THE NONLINEAR CONTINUUM TRAFFIC
EQUILIBRIUM PROBLEM
AND A RELATED DIRICHLET PROBLEM
FOR QUASILINEAR ELLIPTIC EQUATIONS

MARINO DE LUCA (Reggio Calabria) *

In the framework of continuum models, a system-optimization problem
for transportation networks is studied in nonlinear case. Some results
of convex analysis are used to prove existence theorems and to derive
variational inequalities for optimal flow. A nonhomogeneous Dirichlet problem
is proved to solve the minimization problem, provided that some non
standard conditions on first derivatives of the solution are fulfilled.

Introduction.

The evaluation of optimal flows in a transportation network is
usually carried out in the setting of discrete models (see, e.g., [1] and the
references quoted there). These models are appropriate for interurban
transportation systems and, generally, when there exists a relatively low
number of (Origin, Destination)-couples and interconnecting roads.

When the network, as in dense metropolitan case, contains a very
high number of (Origin, Destination)-couples and paths, it is not only
hard but also useless to evaluate the flows on the single arcs. In this
case, we use continuum models of transportation whose main objective is
to estimate optimal traffic densities_for given directions, (see, e.g., [1]),
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at the points of a plane region containing the network.

In this work we are concerned with this class of models, whose
mathematical formulation leads to minimization problems for a “cost”
function on convex subsets, mainly characterized by a flow conservation
law. We prove general existence theorems in the case of a nonlinear cost
function (for the linear case, see [6]) and equivalence theorems of the
minimization problem with suitable variational inequalities.

Then, considering the particular case of a rectangular domain and
introducing suitable “potential” functions, we replace the initial problem
with a quasilinear nonhomogeneous Dirichlet problem, with further
conditions on the sign of the first derivatives of the solution, for which
we provide some existence theorems.

1. Mathematical formulation: notations and hypotheses.

To describe the traffic equilibrium problem in the continuum case, let
us consider a bounded open subset € .of the plane R? and, following [1],
let us suppose that the traffic only flows, at any point z = (z1, 12) € Q,
in the direction of increasing axes z; and z».

We can describe the flux by a vectorial field u(z), whose components
u1(z), ua(x) represent the traffic density along the directions z; and z,,

respectively; so, we have
(1.1) ui(z) >0, wua(z)>0

and u1(z),uz(z) have non negative fixed traces ¢;(z) and p,(z) on
02 (or on a part of 0€2). To this end, let us suppose that Q has a
suitably smooth boundary 6, and that u(z) € H(Q,R?); the function
© = (p1, p2) belongs to H %(SQ, R?). Then, if we associate to each point
z € Q a scalar field t(z) € L*(Q) representing the density of the flux
with origin or destination at z, we can write the following form of the

conservation law:

(1.2) //tdz+j( (u|m)ds=0
D oD
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where n = (n1,m) is the normal at z € 6Q, D is any subdomain of Q
with smooth boundary 6D, and the symbol (|) denotes the inner product
in R2.

If we write (1.2) for D = Q we obtain the following natural relation
between the density ¢t and the trace ¢ = (o1, p2):

(1.3) //tda:+f (o1 +am)ds =0
Q oQ

Moreover, from (1.2), since v € H!(Q,R?), we obtain the differential
form (in distributional sense) of the conservation law:

(1.4) d1vu+t(a:)—a——}-+% +i(z)=0 , VzeQ.
0zx1 0z2
The “cost” for crossing over the point z € Q in the direction z; and
with a flow u(z) will be represented by a function depending on z and
u(z): the explicit dependence of ¢; on z reflects possible non homogeneity
of the network, while the dependence of ¢; on u(z) points out congestion

effects.

It is well known that the equilibrium problem of transportation
network can be formulated by two different points of view:

I) the first produces a “user-optimizing” flow pattern with the
equilibrium property that no user has any 1ncent1ve to change
unilaterally hlS decision;

II) the second is the “system-optimizing” point of view, in which the
criterion for selecting paths is that of minimizing the global cost

spent on the network.

In this paper we refer to this second point of view, and we look for
a distribution flow u%(z) minimizing the “global cost”:

(1.5) F(u) = / o(z, u(z)) dz
Q

with

(1.6) c(z, u(z)) = c1(z, u(x)) + 2z, u(z))
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Here c;(z, u(z)) represents the total travel cost spent in the neighbourhood
of z, along the direction z; and with traffic density u(z). For the case
where this total cost can be perceived to be the sum of the “personal”
costs ¢;(z,u(z)) , 1=1,2, (1.6) can be rewritten us:

(1.7) c(z, u(z)) = c1(z, u(@)u1(z) + C2(z, u()uz(z).
Also, if one supposes a linear dependence of C; on u(z), one has:
(1.8) c(z,u(z)) = (Au | v)+ (B | u)

where A and B are a matrix of order two and a column vector,
respectively, whose elements are functions only of z. This last case is
studied in [6].

We observe that the “natural” set for the flow distributions is the

convex

K ={u@)e H(Q,RY) | u(z) >0,
uw(z)|aq = p(@) , divu +t(z) =0 in Q}.

The functional F, given by (1.5), does not depend upon the
derivatives of u, unlike the Hi-norm of u; this is remarkable for our
purposes, because in this situation the “coerciveness” of F(u) over K ‘
is not guaranteed, and it is well known the réle which some form of
coerciveness plays in existence theorems.

Hence, following [6], we weaken the problem and we look for the
minimum of F' not over K, but over the closure of K in L%(Q,R?),

—=L*Q .
K ¢ ), where the coerciveness of F' can be guaranteed.

2. Hypotheses and results.

To achieve the results of this work, we assume first the following
hypotheses on the cost function:

(i) the function c(z,y), (z,y) € Q x R?, is
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— measurable with respect to z;

— there exist a(z) € L®(Q), B(z) € L*(Q), alz) >0, B(z) >0,
v > 0, such that

vlylz < clz,y) < alr) lylz + B(z) ae.on Q >< R?

(i) c(z, Ay + 1 - N7 < Az, )+ 1 — N c(z,7) ,Y y,7€ R )\ €0, 1],
a.e. in Q. ()

Then we have the following:

THEOREM 2.1. Under the hypotheses (i), (i), there exists a flow
distribution u® € K such that

(2.1) F® = min c(z, u(z)) dz .
weE7@ Jo

The solution is unique if (ii) holds with strict inequality for UFY.

: —L¥Q) '
Let us start by observing that K “» 1S a non-empty convex closed

subset of the relfexive Banach space L2(Q). By (ii), F is convex (strictly
Q 2

convex, eventually) on K" . Furthermore, F' is continuous on K (Q),

in fact if we consider a neighbourhood of 7 € K Vi (Q)

—=L(Q)

L@:={ve K HIU—EHZ<5},

we have, for u € [5(u):
[lullz = [f@ll2] < flu—Tll2 < 8

and then, by (i):

0 < F(u) < sup a(z) / |u(@)? dz + / B(@)dzs <
Q Q Q
< sup a(@)julf} + / Bz)dz <
Q Q

< sup aa)(fallz + 5)2 + / B(z)dz .

(1) Let us observe that the conditions i) and ii) imply the continuity of c(z, y) in y
fora.e. z € L
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{(®)

F' is coercive on _IfL ; in fact (i) shows that:

—_T2
ue K" = Fu) > vl|ull3.

The proof of Theorem (2.1) then follows from classical results of
convex analysis.

The solution of (2.1) can be characterized using variational
inequalities. For this, let us introduce the following hypothesis:

(iii) the function c(z,y), (z,y) € Q x R?, is a differentiable function with.
respect to y.

We observe that the gradient V,c(z,y) turns out to be measurable
- with respect to £ and continuous in y (see [7], Cor. 25.51); moreover from
(1), (1), it follows that there exist y(z) € L®(Q), §(z) € L*(Q), ~(z) > 0,
6(z) > 0, such that

IV?C\(H;, )| < (@) |y| +6(x) ae on Qx R2.

Then we have the following:

THEOREM 2.2. Under the hypotheses (i), (i), (iii), if u° is a solution
of the optimization problem (2.1) if and only if u® is a solution of the
variational inequality:

2.2) / Ve, 1) - (u—u0dz >0, ¥V ue - @
Q

—2
If we denote F'(u,v) the derivative of F in v € K~ “ in the
direction v, we have, taking into account (iii),

F'(u,v)=/ Vuc(z, u(z)) - v(z) dz
Q

with V,c(z, u(z)) € Lz(Q, R). Ifu € ELZ(Q) is a solution of (2.1), classical
results on variational inequalities ensure us that u? is a solution of (2.2),
(see, e.g., [8D.

Conversely, any solution of (2.2) is also a solution of the optimization
problem (2.1), by the convexity of F.
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3. The traffic equilibrium problem in a rectangular domain and
a related Dirichlet problem for quasilinear elliptic equations.

In this section we limit ourselves to the case of a rectangular
domain Q ¢ R?
Q =10, a[x]0, b[.

In this case we can assume the traces of u on 0 in the following

way:

u1(0, z2) = p1(z2), z2 €]0,0[,
(3.1) {

Ul(a, 372) = ¢1($2)’ I E]O; b[:
and

u2(z1,0) = pa(z1), 71 €10, al,
(3.2) {

u2(z1,b) = Ya(z1), 71 €]0,al.

We first consider the case in which t(z) = 0 in €2; then, the following
theorem holds:

THEOREM 3.1. For any u(xz) € K there exists U(z) € H1(Q) such
that:

A

5.’172 ' 3:1;1

(3.3).
Following [6], let us start by considering a succession {u(k)} C

_ ou  oul® du; 8
C'(Q, R?) such that u(lk), ugk), —L_ =2 converge to u1, uy, ﬂ, o2
3!111 6:(:2 ' 8:1:1 5:2:2

. k k k k
in LX(Q) and u{]o,20 = 0P @2), uP|sma = 9P (@2), 6|00 = 0P (@0),
ugc)lxz:b = 1/15“(11:1) converge to ©1, 91, p2,%2 in L?, respectively; moreover

we can construct this succession so that divu® = 0. Then there exists

ou® oU®
a function U® such that —— = u(lk), —= —u(zk) and, taking into

6:c2 oz 1

account the estimate
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(3.4) / U™ — U™y <
Q

a
< 2a2b/ lp$” — 0™ |2 day +2b2/ [ul® — ™2 4z,
0 Q

we obtain the thesis. (%) _
As a consequence of (3.1) and (3.2), the traces of U(z) on 6Q, which
of course belong to H %, become:

U, 1) = / 1) dt +c; = Dy(z2) , 2 €]0, 5],
. 0

(3.5 - '

Ula, 72) = / i) dt +dy = P1(z2) , x2 €10, 8],
0

Ty

U(z1,0) = — / p2(t) dt +cy = Dy(z1) , 71 €10, al
0
(3.6)
U(zy,b) = — A Yot dt +dp = ¥a(z1) , 71 €10, al .

Imposing the compatibility conditions for U(z;, z;) at the vertex of
Q:
D1(0) = D2(0) , ¥1(0) = Daa) , F2(0) = O1(d),
after some calculations, we obtain
a b

BT ca=c=c, d1=c—/ o2(z1)dzy | d2=c+/ 01(z2) dzs ,
0 0

where ¢ is an arbitrary constant, while the condition

F1(a) = ¥2(0)

(*) We observe that theorem (3.1) also holds for (u, uy) € K@ , because one
can shows an estimate of the type (3.4), where the first term of the right hand side is

zero.
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is equivalent to the conservation law on 0L2.
Moreover, for every u € T{_Lz(m there exists a function U € HI(Q)
such that (3.3) holds (see Note (3)). Then, if we consider another function
v e B and denote by V the function of H'(Q) for which (3.3) holds,
the function U — V belongs to H&(Q).
Taking into account the above consideration, the variational inequality
(2.2) becomes the following: to find U® € H(Q) such that

ouU® —oul

(3.8) /{ < B:r,z’ o > 0w U _

Oz?

5 <x ou° —6‘U°>
Y Ty T o 170
_ 5562 8:1:1 a(U U )}dz > 0,
a'LL2 61151

Y U e H(Q) sit. <5U _5U> TV

S — K
Oxy’ Ox1 <

Now, we wish to associate to (3.8) a suitable Dirichlet problem: to
this end, let us assume the following hypotheses on the cost function
(we recall that these assumptions are natural, roughly speaking, for
quasilinear elliptic equations):

(V) Cyy, € L(Q x R?) for 1,7 = 1,2 and satisfies:

2 2 2
Cypun€l F Cuyi €3 — (Cypyy + Cyyy 6162 > VIE|,

VeE=ELE)ERY) | v>0).

Then, if we denote by U° the solution of class H 2(Q) of the Dirichlet
problem:
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(o (5, 00° ZoU° ) < U’ —ou° )
o=, 0z’ Oz oty N Fels, Oxzy’ Oz GZUO“
au% 3:13% Gu% 51;%
u® —ou° ~8U° —au°
2 Redadi 2 oy -
B 3C<x, Oz2’ Oz >+8c<a:, O0z2 ' Ox ) o*U"o _

Ou10us Oua0u; 011072

3

ou® —aud oUd —py?°
2 2

_8c<a‘;,ax2, 8x1>_ac<w’5mz’ Ba:1>
- Our Oy Ou1 01,

, a.e.on Q

U0, z2) = @1 (x2)
U%a, z2) = Wilz2)
U%z1,0) = Oy(z))
( U%z1,b) = Wa(zy)

and we suppose that the following conditions

770 0
(3.9) U0, P o aeom Q
51172 - 3561

are fulfilled, the vector

oU®  au°
A 0 (22X _ 22
(3.10) : <8z2 ' O1y >

is a solution of the variational inequality (2.2).
To achieve this result, one can use the Gauss-Green formula, taking
into account that U — U° belongs to HOI(Q) and the assumption (v).
The existence of the solutions of problem (8.8) for example is
guaranteed under standard assumption on data (see [4], p. 347), if we
have existence and uniqueness theorems and a priori estimates for the
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following linear Dirichlet problem:

82U0 52U0
( LU = a(a, $2)'a—$%— + b(z, xZ)_—&n% +
8*U.
(3.11) J +26(x1’z2)ax16;2 = f(z1,22) a.e.on

U%0, z2) = @1(z2)
U%@a, z2) = Yi(z2)
U%(z1,0) = @o(z1)
L U%z1, b) = ¥a (1)

_ Problem (3.11) usually is decomposed in a problem with homogeneous
boundary conditions and in a non-homogeneous boundary problem for
the Laplacian operator. If we denote by v € H?(Q) the solution of the

problem:'
Av =0 a.e. on Q2
v(0, z2) = P1(z2) :
(3.12) v(a, z2) = ¥1(z2)

v(z2,0) = Po(z1)
v(z1, b) = ¥a(z1)

and by w € H*(Q) the solution of the problem
Lw=f—Lv, a.. onQ

w(0,z2)=0

(3.13) w(a, z2) =0
' ' w(z,,0)=0
w(z1,b)=0

the function U® = v + w is a solution of (3.11).

It is well known that the solution of problem (3.13) exists and it is
unique; for problem (3.12) the solution is ensured, since, in our case,
the compatibility conditions indicated by [3], Th. 3.1.2.4, p. 260, become
conditions (3.7). »

Now, let us suppose t(z) # 0 and belonging to H!(Q). Following [6],
we write condition

, o _Ovr  Ovy
(3.14) divu + t(z) = . + p =0
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where
1 o
'U1='U,1+—/ t(Tl,fEZ)dTl;
T2
1 p%
vz=U2+-2-/ t(z1, m)dn .
0
If we put

r

. ~ 1 ‘
v=(1,0) | tl(x.l,x2>=5/ t(m, 2) dn
O .

T2

. . 1 '
to(z1,22) = —/ (z1,n)dn , ¥=(1,t2),
0

2

our functional F' becomes

(3.15) F*() = F(v — 9) = / oz, v(z) — ¥(x)) dz
, Q

and the convex K is transformed into

K*={ve H(Q,R?; v(z) > ¥z) ,
v1(0, 12) = p1(x2) , vi(a, 32) = Y1(x2) + t1(a, 72),
v2(z1,0) = p2(z1) , v2(=Z1, ) = Pa(zy) + t2(71, b),
divv=0 , a..on Q}.

The minimum % of F* on K* satisfies the variational inequality:

(3.16) / Vuclz, ') — 9(z)) - (u(z) — v'(z)) dz >0,
Q
Yove ‘K‘*Lz‘“’

If we repeat the procedure we used above and introduce the potential
VO associated by means of (3.3) to v%, we can consider for V0 the
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Dirichlet problem:

0

(2 ove . ove
e <$’ 0z, %, Oz v2 52V0+
du? oz
oV ovo
2 z -
+a(:<z’6m2 o ’h> PV
dul ox?
0 0
326 <£L‘, QZ—— —191,—— -a—y— - 192)
_ boki) 0z N
Ou10us
oV ovo
2 o e _9Y
+5c<$,&m - 5 1%>] 52v0
| 8u26u1 8:1:16:02 a
0 0
(3.17) J a%<%§1_*0h_éz_~ﬁg
3 0z 0z B
- 5&28.’171
ovo -V
2 — e, —
*6 c (z, 522 J1, v 192)
8u18m2
V0, z3) = @y (z2)
)
Voa, 22) = Wi (z2) + / ti(a, m) dm
Vozy,0) = ®y(z)
' I
V0@, 8) = Falm) + f ta(n, b)dm

and, also in the case {(z) # 0, we can affirm that the vector

<3V0_~6V°>
3.’122 ’ (9.’1:1

is the unique solution of our problem, provided that

0 0
Y svw L chw.
Oz, 0z,

59
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4, The case of linear “personal cost”.

Let us suppose that c¢(z, u(z)) depends on u(x) as in (1.7) and that
the network is the rectangular grid Q =]0,a[x]0, b[. In particular we
suppose that t(z) = 0 and assume that c(z, u(z)) according to (1.7) is
given by

4.1) | c(z,u(@) =(Au | w)+ (B | u)

0 .

where A = o , B = by with a; > 0, b; > 0, 1 =1,2. Moreover
0 az by .

we assume that u(z), uy(x) satisfy the boundary conditions

( u1(0, 22) = p1(z2) , 72 €10,5[

ui(a, z2) = P1(xz2) , =2 €10, 5[
@.2) <
u2(z1,0) = p2(z1) , =1 €10,0]

\ U'Z(wl) b) = ¢2(I1) ) I E]O, G[

where 1,11, 02,12 are non negative functions belonging to C* and
verifying condition (1.3) that, in our case, becomes:

a ' a b b
(4.3) ﬁ v2(z1) dz1 — A po(z1) dzy = ﬁ ¥1(z2) dzs — ﬁ 01(z2) dzs .

Then taking into account the results of Section 3; we can say that
the solution U of the following Dirichlet problem
[ 5*U° 02U

a2 + a1 =0
Ox? O3

U%0, 2) = ®1(z2)

4.4 J
(“.4) U%a, z2) = P1(z2)

U%z1,0) = Dy(z1)

LU %y, b) = Yalzy),
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where @1, ¥, ®;, ¥, are given by (8.5) and (3.6), is such that the vector

ou? ou?
4. 0_¢,0,0y_ _
(4.3) ut = (uy, w) (8:102 ’ 6x1>
is the optimal flow if
0 0
(4.6) _3_[_/'__20 , Q—q—gOmQ
a.’L‘z 6:51

In order to achieve a comparison with other results, let us observe
0

that a necessary and sufficient condition for the relation Fr > 0 to
y)

hold in Q is that ()

0(3:170)_ —.% =
(4.8) oU i x2(z1) =3 ; —

. b ‘
sp EmE W (t) sin - ¢ di+
b/, b

(3) We recall that the solution of problem (4.4) is given by the Fourier series

nnx)

oo s§in

2~ T
@7 U,z =7 E e
sh b\/—
[ mr\/":z;l / Y () sm—tdt+
mr\/_(a T1) )
Ve ﬁ @, (t) sm—b—dt]+

T
00 sm— T

Z nb [s m\/—‘” / ¥, (t) sm———tdt+
S a\/a_l

””‘/—(b — %) / ®,(t) sin -"”—t dt}

and, hence, U%(z, 2) belongs to C®(Q) .
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+sh @-71(“—“’9- / <I>1(t) sin —5— dt]

— _-a ﬂ : Q1 ﬂ —
+a, E o [/ca A ¥, (t) sin ” tdt

= shoy
BT b ™ [ @y(t) sin T dy
"% " ka / 2 b
BT cosm
‘ (z1,b) 2 — b
4.9) U = () = = - .
02 b ; shk%mr
lcmrml
sh / ¥, (%) sin -E—tdt+
h M (Dl(t)’ sin ﬂ dt| +
b A b
2 i e %” i “”b ¥, (t) sin —tdt
a £ shﬂ %a © / 2
ka
nm b nmt
_—-/ @, (t) sin —dtJ >0
ka 0 b :
where k = 21-.
a2

0

In fact, since is a solution of the problem

L2

e 2@_0_ 625(]0

0
0x) 0z _
a'l 3:1:% T 511:2 =0
4.10 58U, oU%a,
4.10) WO _ )y @D
65121 (9.’132
oU%(z1,0 oU%z1, b
_____(:_E_l__)_ = y2(z1) _ﬂ__) = (o(z1),
\ 0z 0z2
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0

if (4.8), (4.9) are fulfilled, also the relation Z—U— > 0 is fulfilled because
T2
0

the maximum principle holds. Analogously we find that %U— <0in Q
I
if and only if the following conditions are fulfilled:

n7r:z:2
o §in

0
(4.11) o0 &) xZ)_Xl(SUZ) b}:

=1 sh

b |
-[/c [ w@) sin Tt g
A b

b )
e k"m/ @, (1) smn%tdtJ

/cfnaﬂ '

b b
nmw
2 o0 PO
v > a_ . [S T2 / ¥a(t) sm——tdt+
= sh o
+sh M / ®,(1) sm——tdtJ <0
4.12) au° (C; z2). _ Ci(zy) =
sin nnry
2 b nm . knma
-5; W [k)-b—ch / Vi) sm—b—tdt—
b
b
—kﬂ/ @, (1) sinﬂdtJ+
by b
n — COS NI
2 o0
3y e { p 222 %(t) sm——tdt+
a’ n=1 Sh T_._
ka

wsh PO T o sin ™ g g <0.
]CCZ 0 b
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In particular, if we choose

Q =10, a[x]0, 7

p1(z2) =1
1/)1(1132) =1 —cos 1)
p2(z1) =0
Ya(z1) =0
we obtain ” v
Uo(xl, Tp) = Ty — ihkxl sin 7
and, since
shk
xae)=1- === >0, z €0,0]
shkzx
Gz =1+ Shkal >0, 71 €[0,a]
1 )
x1(z2) = —k kg SnT2 <0 =z €[0,7]
chka .
Ca(z2)=—k shkg DT <0, =z e[0,n],
0 0 ,
the vector u® = <3L - 8_U_ ] is the equilibrium flow. In this way we
511:2 8:1:1

obtain, as a particular case, the result of [1], p. 300.
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