SYMMETRIZATION IN A NEUMANN PROBLEM
VINCENZO FERONE (Napoli) *

Let w be a weak solution of the Neumann problem for a second order
elliptic equation in divergence form, in a bounded open subset G of R™.
In the case that the right hand side of the equation is a continuous linear

functional on H (@), we give some symmetrization results and an estimate
of the norm of w.

Let G be an open bounded subset of R™ satisfying the cone property.
For the sake of simplicity we suppose n > 3; the case n =2 can be
studied modifying in the usual way the assumptions. Let w € HY(GQ) be
a weak solution, which is unique modulo constants (see [11]), of the
problem '

(1) /a;jwzigozjd:r = /f,-gaz,.dm+/htpdm Vo € HY(G)
: G G
2
where a;;(z) € L(G), f; € LPG), p > 2, h € L), s > n+” and:
2) aijfifj 2> IElz ae. inG, VEeR"
@ / hdz =0,
G
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The aim of this note is to study, like in [12], [2], [7], [8], [9], [10], the
problem (1) from the point of view of the symmetrization (see Th. 1).
Then we will use the results to obtain estimates for w (see Th. 2), in
which we give the explicit value of the costants.

Among other things, the problem (1) is interesting because, in the
regular case, it is the weak formulation of the Neumann problem with
«natural» boundary conditions:

v ”(aiju:v,'):vj = _(ﬁ)m, +h inG
3) A
(aijuz.~ - fz)’ny =0 on 0@

where n; are the components of the external normal to 6G. When f; =0
the problem (3) is reduced to the homogeneous Neumann problem, for
which Maderna and Salsa obtained symmetrization results in [9], for the
linear case, and in [10], for the nonlinear case; the same problem for
degenerate elliptic operators has been studied in [13]. A similar analysis
for the Dirichlet problem can be found, for example, in [12], [2], [7] and
[81].

Following [9], we will assume that the open set G has a fixed
measure |G| and that it satisfies a relative isoperimetric inequality, that
is, there exists a constant () such that, for each measurable subset E of

G,
C | min{|E|, |G\E})'"/" < QPg(E)
where Pg(F) is the perimeter of E relative to G (see [5] and [6]). Now,

let k£ be a constant, which surely exists (see [9]), such that, if u = w — k&,
we have

(5) H{z € G : ui(z) > 0} = |sprt(u;)| < I—C;—' i=1,2

where u; and u, are the positive and the n‘egative part of u respectively
(u1 = max(u,0), up = max(—u,0)). If we choose E; = {z € G : |u;| > t},
t €]0,+o0], 1 =1,2, from (5) we have:

min{|E;|, |G\E;|} = u:i(t)

where p;(t) = |{z € G : u; > t}| is the distribution function of u;. Then,
~ from (4) and from the equality

_% / |Du;|dz = PG{CL‘ € G 1 ui(z) > t},

u; >1
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which can be obtained in a standard way from the Fleming-Rishel
formula (see [6]), we get: |

(6) —-dit / |Dus|dz > Q‘lu;(t)l_l/".

u; >t
On the other hand, by Schwartz’s inequality, we have

1
2

a . 1n1/2 _i/ 12
—dt/IDU¢|d$S( i () o -lDu,l dx

u; >t ui>t

which, with (6), gives:

(el

@ 1< QUpl)V sty —% / | Du; [Pdz

u; >t

To estimate the last factor in the right hand side of (7), we have to go
back to (1). Choosing the test functions

w; =max(ui(z) —t,0) 1=1,2

wi € H (@) (for éxample, see [11]), we get:

(8) /ajkuzj(u;)z,‘da: = /vf,-(u,-)zjda: + /h(u; —t)dt, 1=1,2.

u; >t u; >t ui>t

Now, with a standard procedure (see [12], [9],...), in which we use, between
other things, the ellipticity condition (2’) and Schwartz’s inequality, we

have:

1
p2

3
d 12 d 2 d 12
9 - /]Du,l dz < —dt/g,-d:z; _dt/lDu'l dr | +

ui>t A u; >t u; >t

+(—1)i+1/h(az)dx,

u; >
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where we have put:
Ifl 7€G:ui(z)#0
g9i(z) =

0 ze€G:ui(x)=0

1/2
: 2
with |f] = (E f,-) :
i
Before we combine (7) and (9), it is convenient to remind a few
notions about the rearrangements of a function. Taking into account the

definition of distribution function u(t) of a function 1, which we have
given before, the decreasing rearrangement 1* of ¢ is defined as

$(s) = inf{t > 0: u(®) < s},
and the spherically symmetric rearrangement ¢* of 1 is defined as:
(@) = 9*(Calz|™)

where C, is the measure of the n-dimensional unit ball. We have the
following property:

[llze@ = |19 zrioart = [19F] i

where G is the ball with center in the origin and measure |G|. We have
also: |

/ $(@)g(@)dz < / W (@)g* (0)ds = / B*()g™(s)ds
G G* 0

and
14|

ACG= /¢(a:)da: < /w*(s)ds.
) 0

For more properties about rearrangements see, for example, [1] and [4].
The last result we remind is an approximation lemma which can be

found in [2]. For all ¢ € LP(G@) we put

K($) = {F € LP(0,|G|) for which 3{¢;} C LP(0,|G]) :
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;=" and ¢, — F in LP(0,|G]};

if p;i(t) is the distribution function of u;, Vs € [0,|G|[ we can find a
measurable subset D;(s) of G such that:

IDi(s)| = s

51 < 82 = Di(s1) C bDi(SZ)
D;(s) = {.’13 €G: IU,I > t} if s = i ().
LEMMA 1. Some functions F; € K@), 1 =1,2, exist such that:

S

(10) - / P(@)dz = / Fyt)dt s €[0,|G]l.

D;(s) 0

Now, if, in the previous lemma, we put 9 = giz, we have:

wi@)

/ 92dz = f FX(s)ds i=1,2

u; >t 0

where F,-2 e K (g?). It is easy to verify that, by construction, F;(s) =0 for
s > |G|/2. Then we have:
1
p 3
A ORI O)

u;>1

(11)

Like in [9], the last term in (9) can be estimated in the following
way

pi(t)

(12) (— 1) / h(z)dz < / hi(s)ds,

u; >t

>

where h}(s) and hj}(s) are the decreasing rearrangements of the positive
and the negative part of h(z) respectively. Using (11) and (12), from (9)
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we get:

(13) (—a‘-it- / ;Du,.|2dx> < (i) 2 st

u;>t
1

pi(t) —%
+ /hf(s)ds (_%/ID“ilzde)
0

u;>1

Taking into account the fact that (7) can be written as

1

)

d

(—d—t / lDu,-Fdz) < Quity M m(—plant/?,
u; >t

from (7) and (13) we obtain:

i@

(\1-1/n
Qlél(fi)‘(t))l/Z < (i) 2 Fy(ua®) + Qua )™ /™ (— )2 / hi(s)ds,
1 0

that is:
#i(t)

1 < [—pk)] Qu;(t)‘l“/"ﬂ(m(t)HQzu;(t)“m/" f h¥(s)ds

0

In a standard way we have
u}(Calz|™) < QnCY vi(x) + Q2 CH"Vi(x),

where we have put:

el

2

1
vi(z) = 7 /F,-(t)t“”l/"dt
nC.

" Gzl

el

2

. —_ 1 —242/n *
V@)=~ / r 0/ Rt | dr.

Culz|®
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It is easy to recognize that the functions we have just defined are, for
1 =1, 2, solutions of the following Dirichlet problems:

Av= <F,-.(C’,.,|a:|")l%> in G?
z;

v=0 on GH

(14)

and

—AV =h¥ in G
(15)
V=0 on 0G4

. where G} is the ball with center in the origin and measure |G|/2. We
can summarize the above arguments in the following theorem:
THEOREM 1. Let us consider the problem (1) with the assumptions:
) aij(z) € L=(G) with:
aijéi&; > |§]2 ae. inG, V&€ RY;

i) ELP@G), p>2 i=1,.

s 2n
iit) h € L5(@G), s>—:_—2—

iv) G is an open bounded subset of R" and satisfies (4).

Let w be a solution of (1) and let v = w — k be such that (5) is
satisfied, then, if v;(i = 1,2) and V;(1 = 1,2) are the weak solutions of
(14) and (15) respectively, we have:

16 uf(z) < QnCY™vi(z) + Q*nPCH"Vy(z)

where u’f(z) and u(z) are the rearrangements of the positive and the
negative part of u(x) respectively.

From a certain point of view, the theorem we have just proved
is not «sharp» in an absolute sense, because the functions F, we have
used in it are related in some way to the solution of the problem
itself. Nevertheless, using Lemma 1, Theorem 1 gives the possibility to
estimate the norm of w. Indeed, if we put z =0 in (16), we get:

ess. sup .w—ess. inf .w = ess. sup .u—ess. inf .u = ess. sup .u;+ess. sup .upy <
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< QnCY™w1(0) +v2(0)) + Q*n*CH™ (V1 (0) + V2(0)).

We can deal with the last term in the previous inequality like in [9],

obtaining
V1(0) + V2(0) < C|h||Ley + || h2]|Loey)

where s > n/2, ¢ =s/(s— 1) and

C _ <J—C—T"—|> %*% r(l +n/2)2/n {1“(1 + Sl)r((n/(n_ 2)) _ S,) }ﬁ_
R {n— 2)m T(n/(n— 2)) .

We have still to estimate the term in which the quantities v;(0), 1 = 1,2,
are present. Using Holder’s inequality, we get, for p > n:

7
1
00 = — [ Fiormar <
nCn J

1 “D1%F /Ig\ =
2227 (9)

Because of Lemma 1, we have:

o :

2
BB, = / (EDPds < / gPdz = / PP,
0 u1>0 u>0 . )
6]
2
|57 = / (FHPds < / ghdz = / | f|Pdz,
0 uy>0 u<0

which give:

i § p=n
n(p—l)] G <1§1> >

1
O+ u0 < —r [ o =

L 1
P P

< / FPdz | + / \#Pdz

u>0 u<0
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Taking into account the inequality
—1
17) a/? 4 B1P < 2% (0 + )1/,

we have

A
'U](O)"l‘UZ(O) S 720711/" ”f”LPy

where

(7 (2)°
p—mn 2

75

In the case p < n we can estimate the quantity (inf{||®||1¢; W = w+const}),

with ¢ =p* = P We get:
. n—p

inf {|[@]|1e5 @ = w + const} < ||ullpe < [lui]|ze +[[uz|ze <

< QnCy/™(v1]ze + [|val|2e) + QXW2CY™ (|| Vi |1e +||Val|1e)-

As before we will limit ourselves to estimate the norm ||v;||z:

r el q

n

2
1
IlviHLq:nC,l/n / /Fi(S)S_“l/"ds dz

Gt \oer

r g \ q

r

Using the Bliss’inequality ([3], [12])

o] o) q e}
, / (/¢(s)ds) dr < B </¢(r)p'f—1”’+”/qdr>
0 0

r

1
P

where

Ll
7 / / Fi(s)s™™*/"ds | dr
"o

g>p>1

5o [q <1 - _1_>]q“?{ T(gp/(qg — p))
p I'(q/(q — p)I'(p(g — 1)/(g — p))

1_
}pl
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we obtain
el o
~ 2
B
ol < —7 | [ FPC0s
nChr
0
where

p-[2=2]" (o)
n—p I(n/p)IA+n—mn/p) |

Finally, by (17), we have:

2 P
[villze +{lvallze < o ”f”LP

If we remind that (see [9]), for s = np/(n+p), we have:

[Villze + |[Vallze < D([h1lls,s +[[h2]]s,s)

n
where 1 < s < >

D= _l_ql'l/q <3 ~ 1> o { T(n/2)* }
nm s I'(n/ (2q))F((n —n/q)/ 2) ’

2o

and
s %

o0 t
1
|[hils,s = / - / hr@t)Hdt' | dt
0 0

is a norm equivalent to the usual norm in L®, we can state the following
theorem:

THEOREM 2. With the assumptions of Theorem 1, let w be a solution
of (1); then w satisfies the following inequalities:

i) ess.sup.w — ess.inf .w < QA||fl|zr + Q*PC"C(||h

Lot l|hal )

where p>mn, s >n/2, s =s/(s—1),

1

== (5)
pP—"n 2
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and

o - (1GI\*7F T+ /2 {r(1+s')r((n/(n—2))—s’) }l/s'
B < 2 > n(n — 2)m I'(n/(n—2)) -

i5) inf{]|d|ze; @ = w+const} < QB||f||ze +Q*n*C2/" D(|halls,s +|[2lls,s)

where 2<p<m q=- P s S=n7fp €, n/2[,

B=[2n(p—1>r?“{ T(m) }
n—p I'(n/p)I'(1 +n— n/p)

and

Do L 1y <s-—1>1*%{ T2 }
o s I'(n/2g)HI'((n—n/q)/2) '

Remark If we substitute (2°) with the weaker assﬁmption:
aij ()i > v(@)|¢)?

A 1
where v(z) > 0, v € L', — € L' with a suitable value for t, following,

v ,
for example, the arguments in [2], [7] and [13], we get results similar to
Theorem 1 and 2. ' ’
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