ON THE CONVERGENCE OF NONLINEAR
BELTRAMI TYPE OPERATORS

RICCARDO DE ARCANGELIS (Salerno) *

One of the results proved is the following: if (f) is a sequence of
K -quasiregular mappings, converging to f in Llloc , whose jacobians verify
a weak integrability condition, then the solutions of Dirichlet problems for

the nonlinear Laplace-Beltrami operator associated to each fr converge to
the solution of the Dirichlet problem for the nonlinear Laplace-Beltrami

operator associated to f.

Such result is deduced as a particular case of a more general theorem
concerning nonlinear operators.

The case of K -quasiconformal functions fj, is also treated.

A class of weighted Sobolev spaces associated to quasiconformal
mappings is studied.

0. Introduction.

Let €2 be an open set in R™. For every function f = (f!,..., f")‘ in

0
(H IIO’Z(QO))" denote with —a—i—c-(a:) the jacobian matrix of f in z: i.e. the matrix

having the vectors D, f*(z) as rows (here D, fi= (Dg, f*, ... , Dz f9) and

with det gf-(m) its determinant.
x

In the following, when it is clear from the context, we will write
simply D instead of D, besides we will adopt the notations of the usual

matrix product.

* Entrato in Redazione il 28 gennaio 1988
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With Q we generally denote an open set, Q@ Qp will mean that
the closure of €2 is compact and contained in €.

Let K > 1, we say that a function f in (Hll(;Z(Qo))" Iis K -quasiregular

on QO if
lé—f- < Kn? det—-i(a;) a.e.in
Oz z

(z) g
1/2

O ()| = > (Da, (@)

Oz ij=1

It is known (see Proposition 1.1 in 1) that for every K -quasiregular

~1
mapping f the matrix <gi(a:)> exists almost everywhere.
z
Let f be a K-quasiregular mapping on j, in some papers [S2],
[Sb], [DA D], the first of which is due to S. Spagnolo, has been started
the study of the continuity (with respect to f) of the Euler operator A;

(linear operator of Laplace-Beltrami) of the functional
2
of N\ ' .. 0f
D = (1) =L
u(@) <3a: (m)> oz
where Q@ () is open and Lip),, denotes the set of the locally Lipschitz

functions on IR™.
A possible result in this study is the following (see [DA DJ).

where

det —(x)dz

If(Q, ) :u € Lipjge — /
Q

Let (f1,) be a sequence of K -quasiregular mappings on €y converging
to a function f in (Llloc(Qo))" and verifying

_ afh 1-2/n ‘
(0.1 0<wx) < <det —(,;;—(m)) < Aw(z) ae inQy, A>1

with w, w™! in Llloc(QO)‘ Then f is itself K-quasiregular on g and,
for every open set 2 £, the solutions in H(}(Q,w) (Sobolev space
with weight w of functions with null trace on 0€) of the equations
Agu =19 € L*>(§2) converge in LY(Q) to the solution of Aru = 1.

In [Sb] has been also proposed the problem of the study of the
continuity of the Euler operator Af (nonlinear Laplace-Beltrami operator)

of the functional |
Du(z) | =—(z)
oz

of

det —
68:17

(z)dx.

J7(€2,") : u € Lipjge — /
Q
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This matter is treated in the present paper.

In particular one of the results obtained here is very similar to the
one exposed above. In fact in Theorem 3.3 it is proved the following
statement. '

If (fy) is a sequence of K -quasiregular mappings on £y converging
to a function f in (LIIOC(QO))" and if :

Ofh

9 < Q) < +oo  for every open set QT

LY

0.2) “d t 2

then the function f is K-quasiregular on Qy and the solutions in Hg (9))
~ of the equations Aju =1 € L*(Q) converge in LY(Q) to the solution of
the equation Aju = 1.

To get a result of this kind we take into consideration a sequence
- (¢pp) of nonnegative convex functions on R" with

0 < Dpé) < c(1+[JP) for every £ in R*, c > 1,p > 1

converging to a function ® and a sequence (f3) in (HIIO’Z(QO))",
g > max{p,n}, converging in (Lloc(QO))n to a (Hll(;g(Qo))" function f

with det afh (z) > 0, det ?—f-(x) > 0 a.e..

Then we construct the functionals

th(Q,-):uELiploc—»/(I)h (Du(m)(afh( )> )dt fh(z)d
Q

and prove that (Theorem 2.7), under suitable boundedness but not
of quasiregularity hypotheses on ( fu), they T'—(L1(Q2))-converge to the
functional Ff, associated analogously to f by means of the function ®,
for every open set Q@ €.

This method, with the choice ®4(§) = () = |¢[|P, allows the study
of the continuity properties of the Euler operator associated to the
functional

P of

-1
Du(x) < g?];— (m)) det —a—;(w)d:v.

L#(€, ) : u € Lipjge — /
Q
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In order to get a theorem similar to the two ones stated above, is
needed the following hypothesis that, at least in the case 1 < p < n,
looks to be intermediate between (0.1) and (0.2) ((0.2) being always
implied by (0.1))

o )"
0 < wx) <L (det —5;(117)> <Aw(z) ae. inQy, A>1

with w, w=/®D in L] (Qp).

- If the functions f, are K-quasiconformal (K -quasiregular and one
to one) the stated result can be lightly refined by using appropriately
suitable weighted Sobolev spaces as in [DA D].

We wish to thank Professor B. Bojarski for some interesting
discussions about quasiregular mappings theory.

1. Definitions and preliminaries.

For every m x m matrix 4 = [ai;] define:

. 1/2
1= 3e3
i,j=1
Al = sup |Az],
then it is well known that
.1 I < 14 < Va4l

Obviously the eigenvalues of A'A will be real and nonnegative: let
0 < w1 <...< pn be these eigenvalues and define \; = )\;(A4) = Vi

It will result

14l = s
|det Af =Xy ... Ay,

Further if we suppose that A\; # 0 and define A(4) = An(A)/ 21(A)
we will have

(1.2) |detA] < A(A)|det A| < ||A|* < ACA™ | det A < A(A)"| det A].
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We will often use the following simple estimates:

(1.3) |[zA7Pldet Al < A{Phi.. 2P <

ST <ATPAPT 2P = || AP AP 2P,

and

(1.4) |2A7'P|det A| > A\;Ph1... ha2P >

> PN [ofP = N PAI 2P = A" AT 2]

If we denote with

0 0 of
A@) = A <5§<x>> = <5£-<m)> Y <5§<x>>

for a K-quasiregular mapping, by virtue of (1.1) and (1.2), it must result
(1.5) A(z) < K ae..

A K-quasiregular mapping f on €y is said to be K -quasiconformal
on £ if it is an isomorphism.

For a general exposition about quasiregular mappings see [B I]
where the following estimates are proved:

PROPOSITION 1.1. Let f be a nonconstant K -quasiregular mapping
on £y, then: :

1) det—g—Ji(a:) > 0 a.e. in € (Theorem 7.2);
z
2) f is differentiable a.e. in €y and the chain rule holds, i.e. for every
¥ in CN(f(Q)) P o f is in H"(Q) and |

Dy o f)(z) = ?—f-(x)(Dygb)(f(:v)) (Theorem 5.3 and Lemma 9.6);

oz

3) f maps sets of measure zero into sets of measure zero (Theorem 8.1).
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If further f is K-quasiconformal on Qg then:
4) f~1is K™ '-quasiconformal on f(€%) (Theorem 9.1);

-1 1
5 (g_i@)) = % (f@) ae. in

Oy
6) for every u in L*®(R™) and Q@ £y it results
of
/ u(f(x))det =—(z)dz = / u(y)dy (Theorem 8.4).
o Oz 1@

We now state the following result about LP-integrability of the
derivatives of quasiregular mappings (see [B I], [G2], [G M)).

THEOREM 1.2. Let f be K-quasiregular on . Then there exists
q > n depending only on n and K such that f is in (Hllég(Qo))".
Moreover for every compact subset S of QT Qo it results:

¢\ c1(n, q, k) AN
(1.6) < l dm) S Fisi(S, o)1 e (fg dz)

The following result can be found in [B C O]

PROPOSITION 1.3. Let fy, f be functions in (Hpn(Qo))" such that
(fn) converges weakly in (Hllo’z(Qo))" to f for some r > "nz/ n+ 1.

Then for every 1 in C§(Qp)

Ofh (2)¢(z)dz = / det &

oz 0 oz

of

oz

of
oz

(z)(z)dz.

hlim det
—00 Qe

Finally define AdjA as the matrix having as entries the algebraic
complements of A%. It will result

A-AdjA=detAl.
We will also need the followibng result (see for intance [B IJ).

PROPOSITION-1.4. Let f be a function in (H" ' (Qo))*, then the

columns of the matrix Adjg—f— have null weak divergence.
T
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We now define I'-convergence. We refer to [DG F] and [DG] for
complete references.

Let (U,7) be a topological space satisfying the first countability
axiom and let Fj, F (h € IN) be extended real functionals on U.

DEFINITION 1.5. We say that

Flw)=T"(n) ,1‘11_’2 Fy(v) for everyu e U

L iimd )

if and only if
i) for every u € U and for every v RNy

F(u) < liminf Fy(vs)

ii) for every u € U there exists a sequence (up), up s u, such that

Fu)= hlig)lo Ep(up).

In T'-convergence theory the following result is fundamental (see
[DG F). '

THEOREM 1.6. Let (F}) be a sequence of equicoercive functionals on
U, i.e; for every real number c there exists a compact K. in U such that
{u€eU:Fpu)<c} C K, for every h € N.

Assume further that '

F(u)=T"(7) lim Fy(v) weU.

VU

Then F' has a minimum on U and
min F'(v) = lim inf F,(v).
velU (U) h—oo velU h(v)
Further if (up) is a sequence such that u, — u and

im (F(up) — Inf Fy(v)) =0

then :
F(u) = min F(v).
velU
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' 2. The continuity theorem.

Let @, : IR® — [0, +o0[, h € N, be functions verifying

@}, convex
2.1)
O0< ®p€) < ci(1+[[P) for every € € R”

with 1 < p < 400, ¢; > 1 and such that
(2.2) hlim Dy(€) = D) for every £ € R™.

Obviously @ will be a convex function and (2.1) will be verified by
o. ‘ ‘ :

Let (fx) be a sequence of functions from Qg to R®. We will suppose
a certain degree of regularity on every f;, and on the convergence of the
sequence (fj) to a function f.
More precisely we will assume

Fa(H Qo))" ¢ > max{p, n}
2.3)
fo— € HEQ)" in (L Qo)™

Here the number ¢ will represent for us an index of regularity of
the functons f; and of their convergence to f, while the number p is
the order of growth of the functionals.

In order to construct our functionals we will always suppose in the

following that

2.4) det ?—’f—(:z:) >0, det -a—ih-(a:) >0 a.e.in £.
ox oz

Under these hypotheses we define the functions

—1
or(z, 2) = Dy (z <-a—f'i(a:)> > det%(z) z a.e. in Qp, z € R",

¢, will be a Carathéodory function: i.e. measurable in z and convex in
and, by (2.1) and (1.3), will verify the following growth condition:

o5
oz

T ep

(z)

(2.5) 0< ¢u(z,2) < ¢; det %’%(mn 1™ P2\ ()P



ON THE CONVERGENCE OF NONLINEAR 23

for almost all z in Qy and all z in R®, where Ap(z) = A (afh (a:)>

For every open set QU £y and v in Lip). set
(2.6) Fr(Q,u) = F;,(Q,u) = /qﬁh(z, Du)dz.
o

By (2.5) we easily get that

@.7) 0< Fu(Q,u) < ci / det X% (oydg
S
-+cln("_p)/2/Ah(a:)p'l afh( ) |Du|pdz
Q

In order to control the behaviour of the functionals F; when h tends
to infinity we will suppose that

(2.8)
: Ofn _ of
lim [ det =—(z)dz = | det—(x)dz for every open set Qa £
h—oo o oz Q oz
and that
(2.9) the integrals / én(z)P! lafh (z) da: are equiabsolutely contin-
Q

nuous and, for every Q@ €2p, uniformly bounded.

Observe that, by (2.9) and the Vitali - Hahn - Saks theorem, it
follows the existence of a subsequence, still denoted by h, and of a
function m in Llloc(QO) such that

3f h dz = / mdz for every Q@ €.

Q

(2.10) hm / Ap(z)P!

From now onwords we will denote with the letter ¢ various constants
depending only on known quantities as n, p, c;.

Fix an open set Q;@ € and define

X Pn(z,2) if z €
(2.11) bn(z,2) = {
0 if £ € R® — Q
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then from (2.5) it follows that

(2.12) 0< $h(z, z) < exg,(z) {det%]%-(x)+Ah(SE)p—1 l—aa—]-;ﬁ(w)

" lzl”}

for almost all z in R", z in RR".
Define further

Ofn 1 |0fn, TP
det — A —_ f Q
2.13) ay(z) = cdet p () + cAp(z) e () if x €
0 if € R"* — Ql
then, respectively by (2.12) and (2.8), (2.9) and (2.10), we get
(2.14) 0 < dulz, 2) < an@)(1 +|2[P)

(2.15) /ah(z)dx — /a(z)da:
Q Q

for every bounded open set Q where a(z) = ¢ <det -gg(a;) + m(w)).

- Then, by a result of Carbone and Sbordone, [C S], we deduce the
following theorem:

THEOREM 2.1. Let (2.14) and (2.15) hold for ‘$u(z,2) defined in
(2.11). Then there exist a subsequence (hy) and a Carathéodory function
g : R®™ X IR® — [0, +co[ such that :

(2.16) /g(x, Du)dz =T (Mo(®)) lim / bn, (z, Dv)dz =
Q Q

v—u

=T lim [ 1,(a, Do)
Q

L d’)

for every bounded open set Q of R and u in Lipy,e.
loc

In Theorem 2.1 we have denoted with My(Q) the topology of the
convergence in measure on 2 and with Cg(Q) the one deduced by the
extended metric

{ llu — v]|goy  if spt(u — v)C Q
§(u,v) =

+00 otherwise
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Since we are going to identify the function g(z,z) we can assume
the convergence in (2.17) to hold for the whole sequence.

In particular from Theorem 2.1 it follows that

2.17) /g(:z;, Du)dz =T~ (Mo(2)) %n_’g /¢h(z, Dv)dz =
Q ~ vu YO

=T (C(Q)) lim / $n(z, Dv)dz
vy Q
for every open set QT €21, u in Lipyg,. |
By (2.16), (2.10), (2.8) it soon follows that the function g(zx, 2)
~ satisfies the following growth condition

(2.18) 0<g(z,2)< ¢ {det -g%(a:) + m(a:)lzlp} Xg, (T)

for almost all z in R*, z € R".

In order to identify the function g given by Theorem 2.1, a first
step consists in the extension of (2.17) to the whole space Hllo’f:(Qo), that
is to the space to which the components of f; and f belong.

To carry out such an extension we will have to assume a further
estimate on the f; (at least if ¢ < +00) in which the numbers q and p
are linked:

n-p

s

e <QE) < +o0

L@/a-p)(Q)

1
(2.19) AP~

for every open set Q Q.
In (2.19) we have assumed

1 if ¢ =+
q={ 1 q oe}

9—p +oo if ¢ = p.

Remark 2.2. In order to prove (2.17) it sufficies to assume, in place
of (2.3), that det %;h— is in Llloc(QO) for every h.

On the other side hypothesis (2.19), for every ¢ > p, implies that
the functions ?—Jj}i are at least in L{‘OC(QO). This is the reason for which

oz
we have required the stronger hypothesis ¢ > n still in (2.3). |
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For Q@ €y we extend the functionals F} setting
(2.20) Gr(Q,):u € Hll(;g(Qo) — /d)h(m, Du)dz.
‘ Q

By (2.5), (2.19) and Hoélder inequality it soon follows that G(Q, )
is convex and finite on Hll(;‘é(Qo).

To prove the extension result it will be useful to recall the following
proposition from [DG FI.

PROPOSITION 2.3. Let (U,7) be a topological space, let o be a
topology on U finer than 7 and let L be a o-dense subset of U. Assume
that the functionals of the sequence (Fy) are o-continuous on U and that

F(u)=T"(7) lim Fy(v) uvel.

Ut

Fp(w) ifuel
Gr(u) = {

Define

then
Fu)=T"(NlmG,v) vel

v—ou

THEOREM 2.4. Assume that (2.17) and (2.19) hold. Then

@2y [ gt Duds =T (o) fim Ga(,v) =
Q v—sy

= T (CH() lim GA(, v)

V-

for every open set £ of Qi and u in Hll(;g(Qo).

Proof. Define the functionals on Hll(;qc(Qo)

¢n(z, Du)dz if u € Lip
Fi(Q,u) = [z loc

+00 if u € Hyd(Q0) — Lipjoe.
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Let us argue with the topology MO(Q) the proof for the other being
the same.

By general compactness theorems in I'-convergence theory (see [DG
F]) we have, eventually for a subsequence:

@2 T (o) lim Gh(@, 0 < [ 066, Durds <
VU Q

<T™(Mo(@) lim (@, v) = F'(Q, u)

v

~ for every u in Liploc.
Hence, by Proposition 2.3 with 7 = My(Q2), 0 = H9(Q) and L =Lipjges
and by (2.21) it follows that

(2.23) /g(z\, Du)dz = F'(Q,u) for every u in Lipj,.
o

By (2.18) and (2.19) both the functionals in (2.23) are convex and
finite on Hll’q (£20), hence they are continuous in this space, therefore the
thesis follows from (2.23). |

In order to complete the identification result we now recall the
concept of local minimum for a functional and study the minimality
properties of the f;, with respect to G}.

We say that u € Hl(;g(Qo) is a local minimum on Hll(;g(Qo) for the

functional G}, if for every open subset AC Qp and v in H& 9(A) it results
Gr(A,u) < Gr(4, u+v).

PROPOSITION 2.5. For every h € N and n € R"™ the function
up(z) =n - fu(z) is a local minimum on H1 1(Q0) for the functional G},

" Proof. Since @y, is convex and verifies (2.1) it will be subdifferentiable
everywhere in IR™.

For every £ € R™ let 0~ ®4() be the set of subdifferentials of @,
in £.

Let ay € 0~ D4(€), AC Qp and 9 in H}(A).
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We will have:

—~1
Dun(z) (—f-"—< )) Ofh (g (af" <:c>> =n.I=n,

- oz

and

(2.24) /(I)h <D(uh +9)(x) <—&-( )> ) det-—'—f-’l(a:)dz >
A

> / <D¢(m) <%( )) )ani(m)d +
A

+/(Dh (Duh(x) <——f-‘£( )> ) det——fi(:c)d
A

Hence, by (2.24) and Proposition 1.4:
(2.25) Gr(A, up+1) 2'/D';b(a;)Adjaai;(m)af,dm+Gh(A, Up) = G’h(A, Up).
, A

that is the thesis. N
We now prove a first characterization of the function g.

LEMMA 2.6. For every 1 € IR" and every open set Q@ Q; it results

(2.26) /g (a: - (9f> dx = (D(n)/ det ———dm
o 0

Proof. Fix an open subset Q of ;.

Set up(z) =n- fulz), u(x)=7n- f(z).

Because Duy(z) = fh (m) Du(z)=n- —i(:c) and ¢x(z, Dup(x)) =

Dy, (n)det %Jj—l-(:z:) it will sufﬁc1es to prove that
z

lim /¢h(m,Duh)dz=/g(z,Du)dw
h—o00 ) )
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and then use (2.2) and (2.8).
By (2.21) we can select a sequence (v;) in Hll(;g(Qo) such that
vp, — u in LY(2) and

(2.27) /g(m,Du)da:= lim /qSh(x,Duh)da;.
o h—o00 )

Let B, Bj, B3 be three open subsets of £ such that BC B1C B, C Q
and meas (0B) = 0.
Let 9 in Cé (B;) such that

0< ¥(z)<1 for every = in Q
(2.28) {

P(x) =1 for every z in B
and, for every t €]0, 1[ let 4* be a function in C'(Q) such that

v 1 for every z in B
(2.29) () =

1/(1 —t) for every z in Q — B,,

2t 1
1—t dist(6Bi,0B))

(2.30) | Dy ()| <

Set
(2.31) wh(@) = (1 = Y @R @a(@) + (1 — P(@))us(z)),

then w! € uj + H, 1’q(Q) and, by Proposition 2.5
h 0

(2.32) ’/‘gbh(a:,Duh)dmg/(ﬁh(a:,Dwfl)dz =/ d)h(a:,Dwfl)d:zﬁ
Q

Q B

+/ on(x, Dwfl)da; = qp + by.
 JQ-B

1

We have, by an iterated use of the convexity of ¢p:

ap = / bu(z. (1 — )Dvp)da+
B
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+ / #4(@, (1 — ) D + (1 — ) Dup + (on — un)DYPda <

B1—B

< t/q.’)h(a;,())da; +(1 — t)/¢h(z, Duvp)dz+
B B

vt
B

+(1 - t){ - Y(x)pn(z, Dup)dz+
. B1—B

Ph <$, L= t(uh — vh)D¢> dz+
B t

1—

+ / (1 = Y(@)n(a, Duh>dz}.
Bi—B

By using (2.5) we obtain:

(2.33) ap < ct/ det%(m‘)dm+/ or(z, Dvp)dz+
B Oz By '

(1 —1¢)P | -1
1 1Dl / A
B1—-B

n—p

% Iuh -— vhlpda:+

ox

+c

+ Or(z, Dup)dz.
‘ B;i—B

Note that from (2.19) it soon folloWs that:

ofn |*P .
(2.34) 4 s D1 s - sz < Qun — vl
-
We observe now that:

(2.35) b, < / én(z, Dup)dz + / ¢n(z, 1 — )V Duy, + up D' Pdz.
‘ Q-8B Q-5

By (2.27), (2.32), (2.33), (2.34) and (2.35) we deduce, passing to the
limit as A — +00 and remembering (2.8), that

(2.36) lim sup/qSh(a;,Duh)dm < /g(m,Du)dm+ct/ det-?ih—(a:)dm+
I Q Q : By 0z

h—o0

+ lim sup {/ dn(z, Dup) + ¢p(z, (1 — t){'ytDuh + uthyt})} dr.
Q-B

h—00
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Let now

ch = / ($(z, Dun) + ¢(@, (1 — O){7' Dup + up D' D)z, -
Q-—B

then by (2.1) it follows that

cp < 2¢ / det i(:z:)d:L‘+
Q

B Oz
+c/

YO B
+c/
QB

11P
afh( )<5fh( )> Ofh
BN . -1
+ (1 — up Dy’ <%(CB)>
Oz

det ——(:r)d +

(1 — ey fh(z)(af"< )) ,

P
%(m)d

Recalling (1.3), (2.8), (2.30) and (2.19) we deduce that

(2.37) lim sup ¢ < 2c / det 2% (0ydz+
h—oo ' Q-B Oz
+c(1+ 2”“1)|n|p/ det —éﬁ(m)d +
Q-B
T L Y\ W]
dist(0By, OB,)P Hlzs-

Letting ¢t go to zero, by means of (2.37), (2.36) becomes:

(2.38) llmsup/qSh(a: Dup)dzr <

< /g(z,Du)dm+c(2+2p‘1|n]p)/ deta—f’l(a;)da;,
[9) OB oz
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If meas (2 — B) — 0 we get by (2.21) and (2.38)

(2.39) /g(cv,Du)d:z; < li’{ninf/th(a:,Duh)dz <
Q T Jg

< lirnsup/¢h(:z:,Duh)da: < /g(m,Du)dw
Q Q

h—o0

and the lemma is proved. [ |
We can prove now the main result of this paper.

THEOREM 2.7. Let @y, @, fy, f verify (2.1), (2.2), (2.3), (2.4), (2.8)
and (2.19). Then

-1
(2.40) /(1) (Du(m) (Qi(x)> ) det Qz-(cv)dx =
A oz ox

_ -1
= I (Mp(Q2)) lim /(I)h <Dv(a:) <%($)> ) det Q'—f—’i(m)dz =
hooo Jo oz loken

vy

v-rh

1
= F_(CS(Q)) lim /CDh (Dv(m) <Q—f£(z)> ) det %—(ax)dax
hoo Jo Oz : Oz

for every open set QU Qy and u in Hll(;z(Qo).
Proof. Let H be the set of the Lebesgue points in £y of the functions
. 0
det -g—f—(a:) and g <:1:, n%(m)) for every n in @Q". Obviously meas(H) = 0.
x

By (2.26), for every z in ) — H and 7 in Q" we get

(2.41) 0 (w n-gicc)) - o det L ()
T ox

and, by the continuity in 2z of g and the arbitrary choice of Q;, (2.41)

will be valid for every z in Q¢ — H and 7 in R™.

0 v :
Since det-a—f—(a:) > 0 a.e., for every z in IR" and for almost all z in
T

o we will have

Z 1\
(2.42) g(z,z) =D (z <?—f:(z)> ) det -a—f—(a:),
oz oz
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and from (2.21) the theorem follows. | [ ]

Remark 2.8. Assumptions (2.19), that links ¢ and p, and (2.3), from

a];h> in L1(Q) follows, imply the

equiboundedness of the sequence (f;) in some (H17(Q))".

In fact let t,s € R, 0 < s < m to b_e chosen later; from (1.1), (1.2)
and Holder inequality it follows that

(2.43) /
Q
s/n
< il ( / det X gy ) ( / A/ (=)
= oz o

Now if we choose ¢t and s so that (see (2.19))

which the equiboundedness of <det

(1+)s

Ofh ds <

0T

Ofn

stn/(n—s) 1-s/n
Bz d:c)

and if we further suppose that f, — f in (L'(Q))*, by the LN)-

equiboundedness of <det %) we get the equiboundedness of (f3) in
x

(H17(Q)* with

nn—2)+p
¢qp—D+m—1)(g—p)’

r=(1+t)s=

3. Weighted Sobolev spaces and convergence of minima.

In this section we want to study the behaviour of the solutions of

minimum problems related to the functionals / on(z, Du)dz.
Q
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Suppose that the functions @, verify (2.2) and

@, strictly convex
(3.1
[€]P < @p(€) < 11 +|€[P)  for every € in R™, p> 1, ¢; > 1.

Let fr, h € N, be functions in ( IOC(QO))" with det — fh (LU) >0 ae,

then the functions

. —1
Pn(z, 2) = Py (z <%€ﬁ-(a:)> ) ﬁ( )
' T .

verify, by (1.3) and (1.4):

3fh

32 M@t <x> Izl”sm(m‘,z)s_

3fh

IZI”

< ¢ det '3—f-—(112) + c1Ap(z)P™ “

for almost all z in £y and every z in IR".

In order to have, for the functionals / ¢n(z, Du)dz, finiteness and

equicoeciveness in the same space we are forced to require the existence
of a positive function w on € and of a positive real number M such

that

n—p

w(z) < Ap(z)i—" “ %" a.e. in

An(z)P! “%fg(x)“”_p < Mw(z) ae.in Q.

(3.3)

By (3.3) it easily follows that
(3.4) An() < MYV g6 in Q)

this means, by (1.2), that the functions f, are K -quasiregular on
with K = M(”_l)/(mp 2,
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Define now v = max{p,n}, then, because of (3.4) and (1.2), the
estimates in (3.2) can be rewritten as

Ofn

l1-p/n
—a——(w)> |2[P < ¢n(z, 2) <
T

(3.5) Kl <det

l1—p/n
< e detaﬁ(a:)+cl[{”"1 -<det%(m)> |2|P
oz oz

for almost all z in £y and every 2z in R".

Because of (3.3) we will assume (see (1.2)) that

3.6
( f) B 1-p/n
w(z) < <d_et —-a—m—(a;)> < Mw(z) zaein Qy if p#n

q -

Ofn
det 8_11,‘

< Q) < +00 for every Q@ €y ifp=n
LY

\
We now introduce a class of weighted Sobolev spaces in which define

the functionals / én(z, Du)dz in order to have minimum points.
Q

For every positive function o in LIIOC(QQ) and every Q €, define
Hé’p (€2, o) as the completion of C&(Q) in the topology induced by the

norm
\ V/p
lull e @0 = (/IDUIPG(m)de) :
Q

Observe that if o~ Y/® D is in L} (Qo) then H,P(Q,0) embeds
continuously in Hé’l(Q) and compactly in L!(Q) for every Q@ .

In the following we will consider the case in which o(z) = w(z), w
being given by (3.6), w =1 if p =n. :

In order to obtain the result on the convergence in L'(Q) of the
minimum points we will need first of all a good definition of the space
HyP(Q, w).

This is ensured if (f) is a sequence of K-quasiregular mappings on
2y such that

(3.7) fo = fin (L (Qo)"
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and
(3.8) ifp<n w /D epl (Q)
(3.9) ifp>n w € L,(Qo)

In fact observe that from (3.6) it follows that w € Llloc(QO) if
p < n and that w= /@D ¢ L1 0c(§20) if p > n. This holds since f; is in
( loc(QO))n and hence w"/(""p) if p<nand w P if p > n are in
Lloc(QO)‘

If p = n obviously H&’p(ﬂ, w) = Hg’"(ﬂ).

In conclusion in any case H, é P(Q, w) continuously embeds in H, é ’I(Q).

Thanks to the above hypotheses on f;, we soon get informations on

f-

LEMMA 3.1. Let (f1,) be a sequence of K-quasiregular mappmgs on
o verfying (3.6) and (3.7).

Then (fh) converges weakly to f in (H, (Qo))" and f itself is
K -quasiregular on €.

Proof. Let Q@ €. By (3.6) and the K -quasiregularity we get that
(@) is bounded in (H'™(Q))" and, by (3.7), that ( fr) converges weakly
to f in (H'™(Q))".

Therefore for every nonnegative function 1 in C§°(€2) by Proposition
1.3 it results

'—hooé

< n"/thmlnf / det =% (z)¢(m)dm— n? K / det == (x)w(:v)da:

By the arbitrary choice of ¢ we get

(3.10) 8—f(:v) < Kn'l? det-a-f-(m a.e. in ,
, oz Oz

i.e. f is K-quasiregular on €. | |
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In order to apply Theorm 2.7 we will need some further hypotheses,
at least in the case p > n.
Such hypotheses are the following

ifp>nfa, £ E€HLQ)) with ¢ >p
3.11)
w e LI P(Qy).

Observe that (3.11) implies (3.9).
We are now able to apply Theoem 2.7 and to extend it to the whole
Lp '
Hy" (R, w). .

LEMMA 3.2. Let @, © verify (3.1) and (2.2). Let (fr) be a sequence
of K-quasiregular mappings on £ verifying (3.6), (3.7), (3.8) and (3.11).

Then f is K -quasiregular on €y and

' -1
/CD (Du(z) <—a-f-(a:)> ) det g—i(z)dm =TI (Mo(2)) ,I,EE /cf)h(a;, Dv)dx =
Q

Oz v YQ
=T(C@)lim [ ¢u(a, Dv)da
Uy Q

for every open set Q@ £y and u in Hé’p(ﬂ, w).

Proof. By Lemma 3.1 f is K-quasiregular on .

The sequence (f;) converges uniformly to- f. In fact, by (3.6), the
functions fj, are equibounded in (H1"(Q))", then by Theorem 1.2 they are
equibounded in H'4(Q) with ¢ > n and hence equi-Hélder continuous.

Since they converge to f in L!(2) the uniform convergence follows.

Hypothesis (2.4) follows directly from Proposition 1.1 and Lemma
3.1.

In order to obtain (2.8) we can apply first Lemma 3.1 and after
Proposition 1.3 getting

(3.12)
/ (x) det -a—'ﬁi(a:)dx - / »(x) deta—fdcz; for every 19 inC§°(€).
o ox 3 oz

From the equiboundedness of (f) in H L4(Q) for some q > n follows

the one of (det %{f—> in LY"(Q). Hence (2.8) easily follows from (3.12).
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Finally (2.19) follows directly from (3.11) if p > n or from (3.6) and
Theorem 1.2 if p < m. |
By the above considerations we can apply Theorem 2.7.

To get the thes1s we have now to argue as in the proof of Theorem 24
working with H, VP(Q, w) instead of Hl () and with Lipjy, N Ho P(Q, w)
instead of L1p1Oc

Here we only have to observe that, by (3.5) and (3.6) the functional

~1
/(I) (Du(a:) (a—f—(az)> ) det —ai(:z:)da: is finite on Hol’p(Q, w). |
o Oz oz |

We can prove now the result on the convergence of minima.

THEOREM 3.3. Let @y, @ verify (3.1) and (2.2). Let ( 1) be a sequence
of K-quasiregular mappings on Qq verifying (3.6), (3.7), (3.8) and (3. 11).

Then f is K-quasiregular on €.

Further . for every open set QCCQO and every g Ln L®(Q) the
minimum points of the problems

(3.13) min { / @, (Dv(m)( fh(a:)) )det fh(:z:)da:+

vEHg’P(Q,w)
+ /g(m)v(z)dm}
Q

converge in LY(Q) to the minimum point of the problem

1 '
(3.14) min {/(D <Dv(z) <Q—f—(az)> ) det Qf-(z)daﬁ
veHyP@Qu) L Jg oz Ox

¥ / g(z)v(m)d:c},
Q

and the convergence of the minimum values holds.

Proof. First of all observe that, by Lemma 3.1, the function f verifies

8f 1—p/n
(3.15) w(z) < <det 5—3—3—-(:1;)) < Mw(z) a.e.in Q
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and hence, by (3.5) written with ¢ 1nstead of ¢, follows that problem
(3.14) is well posed.
Fix an open set Q@ {2y and ¢ in L*(€2).

By Lemma 3.2 and the L!(Q)-continuity of

S

gudz it soon follows

that (see also [DG F] Proposizione 1.11)

, ~1
(3.16) /(I) (Du(:z:) <a—f(a:)> ) det é—f—(sc)da: + /g(a:)u(:v)da: =
o \ 0z oz o

=T (Z'() lim { / én(z, Dv)dz + /g(x)v(:z;)dx}
vou Q

Q

for every u in Hé’p(Q, w).
By (3.5) and (3.6) the functionals in (3.15) are equicoercive in the
topology of LI(Q)\ in the sense of Theorem 1.6; hence the thesis follows

from Theorem 1.6. _ : [ |

Remark 3.4. If g is in the dual space of Hé’p (2, w) the same result
of Theorem 3.3 continues to hold: in fact it will be sufficient to use, in
the proof of Theorem 3.3, the L!(Q)-continuity on bounded subsets of
H&’p(Q w) of the functional u € H&’p(Q w) — (g, u).

Observe that in general by (3.6) w™ p) 1s in Ll (€2y), hence the
following continuous embeddmgs hold

—ifp<n Hy™Q) C HyP(Q,w)
—ifp=n HyP(Q,w)=Hy™(Q)

—ifp>n HyP(Q,w) C Hy™(Q).

Further, in the case of K -quasiregular mappings'and p > mn, by
Theorem 1.2, we get that w @ ig in Lfoc(Qo) for some s > 1; hence

we deduce that H(} P(Q, w) continuously embeds in H, lme (£2) for suitable
e > 0.
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Therefore in this case, by the equiboundedness in.Hg’p (Q, w) of the
solutions of (3.13) one infers th_eir convergence to the solution of (3.14)
at least in some topology C%*(Q) with 0 < a < 1.

II

In this part we consider the case of K -quasiconformal mappings
fn and prove that, at least if 1 < p < n, hypothesis (3.6), with no
assumptions on w!, is sufficient to prove Theorem 3.3.

This result is obtained by means of the study of a class of weighted
Sobolev spaces associated to quasiconformal mappings in the same order
- of ideas of [DA D]. B

If p > n from (3.6) we get informations on w—!, hence the results
of part I apply. _

For every positive function w in Llloc(QO)’ every Q@ € and p > 1
define

' 1/p
LP(€, w) = {u measurable on Q : l|u||Lrw) = (/Iulpw(x)d:c) < +00}.
Q

Denote with Go(2) the set of the n-tuples of functions v = (v1,...,v,)
verifying v(z) = Du(z) for some v in C(}(Q).

Define H&’P (Q,w) as the closure of Gy(Q) in (LP(Q, w))*, denote
with B2 (Q, w) its dual (p/ = p/(p— 1), p' =00 if p = 1) and with (-,
the duality among them. '

Observe that H(} P(Q, w) is well defined since, by the positivity of w,
every Cauchy sequence in (L?(2, w))" has an unique limit in (LP(Q, w))".

Therefore, in general, H&’p(ﬂ, w) will be only a closed subspace of
(LP(Q2, w))".

To prove that_H(}’p (2, w) is in fact a Sobolev space we must show
that each of its elements is a gradient in a strong sense.

To this aim let us consider the case in which

: l-p/n
(3.17) w(z) = (det of (:1:)> - a.e.in Qg

oz

with f K-quasiconformal on Qp and 1 < p < n.
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By 5) of Proposition 1.1 it follows that

_ ~1
(3.18) det f (f(x) = (det —g—g—@)) a.e. in .

Further we have for every z in IR®

1/n »
3.19) g~—4-1/m (det-?—]f(m) 2| < lzéf-m)l <
Oz ox
af 1/n
< Kin <det-——(cv)> |2].
oz

Then, arguing as in [DA D] Proposition 2.1, it can be proved that

PROPOSITION 3.5. Let f be a K -quasiconformal mapping on Qo and
let €2 be an open set with QT Q.

Let 1 < p <'n and assume (3.17), then there exists a constant
c =c(n,, K,p) such that for every u in C&(Q) it results

/Iu]pw(a:)"/("_p) dz < c/lDquw(x)da:.
Q Q

Proposition 3.5 proves that if the sequences (Dy}) and (Dv)
converge to v in (LP(Q;w))” then the sequences ('(,[)h) and (¢;) are
converging sequences and converge to the same measurable function in

LP(Q, w™ ™)), |

Therefore to each v in Ho’p (Q,w) can be uniquely associated a
function u in LP(Q, w™”™ P ) of which v can be considered the «gradient».

In the following we will say that a measurable function u is
in Ho‘p (€, w) if there exists a sequence (1) in CO(Q) such that
(15) converges to u in measure and (D) is a Cauchy sequence in
(LP(€2, w))™.

As a consequence we get the continuous embedding of Hy Lp (Q, w) in
LP(Q, w —p)),

From these considerations and Proposition 3.5 we deduce easily

COROLLARY 3.6. Let f be a K-quasiconformal mapping on Qy and
let €2 be an open set with QT Q.



42 RICCARDO DE ARCANGELIS

Let 1 < p < n and assume (3.16), then there exists a constant
c=c(n, Q, K, p) such that for every u in H(}’p (Q, w) it results

f[u]pw(rz:)"/("‘p) dz < c/lDu[”w(m)da:.
Q Q

Moreover, arguing as in [DA D] Proposition 2.3, it is possible to
characterize H&’p (Q, w) in the following way.

PROPOSITION 3.7. Let f be a K -quasiconformal mapping on €y and
let € be an open set with Q@ €.

Let 1 < p < nand assume (3.17), then a function u is in H&’p (Q, w)
if and only if the function U =uo f~'is in HyP(f(Q)).

Besides there exists a constant c¢ independent on u such that

Cnl”“’“H&"’(Q,w) < IIUIIHé'p(f(Q)) < C““HH;'P(Q,w)
(3.20)
C_lnuHLP(Q,w"/<"~P)) <NUlleeran < cllullzoqumeny

As a consequence the following compactness result holds (see [DA
D] Corollary 2.4).

PROPOSITION 3.8. In the same assumptions of Proposztzon 3.7 the
embedding of Ho P(Q w) in My(Q) is compact.

We can prove now the analogous of Theorem 3.3.

THEOREM 3.9. Let @y, @ verify (3.1) and (2.2) with 1 < p < n

Let (f1,) be a sequence of K -quasiconformal mappings on Qg verifying
(3.7) and (3.6) with w positive.

Then f is a nonconstant K -quasiconformal mapping on £y and
verifies (3.15).

Further for every open set Q@ €y and every g in H~ Ly (Q, w) the
minimum points of the problems -

(3.21) min {/(Dh (Dv(z)( OFs (z)(z )> )det%(a:)dz+<g,v)}
veHyP(Quw) | Jg oz
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converge in My(S2) to the minimum point of the problem

_ B |
(3.22) min / O | Dv(z) (a—f(m)(z)> det Qj—c(a;)d:c +{g,v)
veH Q) | Jg _ o0z Oz

and the convergence of the minimum values holds.

Proof. By Lemma 3.1 f is K-quasiregular on £y and verifies (3.15).
By the positivity of w we deduce further that f is nonconstant.

The K-quasiconformality of f now follows from a result of Gehring
(see [G1] and [C], see also [DA D] Proposition 1.4).
By (3.6) and (3.15) it is not restrictive to assume that

l1-p/n
w(z) = <det a—f(a:)> .
oz

of

. —1
Set, for sake of brevity, ¢(z,2) = O (z < ——x—(x)> > det of

0

Fix an open set Q@ and g in H~ 17 Q, w).
Let us prove that from Lemma 3.2 it follows that

(3.23) /¢(a;, Du)dz + (g, u) = T~ (Mo()) lim </¢h(w, Dv)dz + (g, v))
Q ‘ vy Q

for every u in Hé’p(Q, w).
In fact, by Lemma 3.2, let up — u in Mp(Q) such that

/ $(z, Du)dz = lim / éu(@, Dun)ds,
O h—o0 Q

then, by (3.6), (us) is bounded in HyP(Q,w) and us — u in HIP(Q, w),
therefore we get

(3.24) /¢(m,Du)dm+ (g,u) = hlim </¢h(m,Duh)dm+ (g,uh)> .
Q —0Q Q .
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Now let vy — u in My(2) such that
1iminf/¢h(a:,Dvh)dm < +00
h—o00 )

then, at least for a subsequence, we deduce from (3.6) that (vp) is
bounded in Hé’p(Q, w) and hence vy — 4 in H&’p(ﬂ,w).
By Lemma 3.2 we deduce

(3.25) /¢(z,Du)dz+ (g9,u) < li}fninf (/qSh(w,Dvh)da:+ (g,vh>> :
9) 0 Yo

Now (3.23) follows from (3.24) and (3.25).

By (3.6) and Proposition 3.8 one sees that the functionals in (3.23)
are equicoercive in the topology of M((£2) in the sense of Theorem 1.6;
hence the thesis follows from Theorem 1.6. |
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