.e.,

fp)=p for peA and f(BUC)={{1, 1)}

Now observe that another monotone mapping ¢ : X — ab
satisfying condition (1) is given by

9(z,1)=(z,0) if (z,1)eB and g(AUC)={(1,0)}.

Since g(a) = g(b) = (1,0), we see that the decomposition D =
{97'®) : p € ab} does not satisfy (10). Further, the decomposition
Do = {fXp) : p € ab} does not refine D because FH(1,0) € Dy is
contained in no element of D, and thereby Dy is not the smallest
member of the family A/

It is natural to ask if a converse to Theorem 3 is true in the
following sense.

Question 9. Assume D* is an upper semicontinuous monotone
decomposition of a dendrite X which has the following two properties.

(13) D* contains a homogeneous family F*={C;:i eI } of separators
of X;

(14) there exists a continuous function f X — R for which condition
(1) holds true.

Do there exist an arc qb in X with a,b € E(X) and a partition IT
of this arc such that D* = DUII) and F* = F(II) according to (2) and
(3)?
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B. Cyclic spaces. The question (Q) recalled here in the very
beginning of the paper has a negative answer not only in the case
when Y is an acyclic space (see Proposition 1 and Corollary 2),
but also if Y is cyclic, e.g. a simple closed curve. However, since no
singleton ‘disconnects a simple closed curve X, the separators of X
belonging to the family ¥ cannot be chosen as simple as it was
done in Proposition 1 and Corollary 2. But it is shown below that
for each integer k > 2 there is a suitable family of separators, each
one consisting of exactly k points, for which no continuous function
f: X — R exists satisfying equality (1).

Let an integer k& > 2 be fixed. To each point 2z of the unit
circle X = {z :|z] =1} in the complex plane we assign a subset
C(z) = {z0,21,.-.,2k-1} of X consisting of k£ points such that zy = z
and that these points divide X into k£ equal parts. In other words we
have arg z; =argz+2nj/k for each j € {0,1,...,k—1}. Obviously each
C(z) is a strong separator of X. It is readily seen that the family

(15) F={CG):zeX}

is homogeneous, and is a continuous decomposition of X whose
decomposition space is again X.In fact, the quotient mapping
f : X — f(X), which is uniquely determined by the condition
f~(y) = C(z) for each y € f(X) and some z € X, wraps the domain
space X just k times onto itself, so that we can assume f(X)=X
without loss of generality. But obviously this range space f(X), being
topologically a simple closed curve, cannot be embedded into the
reals. So there is no possibility of defining a continuous function f
from X into IR satisfying condition (1). Thus we have proved the

following proposition.

PROPOSITION 10. For each integer k > 2 the family ¥ defined by
(15) is a homogeneous family of strong separators of the unit circle
X for which there is no continuous function f from X into R that

satisfies (1).

The reader can certainly find other examples of cyclic graphs X
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and homogeneous families of (finite) strong separators of X for which
the conclusion of Proposition 10 holds. On the other hand, it is readily
seen that for the projection f of the unit circle X = {2z :|z| =1} onto
its diameter {z =z +iy :z € [~1,1] and y =0} defined by f(z) = z,
the family

F={fz):x€]-1,1[}

is a homogeneous family of two-point separators of X, and that f
satisfies (1). Thus it is natural to ask about a characterization of
these homogeneous families ¥ of (strong) separators of a graph, a
cyclic graph, or — in general — a locally connected metric space X
which admit a continuous function f: X — R such that ¥ coincides
with the family

(571 1t € £}

or with the family

{F71® 1 t € FCO\{inf £(X), sup F(X)}}.

C. Final remarks. As the reader had certainly observed, the
families ¥ of separators of spaces X considered in sections A4 and B
of the paper were not only homogeneous, but also either continuous
or (at least) upper semicontinuous. It was so because the definitions
of homogeneity and of upper semicontinuity of a given family are
formulated in a rather similar way. However, they are not identical.
Thus the following questions seem to be of some interest.

Questions 11. What are relations between homogeneity of a
given family of separators of a space and (either lower or upper)
semicontinuity of this family? Under what conditions (regarding the
space as well as the family) one of these properties implies the
other? In particular, does lower semicontinuity of a decomposition
D of a connected and locally connected space into separators imply
homogeneity of D? '
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