A REMARK ON CARATHEODORY TYPE SELECTIONS
JULIAN JANUS (Trieste) *

We prove existence of Carathéodory type selections for multifunctions of two
variables which are weakly lower semicontinuous with respect to one variable
and measurable with respect to the other.

1. Introduction.

Let (T',Zr) be a measurable space. Let X be a locally compact
separable metric space with metric d and let Y be a separable Banach
~ space. Denote by B(X) the Borel o-algebra of X. Let 2¥ be the collection
of all nonempty subsets of Y. Set C(Y) = {A € 2¥|4 is closed} and
Co(Y) = {A € 2¥|A is closed and convex}. By S(u,r) (resp. K(u,r))
denote the open (resp. closed) ball in Y of radius r > 0 and center w.
Set S =5(0,1). By N (resp. R) we denote the set of all natural (resp.
real) numbers. ‘

A multifunction P : T — 2¥ is called Y, -measurable (resp. lower
semicontinuous or briefly Ls.c) if the set P~U = {t € T|P{t)NU # ¢}
belongs to X (resp. is open) for every open subset U of V. |

A multifunction P : X — 2Y is called weakly Hausdorff lower
semicontinuous or briefly Hyy-l.s.c (see [4]) at z¢ if for every € > 0 and
every neighborhood V' of z(, there are a neighborhood U of zo (U C V)
and a point &’ € U such that P(z') C P(z)+ &S for each point z € U. P
is called Hy-l.s.c in X if it is Hy/-l.s.c at each point 7 € X.

In general, a Hyp-l.s.c. multifunction is not l.s.c.

* Entrato in Redazione 1'8 maggio 1987, ed in forma rivista il 14 maggio 1987
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A function p : 7" x X — Y is called a Carathéodory type selection of
P:T x X —2Y if () p(t,z) € P(t, ), for each (t,z) € T x X, (ii) p(t, )
is continuous for each ¢t € T', and (@iii) p(-, z) is Lr-measurable for each
z € X.

The problem of a Carathéodory type selections, has been studied by
several authors [2, 3, 5-7, 10, 12]. In this note we prove the existence
of Carathéodory type selection for a multifunction P : T x X — Cqo(Y)
which is Xr,x-measurable and such that for each t € T, P(t,-) is
Hyy-ls.c. As an application of this result we obtain a random fixed point
theorem.

2. Preliminaries.

LEMMA 1. Let F : X — Co(Y) be Hy-lsc and let f: X — Y be
continuous. If F(z) N S(f(z), R) #0 for each = € X, then for each r > R
the multifunction F(-)N K(f(-),r) is Hwy-Ls.c.

Proof. ,
Claim. For every € > 0 there exists a o = o(g,r, R) > 0 such that
©) [F(z)+o -SIN[K(f(@),r)+0-S1C F@NK(f(z),r)+e-S,z € X

This claim can be proved as the Lemma in [4]. One should
A - lly —f@||+o—r

only take‘ r» = R-X in place of r i V- f@) - R
place of Hy—f(.’l:)“'*'O’-;?” and o such that 0 < 0 < min{e,r—R},
ly = F@I - 5
307 + Ro +o? e
r—R-—o '

Let 2o € X, € > 0 and let V be a neighborhood of zy. By Claim
there is o such that (0) holds. By the continuity of f at zo, there is a
neighborhood W(W C V) of zy such that K (f(z1),7) C K(f(z2),r)+0-S,
z1,T2 € W. Since F is Hy-l.s.c at xp, there are a neighborhood U of z,
(U C W) and a point 2’ € U such that F(z') C F(z)+o0-S, z € U.

Hence
Fi)n K(f(z,r) C[F(z)+0o-S]N [K(f(z), )+
+0-S]C F@)NK(f(z),r)+¢e-S, z € U.
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This completes the proof.
One can show that the condition r > R in Lemma 1 cannot be
replaced by r > R.

Observation 1. Restriction of Hp-ls.c function to open set is
Hy-l.s.c function. The following example shows that this is not true for

the closed sets.
Let P : R — 2R be defined by

{0} for 2 <0
P(x)=4[-1,0] forz=0
[0,1] forx > 1

Obviously, P is Hy-l.s.c but Py ) is not Hy-ls.c at 0.

Let (T, Zr), (T X X,Zrxx) be measurable spaces. Let nr be the
projection of 7" x X onto T'. We say that the pa1r (T, X) is projective if
mr(V) € Zp for every V € Zryx.

EXAMPLE 1. Let (T',21) be a complete measurable space and let
Yrwx = 2 X B(X). Then (T, X) is projective (see [1, p. 75)).
EXAMPLE 2. Let T" be a separable metrizable space and let u be
a positive measure on B(T). For A € 2T we put p*(4) = inf{u(C)|C €
B({T),A C C}.A set AC T is u*-measurable if, for every B C T,
w*(B) = u*(ANB)+u*(B\A). By Zp-denote the o-algebra of u*-measurable
sets. Define the o-algebra X1, x by putting

Srxx ={AUE|A € B(T x X),E € 2% and p*(nr(E)) = 0},

Then (7", X) is projective (see [8, p. 4]).

LEMMA 2. Let (I",2r) and (T' x X,Zrxx) be measurable space such
that the pair (T, X) is projective and T x U € Zpxx for every open set
UCX. Letp:TxX »-Yand P:T xX — C) be Xr, x-measurable

- maps. Then for every open set U C X, the set

{t e T|PC,z)NS@WE,z),7)FD for each zeU}

is Xp-measurable.
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Proof. By [1 p.67] there exists a sequence {PntneN of Zrxx
measurable functions, from 7" x X into Y, such taht P(t,z) — ¢(t, 1) =
cl{pnt,z) — Y(t,z) : n € N}, (t,7) € T x X.Consequently, the set
W ={t,2) e TxX|PE,p)NSE(t,x),7)# 0} = {(t,z) € T x X|(P,x)—
P, z)NSO,7) # B} belongs to Try x. Since {t € T|P(t, 1)NSW(¢, 1), 7) =
¢ for each z € U} = T\mr((T x U)\W) Lemma 2 follows.

3. Result.

THEOREM 1. Let (T",XZy) and (T" x X,Zpyx) be measurable spaces.
Suppose that the pair (I',X) is projective and, for every open set
U in X we have T x U € Zpyx.Let P: T x X — Co(Y) be a
27 x-measurable. Suppose that for every t € T, P(t,-) is Hy-ls.c. Then
P admits a Carathéodory selection. Moreover, there is a multifunction
Y:T7T x X — Co(Y) such that: '

(i) W(t,2) C P(t,z), ((t,z) € T x X),¥ is Ty x B(X)-measurable and
Y, ), teT) is Ls.c.
(ii) p is a Carathéodory selection of P iff p is a Carathéodory selection
of V. '
(1) if © : T'x X — CoY) is Zr x B(X)-measurable, (t,-), (t € T) is Ls.c
- and O, x) C P(t,z), (t,z) € T x X) then ®(t, 1) C Y(t, ), ((t, z) €
T x X). ’ ' -

Proof. For a given z € X, let r, > 0 be such that K (xz,2r;) is a
compact subset of X.From Lindelsf theorem the family {S(z, r:)}eex
contains some countable family {S(z;, Ti)}ieiN Which covers of X.

Let p; be a seminorm on C(X,Y’) defined by p;(f) = sup{||f(z)|| |z €
K(mi,r:)}. It is well known that the space C(X,Y) with topology
determined by the family of seminorms {pi}ien is a Polish space. Let
{fu}neiN be a dense subset of C(X,Y). For i,k,n € N set

Uien = {f € CX, VIpi(f — fa) < 1/k}.

Note that the family U/ = {Uikn}ikneN is a subbase of the topblogy in
C(X,Y) given by the family of seminorms {pi}ieN-
By [4] we can define a multifunction P : T — 20(Y) given by

P@)={p e CX,Y)|p(z) € P(t,z) for each z € X}.
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bbviously for each t € T, the set P (t) is convex. We claim that for each
t & T, the set P () is closed. In fact, suppose on the contrary that there are

to € T" and a sequence {@, },ciN C P (to) such that ¢, — p and p & P (to).
Let 1o € X, € >0, 1 € N and N € N be such that o(zo) € P(to, zo),
d(p(z0), P(to,z0)) =€, 29 € K(zi,7;) and pi(p, — ) < € for n > N.
Then & > pi(pn — ) > ||ealz0) — @(z0)|| > d(p(z0), P(to, z0)) = & which
gives a contradiction.

Claim 1. P is Xp-measurable iff P ~U € Zr for every set
U = {p € C(X, V)| sup{|lp(z) — f(z)|| |z € K(z°, r°)} < t},

where f € C(X,Y), r >0, 2° € X and r° > 0 is such that K(z°,2 - r°)
is compact. .
Indeed, let Uy,...,U,,... be open sets in C(X,Y) then

1) P~ <GU{> =G'P—U,'.
1=1

i=1

Thus it is enough to show that

P-(W)eZr
where W is a finite intersection of members of .
If W =0 then P W =0 € X, so we can assume that W = .

Ui, k;m; # . For each g € W there is r > 0 such that Uijrg € Uijkny »
| _

s

]

s,

.

1,...,m where U, = {p € C(X,Y)|p;,(p —g) < r}.

J
By Lindelof theorem follows that there is a countable family
m o0 m
: ﬂ Usiirngn such that U ﬂ Uisrags = W. Thus by (1) follows that
]'=1 nE|N n=1 j=l '
it is enough to show that
m
P ﬂ Ujrg | € Zr.

J=1

Now we show that

m

P\ [\Uire | =[P Ujng.

j=1 j=1
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The inclusion « C » is trivial, so we omit it. To prove the

m
reverse inclusion, suppose that t € ﬂ’P_UjTg. Let ¢; € P(@) N Ujry,
‘ ' j=1 .
J =1,...,m For each j = 1,...,m there is g; > 0 such that
sup{||p; (@) — g(@)|| |z € K(zj,7; +&;)} < . Set

V=8, m+e)U | X\ JK(z;,my)
i=1

V= S(xj,r,~ +&),J=2,...,m.

For each j =1,..., m define a continuous function
d(z, X\V;)
P]‘(T) = \ I
> dm, X\Vy)
i=1

m
Observe that Ep,-(:z;) =1 for each z € X. Let us define p € C(X,Y) by

1=]

m m

o= ij ;. It is easy to see that p € P(t), p € ﬂ Ujrg and the proof
j:l . ]:l

of Claim 1 is complete.

Claim 2. P is Xp-measurable. ,
By Claim 1 it is sufficient to show that P U € Z. For n € N set

Un={pe€ CX,Y)| sup{||p(z) — f@)||z € K@°,r°)} < r—1/n}.
Clearly,
(2) PU=JP U
n=1

For n,k € N set

Bug ={t € T|PE, )N S(f(z),r — 1/n) # @ for each z € S(x®,r°+1/k)}.
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Choose mg, ko € N such that 1/np < r and 1/ky < r°. We will show that
3) UP U= U Bu.

Let t € | P ~Un. Let n> m be such that t € P~U,. Let p € P (t) N,
="y

1 1
Let m;y > n and & = -— — ——. Since the restrictions of ¢ and f

2n  2m
to K(z° 2r°) are uniformly continuous, there is a § > 0 such that

o) —p())]| < € and || f(z) — f(z)|| < € for each z, 7’ € K(z°,2r°) such
that d(z,z’) < §. Let k € N be such that 1/k < §. For z € S(z°,7°+1/k)
there exist o’ € K(z° r°) such that d(z,2') < 1/k and ||o(z) — f@ll <
lo(@)— @) +]|e(z) — f(@)]|+]|f (@)~ f@)|| < r—1/m. Hence t € By, .

This implies
[e.e] oo o0
UPU.c U U Bu-
n=ng

=no k=Ko

o0 o0
To prove the reverse inclusion suppose that t & U U Bk
n=ng  k=kp
Clearly t € By, for some n > ny and k& > ko. Let n; > n. Consider the
multifunction G : S(z°,7° +1/k) — Ce(Y) given by

G(z) =P, z)N K(f(z),r — 1/m).

By Observation 1 and Lemma 1, G is H W—l.é.c. Hence by [4] G and
P(t,-) admit continuous selections, say ¢; and ¢;. Let p; and p, be
continuous functions from X into [0, 1] defined by

1 if x € K(z°7°)
_ 1 N 1
pi(z) =19 [ . ['r° o d(z, x )] ifzes <$°,7“°+ }c‘> \(z®, r°)
‘0 otherwise.
0 if z € K(z°,7°)

P2(2) =\ k- [d(z,2°) —r°] ifz €S <a:°, T + %) \(z°,7°)

1 otherwise.
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Note that p;(z)+py(z) = 1 for each z € X. The facts that f is continuous
function and K(z° 2r°) is a compact set implay that ¢; is a bounded
function on S(z°,r° + 1/k).

Let ¢; be a function from X to Y defined by

p1(z), €S <$T + -,1—)

0 otherwise.

p1(z) =

Consider the function ¢ : X — Y given by o =p; - 31 +p2 - 2. It is
easy to see that ¢ is a continuous function such that p(z) € P(t,z)

: 1
for each z € X and sup{||p(z) — f(z)|||z € K(z°,7°)} < r — —. Hence
, ni
te U ‘P U, and the proof of (3) is complete.

=10

Let ¢ be a function from 7" x X into Y defined by 9 (¢, z) = f(z).
Observe that 1 is ¥p. x-measurable. By Lemma 2, B, € X for each
n > no and k > ko. Thus, by (2) and (8) we have P U € %p. This
completes the proof of Claim 2.

Let p be a Xp-measurable selection of P [1, p. 67]. Consider the
function p: T'x X — Y given by p(t, z) := (p(t))(z). We claim that p is
a Carathéodory selection of P.

Indeed, for each t € T, p(t,-) is continuous and p(t,z) €
P(t z),(t,z) € T x X. For each z € X we define a continuous function

 OCGY) = ¥ by 72(f) = £(@). Observe that p(,3) = 1z0p, 50 pC- )
is Ep-measurable

Let {pn}.cn be a sequence of Xr-measurable selections of P such
that

P @) = cl{pa®)|n € N}, [1, p. 67].

For each n € IN define the function p, : T x X — Y by
pn(t, 7) = (pu(®))z). By [1, p. 701 p, is Zp x B(X)-measurable. Now
define the multifunction ¥ : T x X — Cg(Y) by

W(t, z) = cl{pn(t, z)|n € N}.

We shall see that W satisfy the conditions (i)-(iii). The condition
(i) follows by [5, Theorem 1]. To see (ii), let p be a Carathéodory type
selection of P. For each t € T" there exists a subsequence {p,, } of {p,}
such that p, (t,-) — p(t,), if mx — oco. This implies p(t,z) € ¥(, 1),
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(t,7) € T x X and (ii) is prove. Finally, to see (iii), let ® : T x X — Co(Y)
be Xr x B(X)-measurable and such that ®(,-) is l.s.c for each ¢t € T,
and 9(¢,z) C P(t,z), (t,z) € T' x X.By [5, Theorem 1] there is a
sequence . {¢n},cN Of Carathéodory type selections of @ such that
D(t, z) = cl{$n(t,z)|n € N}, (t,2) € T x X. By (ii), ¢, is a Carathéodory
selection of ‘Y. This completes the proof.

Remark 1. The assumptions of Theorem 1 are fulfilled 1f (T, Zr) and
(T" x X,Xr«x) are as in Example 1 or Example 2.

Remark 2. Note that Theorem 1 fails without the assumption that
(T, X) is projective.

Indeed, let X =[0,1] and T = [0,1]. Let £ be the o-algebra of -
- Lebesgue measurable subsets of [0,1]. Set £ =X and Zp,x = T x X
Observe that the pair (I, X) is not projective. Let A be a nonmeasurable
subset of [0,1]. Let P be the multifunction from [0, 1] x [0, 1] into Cr(IR)
given by

{1} ifteA =0
P(t,z)=1{ {0} ifte[0,1\A, =0

[0,1] otherwise.

Clearly P is Xryx-measurable and for each t € [0, 1], P(¢,-) is Hy-ls.c.
It is easy to see that P does not admit a Carathéodory type selection.

Remark 3.If P : T x X — Cg(Y) is such that P(.,z) is Xp-
measurable for each z € X and P(t,:) is Hy-l.s.c for each t € T. Then
P need not admit Carathéodory type selection.

Indeed, let X,7° and Zr be as in Remark 2. Let A be a Vitali
(Lebesgue) nonmeasurable subset of [0,1] (see [11, p. 33]. For z,y € [0,1]
we writte z ~ y to denote that z — y is a rational number. It is
evident that « ~ » is an equivalence relation. The equivalence class
which contains the element z € [0,1] is denoted by [z]. Note that the
class [z] is countable. For each a € A there is an increasing sequence
{wi}eN C [0,1] of rational numbers such that wy — a. For each a € A4,
we fix the sequence {w?}. Let P be the multifunction from [0, 1] x [0, 1]
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into Cp(IR) given by
{1} fora;=1+wg——aandt=d€A

Pit,z)=4 {0} forz=1+wl—aandt€ [al\{a},a€ A

[0,1] otherwise

It is routine to see that P(¢,-) is Hpy-ls.c for each t € [0,1] and
P(:,z) is Xpr-measurable for each t € [0, 1]. Suppose that P admits. a
Carathéodory type selection p. Thus we have p(a,1+ w2 —a) =1 for
each a € 4, n€ N and p(t,1 +wj —a) =0 for each t € [a]\{a}, n € N.
Hence by the continuity of p(t,-), we have p(t,1) =1, for t € A and
p(t,1) =0, for t € [0,1]\A. Clearly p(-, 1) is not measurable, which gives
a contradiction.

Let 7" be any measure space and X be a nonempty subset of any
linear topological space. Let P be a multifunction from 7" x X into 2%,
The multifunction P is said to have a random fixed point if there exists
a measurable function z : 7" — X such that z(t) € P(t, z(t)) for almost

all t in T".

THEOREM 2. Let (T',Xr, ;1) be a complete finite measure space and
X be a nonempty compact convex subset of a separate Banach space Y.
Suppose that the pair (I, X) is projective and for every open set U in X
we have T' X U € Zpyx. Let P : T x X — Cg(X) be such that

(i) for each t € T, P(t,-) is Hy-lLs.c
(it) P is Xpyx-measurable
Then P has a random fixed point.
Proof. By Theorem 1 there exists the multifunction W : T x X —
Cc(Y') such that W(t,z) C P(t,z) for each (t,z) € T'x X, ¥ is Zr x B(X)-

measurable and ‘¥(¢, -) is L.s.c for each t € T". Hence by [6, Theorem 3.3]
Y has a random fixed point. This complete the proof.

Remark 4. Unlike in [6], the Theorems 1 and 2 are not true without
closed valueness of P: T x X — 2Y even if both
(1) Y is finite dimensional and

(i) P(t,z) has a nonempty interior for all (t,z) € T" x X.

Indeed, let X =[-1,1] and T" =[—1,1]. Let 1 be the o-algebra of
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Lebesgue measurable subset of [—1,1]. Let P be the multifunction from
[—1,1] x [—1,1] into 20-11 defined by

[—tz,0] for £ >0,t>0
P, z)=
(0, 1] otherwise

It is easy to see that for each t € T, P(t,-) is Hy-ls.c and P is
Zr x B(X)-measurable. Suppose that P admits a Carathéodory type
selection p. Thus we have p(1,z) < 0 for each z > 0 and p(1,z) > O for
each z < 0, which gives a contrafiction because p(1,-) is continuous.

For each function z : T" — X we have that for t > 0, z(t) € P(t, z(t)).
From this follows that P does not have a random fixed point.
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