# A REMARK ON CARATHÉODORY TYPE SELECTIONS

JULIAN JANUS (Trieste) \*

We prove existence of Carathéodory type selections for multifunctions of two variables which are weakly lower semicontinuous with respect to one variable and measurable with respect to the other.

### 1. Introduction.

Let  $(T, \Sigma_T)$  be a measurable space. Let X be a locally compact separable metric space with metric d and let Y be a separable Banach space. Denote by  $\mathcal{B}(X)$  the Borel  $\sigma$ -algebra of X. Let  $2^Y$  be the collection of all nonempty subsets of Y. Set  $C(Y) = \{A \in 2^Y | A \text{ is closed}\}$  and  $C_C(Y) = \{A \in 2^Y | A \text{ is closed}\}$  and convex $\}$ . By S(u,r) (resp. K(u,r)) denote the open (resp. closed) ball in Y of radius r > 0 and center u. Set S = S(0,1). By  $\mathbb{N}$  (resp.  $\mathbb{R}$ ) we denote the set of all natural (resp. real) numbers.

A multifunction  $P: T \to 2^Y$  is called  $\Sigma_T$ -measurable (resp. lower semicontinuous or briefly l.s.c) if the set  $P^-U = \{t \in T | P(t) \cap U \neq \emptyset\}$  belongs to  $\Sigma_T$  (resp. is open) for every open subset U of Y.

A multifunction  $P: X \to 2^Y$  is called weakly Hausdorff lower semicontinuous or briefly  $H_W$ -l.s.c (see [4]) at  $x_0$  if for every  $\varepsilon > 0$  and every neighborhood V of  $x_0$ , there are a neighborhood U of  $x_0$  ( $U \subset V$ ) and a point  $x' \in U$  such that  $P(x') \subset P(x) + \varepsilon S$  for each point  $x \in U$ . P is called  $H_W$ -l.s.c in X if it is  $H_W$ -l.s.c at each point  $x \in X$ .

In general, a  $H_W$ -l.s.c. multifunction is not l.s.c.

<sup>\*</sup> Entrato in Redazione l'8 maggio 1987, ed in forma rivista il 14 maggio 1987

A function  $p: T \times X \to Y$  is called a Carathéodory type selection of  $P: T \times X \to 2^Y$  if (i)  $p(t,x) \in P(t,x)$ , for each  $(t,x) \in T \times X$ , (ii)  $p(t,\cdot)$  is continuous for each  $t \in T$ , and (iii)  $p(\cdot,x)$  is  $\Sigma_T$ -measurable for each  $x \in X$ .

The problem of a Carathéodory type selections, has been studied by several authors [2, 3, 5-7, 10, 12]. In this note we prove the existence of Carathéodory type selection for a multifunction  $P: T \times X \to C_C(Y)$  which is  $\Sigma_{T \times X}$ -measurable and such that for each  $t \in T$ ,  $P(t, \cdot)$  is  $H_W$ -l.s.c. As an application of this result we obtain a random fixed point theorem.

## 2. Preliminaries.

LEMMA 1. Let  $F: X \to C_C(Y)$  be  $H_W$ -l.s.c and let  $f: X \to Y$  be continuous. If  $F(x) \cap S(f(x), R) \neq \emptyset$  for each  $x \in X$ , then for each r > R the multifunction  $F(\cdot) \cap K(f(\cdot), r)$  is  $H_W$ -l.s.c.

Proof.

Claim. For every  $\varepsilon > 0$  there exists a  $\sigma = \sigma(\varepsilon, r, R) > 0$  such that

$$(0) \ [F(x) + \sigma \cdot S] \cap [K(f(x), r) + \sigma \cdot S] \subset F(x) \cap K(f(x), r) + \varepsilon \cdot S, x \in X$$

This claim can be proved as the Lemma in [4]. One should only take  $r_{\lambda}=R\cdot\lambda$  in place of  $r\cdot\frac{\lambda}{2},\tilde{\lambda}=\frac{||y-f(x)||+\sigma-r}{||y-f(x)||-R}$  in place of  $\frac{||y-f(x)||+\sigma-r}{||y-f(x)||-\frac{r}{2}} \text{ and } \sigma \text{ such that } 0<\sigma<\min\{\varepsilon,r-R\},$ 

$$\frac{3\sigma r + R\sigma + \sigma^2}{r - R - \sigma} < \varepsilon.$$

Let  $x_0 \in X$ ,  $\varepsilon > 0$  and let V be a neighborhood of  $x_0$ . By Claim there is  $\sigma$  such that (0) holds. By the continuity of f at  $x_0$ , there is a neighborhood  $W(W \subset V)$  of  $x_0$  such that  $K(f(x_1), r) \subset K(f(x_2), r) + \sigma \cdot S$ ,  $x_1, x_2 \in W$ . Since F is  $H_W$ -l.s.c at  $x_0$ , there are a neighborhood U of  $x_0$  ( $U \subset W$ ) and a point  $x' \in U$  such that  $F(x') \subset F(x) + \sigma \cdot S$ ,  $x \in U$ .

Hence

$$F(x') \cap K(f(x'), r) \subset [F(x) + \sigma \cdot S] \cap [K(f(x), r) + \sigma \cdot S] \subset F(x) \cap K(f(x), r) + \varepsilon \cdot S, \ x \in U.$$

This completes the proof.

One can show that the condition r > R in Lemma 1 cannot be replaced by r > R.

**Observation** 1. Restriction of  $H_W$ -l.s.c function to open set is  $H_W$ -l.s.c function. The following example shows that this is not true for the closed sets.

Let  $P: \mathbb{R} \to 2^{\mathbb{R}}$  be defined by

$$P(x) = \begin{cases} \{0\} & \text{for } x < 0 \\ [-1, 0] & \text{for } x = 0 \\ [0, 1] & \text{for } x > 1 \end{cases}$$

Obviously, P is  $H_W$ -l.s.c but  $P_{|[0,\alpha)}$  is not  $H_W$ -l.s.c at 0.

Let  $(T, \Sigma_T)$ ,  $(T \times X, \Sigma_{T \times X})$  be measurable spaces. Let  $\pi_T$  be the projection of  $T \times X$  onto T. We say that the pair (T, X) is projective if  $\pi_T(V) \in \Sigma_T$  for every  $V \in \Sigma_{T \times X}$ .

EXAMPLE 1. Let  $(T, \Sigma_T)$  be a complete measurable space and let  $\Sigma_{T \times X} = \Sigma_T \times \mathcal{B}(X)$ . Then (T, X) is projective (see [1, p. 75]).

EXAMPLE 2. Let T be a separable metrizable space and let  $\mu$  be a positive measure on  $\mathcal{B}(T)$ . For  $A \in 2^T$  we put  $\mu^*(A) = \inf\{\mu(C) | C \in \mathcal{B}(T), A \subset C\}$ . A set  $A \subset T$  is  $\mu^*$ -measurable if, for every  $B \subset T$ ,  $\mu^*(B) = \mu^*(A \cap B) + \mu^*(B \setminus A)$ . By  $\Sigma_T$ -denote the  $\sigma$ -algebra of  $\mu^*$ -measurable sets. Define the  $\sigma$ -algebra  $\Sigma_{T \times X}$  by putting

$$\Sigma_{T\times X} = \{A \cup E | A \in \mathcal{B}(T\times X), E \in 2^{T\times X} \text{ and } \mu^*(\pi_T(E)) = 0\}.$$

Then (T, X) is projective (see [8, p. 4]).

LEMMA 2. Let  $(T, \Sigma_T)$  and  $(T \times X, \Sigma_{T \times X})$  be measurable space such that the pair (T, X) is projective and  $T \times U \in \Sigma_{T \times X}$  for every open set  $U \subset X$ . Let  $\psi : T \times X \to Y$  and  $P : T \times X \to C(Y)$  be  $\Sigma_{T \times X}$ -measurable maps. Then for every open set  $U \subset X$ , the set

$$\{t \in T | P(t,x) \cap S(\psi(t,x),r) \neq \emptyset \text{ for each } x \in U\}$$

is  $\Sigma_T$ -measurable.

Proof. By [1 p. 67] there exists a sequence  $\{p_n\}_{n\in\mathbb{N}}$  of  $\Sigma_{T\times X}$  measurable functions, from  $T\times X$  into Y, such taht  $P(t,x)-\psi(t,x)=cl\{p_n(t,x)-\psi(t,x):n\in\mathbb{N}\},\ (t,x)\in T\times X.$  Consequently, the set  $W=\{(t,x)\in T\times X|P(t,x)\cap S(\psi(t,x),r)\neq\emptyset\}=\{(t,x)\in T\times X|(P(t,x)-\psi(t,x))\cap S(0,r)\neq\emptyset\}$  belongs to  $\Sigma_{T\times X}$ . Since  $\{t\in T|P(t,x)\cap S(\psi(t,x),r)\neq\emptyset\}$  for each  $x\in U\}=T\setminus\pi_T((T\times U)\setminus W)$  Lemma 2 follows.

## 3. Result.

THEOREM 1. Let  $(T, \Sigma_T)$  and  $(T \times X, \Sigma_{T \times X})$  be measurable spaces. Suppose that the pair (T, X) is projective and, for every open set U in X we have  $T \times U \in \Sigma_{T \times X}$ . Let  $P: T \times X \to C_C(Y)$  be a  $\Sigma_{T \times X}$ -measurable. Suppose that for every  $t \in T$ ,  $P(t, \cdot)$  is  $H_W$ -l.s.c. Then P admits a Carathéodory selection. Moreover, there is a multifunction  $\Psi: T \times X \to C_C(Y)$  such that:

- (i)  $\Psi(t,x) \subset P(t,x)$ ,  $((t,x) \in T \times X)$ ,  $\Psi$  is  $\Sigma_T \times \mathcal{B}(X)$ -measurable and  $\Psi(t,\cdot)$ ,  $(t \in T)$  is l.s.c.
- (ii) p is a Carathéodory selection of P iff p is a Carathéodory selection of  $\Psi$ .
- (iii) if  $\Phi: T \times X \to C_C(Y)$  is  $\Sigma_T \times \mathcal{B}(X)$ -measurable,  $\Phi(t, \cdot)$ ,  $(t \in T)$  is l.s.c and  $\Phi(t, x) \subset P(t, x)$ ,  $((t, x) \in T \times X)$  then  $\Phi(t, x) \subset \Psi(t, x)$ ,  $((t, x) \in T \times X)$ .

*Proof.* For a given  $x \in X$ , let  $r_x > 0$  be such that  $K(x, 2r_x)$  is a compact subset of X. From Lindelöf theorem the family  $\{S(x, r_x)\}_{x \in X}$  contains some countable family  $\{S(x_i, r_i)\}_{i \in \mathbb{N}}$  which covers of X.

Let  $p_i$  be a seminorm on C(X,Y) defined by  $p_i(f) = \sup\{||f(x)|| ||x \in K(x_i,r_i)\}$ . It is well known that the space C(X,Y) with topology determined by the family of seminorms  $\{p_i\}_{i\in\mathbb{N}}$  is a Polish space. Let  $\{f_n\}_{n\in\mathbb{N}}$  be a dense subset of C(X,Y). For  $i,k,n\in\mathbb{N}$  set

$$U_{ikn} = \{ f \in C(X,Y) | p_i(f - f_n) < 1/k \}.$$

Note that the family  $\mathcal{U} = \{U_{ikn}\}_{i,k,n\in\mathbb{N}}$  is a subbase of the topology in C(X,Y) given by the family of seminorms  $\{p_i\}_{i\in\mathbb{N}}$ .

By [4] we can define a multifunction  $\mathcal{P}: T \to 2^{C(X,Y)}$  given by

$$\mathcal{P}\left(t\right)=\left\{ \varphi\in C(X,Y)|\varphi(x)\in P(t,x)\text{ for each }x\in X\right\}.$$

Obviously for each  $t \in T$ , the set  $\mathcal{P}(t)$  is convex. We claim that for each  $t \in T$ , the set  $\mathcal{P}(t)$  is closed. In fact, suppose on the contrary that there are  $t_0 \in T$  and a sequence  $\{\varphi_n\}_{n \in \mathbb{N}} \subset \mathcal{P}(t_0)$  such that  $\varphi_n \to \varphi$  and  $\varphi \notin \mathcal{P}(t_0)$ . Let  $x_0 \in X$ ,  $\varepsilon > 0$ ,  $i \in \mathbb{N}$  and  $N \in \mathbb{N}$  be such that  $\varphi(x_0) \notin P(t_0, x_0)$ ,  $d(\varphi(x_0), P(t_0, x_0)) = \varepsilon$ ,  $x_0 \in K(x_i, r_i)$  and  $p_i(\varphi_n - \varphi) < \varepsilon$  for  $n \geq N$ . Then  $\varepsilon > p_i(\varphi_n - \varphi) \geq ||\varphi_n(x_0) - \varphi(x_0)|| \geq d(\varphi(x_0), P(t_0, x_0)) = \varepsilon$  which gives a contradiction.

Claim 1.  $\mathcal{P}$  is  $\Sigma_T$ -measurable iff  $\mathcal{P}^-U \in \Sigma_T$  for every set

$$U = \{ \varphi \in C(X, Y) | \sup\{ ||\varphi(x) - f(x)|| | x \in K(x^{\circ}, r^{\circ}) \} < t \},$$

where  $f \in C(X,Y)$ , r > 0,  $x^{\circ} \in X$  and  $r^{\circ} > 0$  is such that  $K(x^{\circ}, 2 \cdot r^{\circ})$  is compact.

Indeed, let  $U_1, \ldots, U_n, \ldots$  be open sets in C(X, Y) then

(1) 
$$\mathcal{P}^{-}\left(\bigcup_{i=1}^{\infty}U_{i}\right)=\bigcup_{i=1}^{\infty}\mathcal{P}^{-}U_{i}.$$

Thus it is enough to show that

$$\mathcal{P}^{-}(W) \in \Sigma_{T}$$

where W is a finite intersection of members of  $\mathcal{U}$ .

If  $W = \emptyset$  then  $\mathcal{P}^-W = \emptyset \in \Sigma_T$ , so we can assume that  $W = \bigcap_{m} U_{i_j k_j n_j} \neq \emptyset$ . For each  $g \in W$  there is r > 0 such that  $U_{i_j r g} \subseteq U_{i_j k_j n_j}$ ,  $j = 1, \ldots, m$  where  $U_{i_j r g} = \{\varphi \in C(X, Y) | p_{i_j}(\varphi - g) < r\}$ .

By Lindelöf theorem follows that there is a countable family  $\left\{\bigcap_{j=1}^m U_{i_j\tau_ng_n}\right\}_{n\in\mathbb{N}} \text{ such that } \bigcup_{n=1}^\infty \bigcap_{j=1}^m U_{i_j\tau_ng_n} = W. \text{ Thus by (1) follows that it is enough to show that}$ 

$$\mathcal{P}^{-}\left(igcap_{j=1}^m U_{jrg}
ight)\in\Sigma_T.$$

Now we show that

$$\mathcal{P}^{-}\left(\bigcap_{j=1}^{m}U_{jrg}\right)=\bigcap_{j=1}^{m}\mathcal{P}^{-}U_{jrg}.$$

The inclusion  $\ll \subseteq \gg$  is trivial, so we omit it. To prove the reverse inclusion, suppose that  $t \in \bigcap_{j=1}^m \mathcal{P}^-U_{jrg}$ . Let  $\varphi_j \in \mathcal{P}(t) \cap U_{jrg}$ ,  $j=1,\ldots,m$ . For each  $j=1,\ldots,m$  there is  $\varepsilon_j>0$  such that  $\sup\{||\varphi_j(x)-g(x)||\,|x\in K(x_j,r_j+\varepsilon_j)\}< r$ . Set

$$V_1 := S(x_1, r_1 + \varepsilon_1) \cup \left(X \setminus \bigcup_{j=1}^m K(x_j, r_j)\right)$$

$$V_j := S(x_j, r_j + \varepsilon_j), j = 2, \ldots, m.$$

For each j = 1, ..., m define a continuous function

$$p_j(x) = \frac{d(x, X \setminus V_j)}{\sum_{i=1}^m d(x, X \setminus V_i)}.$$

Observe that  $\sum_{i=1}^{m} p_i(x) = 1$  for each  $x \in X$ . Let us define  $\varphi \in C(X,Y)$  by  $\varphi = \sum_{j=1}^{m} p_j \cdot \varphi_j$ . It is easy to see that  $\varphi \in \mathcal{P}(t)$ ,  $\varphi \in \bigcap_{j=1}^{m} U_{jrg}$  and the proof of Claim 1 is complete.

Claim 2.  $\mathcal{P}$  is  $\Sigma_T$ -measurable.

By Claim 1 it is sufficient to show that  $\mathcal{P}^-U\in\Sigma_T$ . For  $n\in\mathbb{N}$  set

$$U_n = \{ \varphi \in C(X, Y) | \sup\{ ||\varphi(x) - f(x)|| |x \in K(x^{\circ}, r^{\circ}) \} < r - 1/n \}.$$

Clearly,

(2) 
$$\mathcal{P}^{-}U = \bigcup_{n=1}^{\infty} \mathcal{P}^{-}U_{n}.$$

For  $n, k \in \mathbb{N}$  set

$$B_{n,k} = \{t \in T | P(t,x) \cap S(f(x), r-1/n) \neq \emptyset \text{ for each } x \in S(x^{\circ}, r^{\circ}+1/k)\}.$$

Choose  $n_0, k_0 \in \mathbb{N}$  such that  $1/n_0 < r$  and  $1/k_0 < r^{\circ}$ . We will show that

(3) 
$$\bigcup_{n=n_0}^{\infty} \mathcal{P}^{-}U_n = \bigcup_{n=n_0}^{\infty} \bigcup_{k=k_0}^{\infty} B_{n,k}.$$

Let  $t \in \bigcup_{n=n_0}^{\infty} \mathcal{P}^-U_n$ . Let  $n \geq n_0$  be such that  $t \in \mathcal{P}^-U_n$ . Let  $\varphi \in \mathcal{P}(t) \cap U_n$ .

Let  $n_1>n$  and  $\varepsilon=\frac{1}{2n}-\frac{1}{2n_1}$ . Since the restrictions of  $\varphi$  and f to  $K(x^\circ,2r^\circ)$  are uniformly continuous, there is a  $\delta>0$  such that  $||\varphi(x)-\varphi(x')||<\varepsilon$  and  $||f(x)-f(x')||<\varepsilon$  for each  $x,x'\in K(x^\circ,2r^\circ)$  such that  $d(x,x')<\delta$ . Let  $k\in\mathbb{N}$  be such that  $1/k<\delta$ . For  $x\in S(x^\circ,r^\circ+1/k)$  there exist  $x'\in K(x^\circ,r^\circ)$  such that d(x,x')<1/k and  $||\varphi(x)-f(x)||\leq ||\varphi(x)-\varphi(x')||+||\varphi(x')-f(x')||+||f(x')-f(x)||\leq r-1/n_1$ . Hence  $t\in B_{n_1,k}$ . This implies

$$\bigcup_{n=n_0}^{\infty} \mathcal{P}^{-}U_n \subset \bigcup_{n=n_0}^{\infty} \bigcup_{k=k_0}^{\infty} B_{n,k}.$$

To prove the reverse inclusion suppose that  $t \in \bigcup_{n=n_0}^{\infty} \bigcup_{k=k_0}^{\infty} B_{n,k}$ .

Clearly  $t \in B_{n,k}$  for some  $n \ge n_0$  and  $k \ge k_0$ . Let  $n_1 > n$ . Consider the multifunction  $G: S(x^{\circ}, r^{\circ} + 1/k) \to C_C(Y)$  given by

$$G(x) = P(t,x) \cap K(f(x), r - 1/n_1).$$

By Observation 1 and Lemma 1, G is  $H_W$ -l.s.c. Hence by [4] G and  $P(t, \cdot)$  admit continuous selections, say  $\varphi_1$  and  $\varphi_2$ . Let  $p_1$  and  $p_2$  be continuous functions from X into [0, 1] defined by

$$p_1(x) = \begin{cases} 1 & \text{if } x \in K(x^{\circ}, r^{\circ}) \\ k \cdot \left[ r^{\circ} + \frac{1}{k} - d(x, x^{\circ}) \right] & \text{if } x \in S\left( x^{\circ}, r^{\circ} + \frac{1}{k} \right) \setminus (x^{\circ}, r^{\circ}) \\ 0 & \text{otherwise.} \end{cases}$$

$$p_2(x) = \begin{cases} 0 & \text{if } x \in K(x^{\circ}, r^{\circ}) \\ k \cdot [d(x, x^{\circ}) - r^{\circ}] & \text{if } x \in S\left(x^{\circ}, r^{\circ} + \frac{1}{k}\right) \setminus (x^{\circ}, r^{\circ}) \\ 1 & \text{otherwise.} \end{cases}$$

Note that  $p_1(x) + p_2(x) = 1$  for each  $x \in X$ . The facts that f is continuous function and  $K(x^{\circ}, 2r^{\circ})$  is a compact set implay that  $\varphi_1$  is a bounded function on  $S(x^{\circ}, r^{\circ} + 1/k)$ .

Let  $\tilde{\varphi}_1$  be a function from X to Y defined by

$$\widetilde{\varphi}_1(x) = \begin{cases} \varphi_1(x), & x \in S\left(x^\circ, r^\circ + \frac{1}{k}\right) \\ 0 & \text{otherwise.} \end{cases}$$

Consider the function  $\varphi: X \to Y$  given by  $\varphi = p_1 \cdot \tilde{\varphi}_1 + p_2 \cdot \varphi_2$ . It is easy to see that  $\varphi$  is a continuous function such that  $\varphi(x) \in P(t,x)$  for each  $x \in X$  and  $\sup\{||\varphi(x) - f(x)|| | x \in K(x^{\circ}, r^{\circ})\} \le r - \frac{1}{n_1}$ . Hence  $t \in \bigcup_{n=1}^{\infty} \mathcal{P}^{-}U_n$  and the proof of (3) is complete.

Let  $\psi$  be a function from  $T \times X$  into Y defined by  $\psi(t,x) := f(x)$ . Observe that  $\psi$  is  $\Sigma_{T \times X}$ -measurable. By Lemma 2,  $B_{n,k} \in \Sigma_T$  for each  $n \geq n_0$  and  $k \geq k_0$ . Thus, by (2) and (3) we have  $\mathcal{P}^-U \in \Sigma_T$ . This completes the proof of Claim 2.

Let p be a  $\Sigma_T$ -measurable selection of  $\mathcal{P}$  [1, p. 67]. Consider the function  $p: T \times X \to Y$  given by p(t,x) := (p(t))(x). We claim that p is a Carathéodory selection of P.

Indeed, for each  $t \in T$ ,  $p(t,\cdot)$  is continuous and  $p(t,x) \in P(t,x), (t,x) \in T \times X$ . For each  $x \in X$  we define a continuous function  $\gamma_x : C(X,Y) \to Y$  by  $\gamma_x(f) := f(x)$ . Observe that  $p(\cdot,x) = \gamma_x \circ p$ , so  $p(\cdot,x)$  is  $\Sigma_T$ -measurable.

Let  $\{p_n\}_{n\in\mathbb{N}}$  be a sequence of  $\Sigma_T$ -measurable selections of  $\mathcal{P}$  such that

$$\mathcal{P}(t) = cl\{p_n(t)|n \in \mathbb{N}\}, [1, p. 67].$$

For each  $n \in \mathbb{N}$  define the function  $p_n : T \times X \to Y$  by  $p_n(t,x) := (p_n(t))(x)$ . By [1, p. 70]  $p_n$  is  $\Sigma_T \times \mathcal{B}(X)$ -measurable. Now define the multifunction  $\Psi : T \times X \to C_C(Y)$  by

$$\Psi(t,x) := cl\{p_n(t,x)|n \in \mathbb{N}\}.$$

We shall see that  $\Psi$  satisfy the conditions (i)-(iii). The condition (i) follows by [5, Theorem 1]. To see (ii), let p be a Carathéodory type selection of P. For each  $t \in T$  there exists a subsequence  $\{p_{n_k}\}$  of  $\{p_n\}$  such that  $p_{n_k}(t,\cdot) \to p(t,\cdot)$ , if  $n_k \to \infty$ . This implies  $p(t,x) \in \Psi(t,x)$ ,

 $(t,x) \in T \times X$  and (ii) is prove. Finally, to see (iii), let  $\Phi: T \times X \to C_C(Y)$  be  $\Sigma_T \times \mathcal{B}(X)$ -measurable and such that  $\Phi(t,\cdot)$  is l.s.c for each  $t \in T$ , and  $\Phi(t,x) \subset P(t,x)$ ,  $(t,x) \in T \times X$ . By [5, Theorem 1] there is a sequence  $\{\phi_n\}_{n \in \mathbb{N}}$  of Carathéodory type selections of  $\Phi$  such that  $\Phi(t,x) = cl\{\phi_n(t,x) | n \in \mathbb{N}\}$ ,  $(t,x) \in T \times X$ . By (ii),  $\phi_n$  is a Carathéodory selection of  $\Psi$ . This completes the proof.

Remark 1. The assumptions of Theorem 1 are fulfilled if  $(T, \Sigma_T)$  and  $(T \times X, \Sigma_{T \times X})$  are as in Example 1 or Example 2.

Remark 2. Note that Theorem 1 fails without the assumption that (T, X) is projective.

Indeed, let X = [0,1] and T = [0,1]. Let  $\Sigma$  be the  $\sigma$ -algebra of Lebesgue measurable subsets of [0,1]. Set  $\Sigma_T = \Sigma$  and  $\Sigma_{T \times X} = \Sigma \times \Sigma$ . Observe that the pair (T,X) is not projective. Let A be a nonmeasurable subset of [0,1]. Let P be the multifunction from  $[0,1] \times [0,1]$  into  $C_C(\mathbb{R})$  given by

$$P(t,x) = \begin{cases} \{1\} & \text{if } t \in A, \ x = 0 \\ \\ \{0\} & \text{if } t \in [0,1] \backslash A, \ x = 0 \\ \\ [0,1] & \text{otherwise.} \end{cases}$$

Clearly P is  $\Sigma_{T\times X}$ -measurable and for each  $t\in[0,1]$ ,  $P(t,\cdot)$  is  $H_W$ -l.s.c. It is easy to see that P does not admit a Carathéodory type selection.

Remark 3. If  $P: T \times X \to C_C(Y)$  is such that  $P(\cdot, x)$  is  $\Sigma_T$ -measurable for each  $x \in X$  and  $P(t, \cdot)$  is  $H_W$ -l.s.c for each  $t \in T$ . Then P need not admit Carathéodory type selection.

Indeed, let X,T and  $\Sigma_T$  be as in Remark 2. Let A be a Vitali (Lebesgue) nonmeasurable subset of [0,1] (see [11, p. 33]. For  $x,y\in [0,1]$  we writte  $x\sim y$  to denote that x-y is a rational number. It is evident that  $\ll \infty$  is an equivalence relation. The equivalence class which contains the element  $x\in [0,1]$  is denoted by [x]. Note that the class [x] is countable. For each  $a\in A$  there is an increasing sequence  $\{w_n^a\}_{n\in \mathbb{N}}\subset [0,1]$  of rational numbers such that  $w_n^a\to a$ . For each  $a\in A$ , we fix the sequence  $\{w_n^a\}$ . Let P be the multifunction from  $[0,1]\times [0,1]$ 

into  $C_C(\mathbb{R})$  given by

$$P(t,x) = \begin{cases} \{1\} & \text{for } x = 1 + w_n^a - a \text{ and } t = a \in A \\ \{0\} & \text{for } x = 1 + w_n^a - a \text{ and } t \in [a] \setminus \{a\}, a \in A \end{cases}$$
$$[0,1] & \text{otherwise}$$

It is routine to see that  $P(t,\cdot)$  is  $H_W$ -l.s.c for each  $t\in[0,1]$  and  $P(\cdot,x)$  is  $\Sigma_T$ -measurable for each  $t\in[0,1]$ . Suppose that P admits a Carathéodory type selection p. Thus we have  $p(a,1+w_n^a-a)=1$  for each  $a\in A$ ,  $n\in\mathbb{N}$  and  $p(t,1+w_n^a-a)=0$  for each  $t\in[a]\setminus\{a\}$ ,  $n\in\mathbb{N}$ . Hence by the continuity of  $p(t,\cdot)$ , we have p(t,1)=1, for  $t\in A$  and p(t,1)=0, for  $t\in[0,1]\setminus A$ . Clearly  $p(\cdot,1)$  is not measurable, which gives a contradiction.

Let T be any measure space and X be a nonempty subset of any linear topological space. Let P be a multifunction from  $T \times X$  into  $2^X$ . The multifunction P is said to have a random fixed point if there exists a measurable function  $x: T \to X$  such that  $x(t) \in P(t, x(t))$  for almost all t in T.

THEOREM 2. Let  $(T, \Sigma_T, \mu)$  be a complete finite measure space and X be a nonempty compact convex subset of a separate Banach space Y. Suppose that the pair (T, X) is projective and for every open set U in X we have  $T \times U \in \Sigma_{T \times X}$ . Let  $P: T \times X \to C_C(X)$  be such that

- (i) for each  $t \in T$ ,  $P(t, \cdot)$  is  $H_W$ -l.s.c
- (ii) P is  $\Sigma_{T\times X}$ -measurable

Then P has a random fixed point.

*Proof.* By Theorem 1 there exists the multifunction  $\Psi: T \times X \to C_C(Y)$  such that  $\Psi(t,x) \subset P(t,x)$  for each  $(t,x) \in T \times X$ ,  $\Psi$  is  $\Sigma_T \times \mathcal{B}(X)$ -measurable and  $\Psi(t,\cdot)$  is l.s.c for each  $t \in T$ . Hence by [6, Theorem 3.3]  $\Psi$  has a random fixed point. This complete the proof.

Remark 4. Unlike in [6], the Theorems 1 and 2 are not true without closed valueness of  $P: T \times X \to 2^Y$  even if both

- (i) Y is finite dimensional and
- (ii) P(t, x) has a nonempty interior for all  $(t, x) \in T \times X$ .

Indeed, let X = [-1, 1] and T = [-1, 1]. Let  $\Sigma_T$  be the  $\sigma$ -algebra of

Lebesgue measurable subset of [-1,1]. Let P be the multifunction from  $[-1,1] \times [-1,1]$  into  $2^{[-1,1]}$  defined by

$$P(t,x) = \begin{cases} [-tx,0] & \text{for } x > 0, t > 0 \\ (0,1] & \text{otherwise} \end{cases}$$

It is easy to see that for each  $t \in T$ ,  $P(t, \cdot)$  is  $H_W$ -l.s.c and P is  $\Sigma_T \times \mathcal{B}(X)$ -measurable. Suppose that P admits a Carathéodory type selection p. Thus we have p(1, x) < 0 for each x > 0 and p(1, x) > 0 for each x < 0, which gives a contrafiction because  $p(1, \cdot)$  is continuous.

For each function  $x: T \to X$  we have that for t > 0,  $x(t) \notin P(t, x(t))$ . From this follows that P does not have a random fixed point.

#### REFERENCES

- [1] Castaing C., Valadier M., Convex analysis and measurable multifunctions, Lect. Notes. in Math. 580 Springer (1977).
- [2] Castaing C., Sur l'existence des sectons separement measurables et separement continues d'une multi-application, "Travaux du Seminaire d'Analyse Convexe", Univ. des. Sci. et Techniques du Languedoc, No. 5, pp. 14, 1975.
- [3] Cellina A., A selection theorem, Rend. Sem. Mat. Univ. Padova, 55 (1976) 143-149.
- [4] De Blasi F.S., Myjak J., Continuous selections for weakly Hausdorff lower semicontinuous multifunctions, Proc. Amer. Math. Soc. 93 (1985), 369-372.
- [5] Fryszkowski A., Carathéodory type selectors of set-valued maps of two variables, Bull. Acad. Polon. Sci., 25 (1977), 41-46.
- [6] Kim T., Prikry K., Yannelis N.C., Carathéodory-type selections and random fixed point theorems, J. Math. Anal. Appl. 122 (1987), 393-407.
- [7] Kucia A., On the existence of Carathéodory selectors, Bull. Acad. Polon. Sci., 32 (1984), 233-241.
- [8] Lojasiewicz S. (jr)., Some theorems of Scorza-Dragoni type for multifunctions with applications to the problem of existence of solutions for differential multivalued equations, Preprint n. 255, Institute of Mathematics, Polish Academy of Sciences, Warsaw (1982).
- [9] Michael E., Continuous selections, Ann. of Math. (2) 63 (1956), 361-382.
- [10] Ricceri B., Carathéodory's selections for multifunctions with non-separable range, Rend. Sem. Mat. Univ. Padova, 67 (1982), 185-190.
- [11] Ash R.B., Measure, integral, and functional analysis, Academic Press (1972) New York.
- [12] Rybinski L., On Carathéodory type selections, Fund. Math. 125 (1985), 187-193.

S.I.S.S.A (International School For Advanced Studies) Strada Costiera 11, 34014 Trieste, Italy.