MEASURABLE REPRESENTATION
OF BICONJUGATE INTEGRANDS

OTTAVIO CALIGARIS (Genova) *

We find here a representation of convex regularization of a non convex
proper function and of a non convex proper normal integrand by means
of a suitable multifunction which reveals to be very useful in existence
theorems for non convex problems of caleulus of variations.

Introduction.

It is well known that the biconjugate function f** of a non convex
function f provides its convex regularization; since f** is the supremum
of all affine hyperplanes supporting the epigraph of f, we may wonder
that the graph of f**, when it does not coincide with the graph of f, is
formed by pieces of affine linear subspaces, not necessarily of dimension
n— 1, supporting epi f.

Our present aim is to precise the representation of f** under
suitable hypotheses and, secondly, to obtain a similar representation for
a biconjugate integral f**(t, z) relative to a normal non convex integrand.

More precisely, we show that, for every integrable function z, it is
possible to find a measurable multifunction I' such that

(@), fH*(,z@)) € coI'(t)

where

I'@t) C{(x,0) : o= ft,3) = f*(t, 2)}.

* Entrato in Redazione il 10 marzo 1988
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This results offers a tool to prove some new theorems for non-convex
problems of calculus variations.

The subsequent material will be divided into two parts: we consider
first of all the simpler case of a non-convex fucntion and, secondly,
we extend our results also to the case of a non-convex finite normal
integrand.

The case of a non-convex normal integrand taking infinite values is
currently studied and will be the argument of subsequent works.

Convex regularization of function.

In this section we study the convex regularization of & proper lower
semicontinuous function

F:R* = RU {+00}

we indicate by f* its conjugate function in the sense of Moreau- |
Rockafellar [1], [2], and by f** its biconjugate. We limit ourselves to

recall that
f*(p) = sup{{p,v) — f(v) : v € R"}

while

f** _ (f*)* ,

(a complete treatment of this concepts may be found in [1], [2]
themselves).
epi f will be the epigraph of f i.e.

epi f = {(z,a) € R™ : f(z) < a}

while co A is the convex hull and ¢l A is the closure of any subset
ACR" () and || -|| are used to indicate the scalar product and the

norm in R". | |
We say that f satisfies the "basic growth condition” when

(B.G.C) f*(p) < +oo Vp €R™.

Let us briefly recall that (B.G.C.) is equivalent to the following condition



MEASURABLE REPRESENTATION OF BICONJUGATE INTEGRANDS 97

There is a function w such that

(1) lim w()=+co and f(v)=|[v]|w(v).

I]|—+o0

Inded f* is a convex finite, and hence continuous, function on R™
and for every r € R, there is ~, € R such that

V- 2 sup{f*(@) : [Ip]| < v} =
= sup{sup{(p, v) — f() : v € R"} : [lp|| < ).
So we can deduce that

f@W > (p,v)—v YveER" VpeR" ||p||<r VreR,

and
f@W)>rlv||—v VveR™ VreR,

Dividing by ||v||, and taking the lim inf over [lv]| = +oo if we define

w) = O
[[v]]
we obtain
liminf w(v) > liminfr — X~ =7 Vr € R,
T I /rs N TRT
Hence .
lim w() = liminf w(v) = +co
J|Jv]}—+o0 W][—+o0
and

f@) =|]jw)

Moreover, since

fw) > -f"0)=K

We can always suppose that
fw)>0

if we agree to make a translation, when necessary.
Conversely when condition (1) holds, since

£ @) = sup{(p, v) — f(v) : v € R*},
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we can easily deduce, by a standard generalization of Weierstrass
theorem, that f*(p) € R.
It is well known [1], [2] that

epi f* =cl co epi f
let us prove that, under (B.G.C.),
clcoepi f=coepif

whence it results

epi f** = co epi f.

Let us remark that (B.G.C.) is fundamental because if it does not
holds co epi f can be a non-closed set.

Indeed if we choose f : R — R defined by

||
2 +1

f@)=|z|+

we have that

(@) = |z

while
epi [ = {(z, @)t a > [z]} Fcoepi f = {(z,a) : @ > |z[} U{(0,0)}.

THEOREM 1. Let J i R® = RU {+00} be a Ls.c. function satisfying
(B.G.C.); then
epi f** = cl co epi f = co epi f.

Proof. What precedes allow us to prove only the second equality;
moreover it will be evidently sufficient to prove that

cl co epi f C coepi f.

We also recall that we can always suppose that f > 0.

Now, let
(T, ) € coepi f, (g, ) — (z, ).
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By Caratheodory’s lemma we have

n+2 n+2

_— E : k_k — § : k_k
Tk = )\,‘ Tiy G = )\1’ o
i:l ‘l=1

where
n+2

@faf)cepif, YoM=1,0<M <1

1=1

Clearly we have
0< f(z) < of

and, since (74, o) — (z, @) we may suppose that

[zl < M

1) 0< Mof <ap < M.
So, if we take a suitable subsequence, we have that

) Mot s pieR={z€R:x>0}

3) ‘ M — i e0,1]
df —a; ER, U {+oc0}.
Let I C {1,...,n+2} such that \
i€ I=|lzf|| < N.
We can always suppose that

¥ >z, eR™ Vig]

and that -
||lzf|| = +00 Vi g I

99

Let’s moreover indicate by J the set of all 7 € {1,...,n+2} such

that _
Otf — Oy E R+.
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By (1), when i € J we have

M
0<M<—
@y
and
A=)

1]

moreover, since by (B.G.C.)
lefllw(eh) < fah) < of,

we have
J C I.

On the other side when ¢ ¢ I, we have i ¢J, Xf — 0 and moreover,

by (B.G.C.),
k k
0< Xf“mf” < M“’:z” < Ml,$¢l| N

oF = Tfah 0

This led us to obtain that

$k=ZAf.’ZIf+Z>\fmf —+z>\g$;=z>§;$;=x

iel igl i€l icJ.
o = Zkfo{f-&z}\foxf — ZX,-a,'+u =a
ieJ igJ i€J
where
p= Zui > 0.
i]

We also have that

nt2
1= Z kf — E)\,,
1=1 1€

so that Z)q =1.
1eJ
Moreover, by l.s.c. of f we can assert that

f(z:) < liminf f(zf) < liminf of = o4
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whence
(T, )= Y hi(zi, 0+ 1)

ieJ

where

flzi) < o +p, Ek,-:l.

1eJ

This fact allow us to conclude that
(z,a) € co epi f. |

The preceding theorem 1 allow us to represent the biconjugate of
a non convex function with pieces of affine planes which support the

graph of f.
More precisely we can state that

THEOREM 2. Let f : R — RU {+o00} be a ls.c. function satisfying
(B.G.C.), then

m
Vz €R"3Iz; ER"INER, O< X <1, Y N=1
' i=1
such that f(z;) = f**(z;), m <n+2 and

(@, @) =D Nz, f@) =D Milwi, £ (z0)).
1=1 :

=1

Proof. Since (B.G.C.) holds, by the preceding theorem 1, we can
assert that Vz ¢ R”

(z, f*(x)) € epi f* =coepi f

m
and we can find z; € R, \; € R, 0 < \; < 1, E X =1, such that

1=1

(@, F* @)=Y Mz, @) + )

1=1

where a; > 0.
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To conclude we only have to prove that
Qa4 =0 \7/,' = 1,2,...,m.

Let us suppose that a; > 0 for some j € {1,2,---, m} then
m m m m
Fr@ =3 M@+ N > 3 Mif @)+ hjay > S Nif(z).
i=1 i=1 i=1 i=1
So we obtain that
m B
(z’ Z’\if(xi)> € co epi f = epi f**
i=1

and .
(=) < Z Aif(mi)
i=1

which is impossible.
So we may assert that o; =0, Vi € {1,2,..., m} and

(@, @) = Y Nz, F@2).

1=1
Moreover
D oXif@) = f* () = (Z m) < YN
i=1 =1 i=1

whence

DN @) — fz) > 0.

1=1

We deduce that
Y N — F(:) =0
1=1

and, since every term in the sum is non-positive,

e =F) Vie{l,2,...,m}).
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Convex regularization of normal integrands.

In this section we consider a normal proper integrand
f:10,1] x R® — R U {+o0}

as it is defined by R.T. Rockafellar in [3].

We recall that f is called a normal integrand on [0, 1] x R"®, where
[0, 1] is equipped with the Lebesgue measure and R” is topologized by
means of the euclidean norm, when the multifunction

t > epi F(t,) = {(w, @) € R™ : £(t,v) < &}

" is measurable and closed valued; moreover f is said to be a proper
integrand when

An important feature of a normal proper integrand is that for every
measurable function z : [0,1] — R", f(¢, z(t)) results to be measurable
too; this fact leads to an extensive use of normal integrands in calculus

of variations.
We also indicate
£, p) = (ft, )@
while f** is defined in similar way.

Both f*(t,:) and f**(t,-) are obviously convex functions and the
standard theory of normal integrands, which is completely developed in
[3], shows that f* and f** are normal integrands too.

In this section we shall always assume true some assumptions.

First of all we shall assume that the following Caratheodory condition
on f does hold

(C.C.*) 7t z) <400 Vz €R" a.et€0,1].

As a comment we note that, since f** is a convex proper normal
integrand, when (C.C.**) holds, it happens to be finite and hence
continuous; consequently f** is a Caratheodory integrand and this
motivates the name of our condition.

secondly we shall use the following basic growth condition

Vp € R®, Jy, € L'(0,1,R) such that
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(B.G.C.) £, < @) ae. —telo,1].

As a consequence of the discussion contained in the preceding section
we see that (B.G.C.) holds only if there is a fuention

w:[0,1]xR*" SR
such that

f@,v) =]v]|w(t,v) and lim w(t,v)=+00 a.e.—t € [0,1].

Jlvj| =400

Moreover we always suppose that there is at least a function -
z € LY(0,1,R") such that f(-,Z(-)) € L1(0,1,R) and we have

ft,v) > —f*¢,0=K@t) K eL0,1,R).

Under (B.G.C.) and (C.C.**) we can prove an interesting characte-
rization of the biconjugate f**(t,z) of a normal. proper integrand which
can be of some utility in studying existence theorems for non convex
problems in calculus of variations.

THEOREM 3. Let f be a normal proper integrand on [0,1] x R"®
satisfying (B.G.C.) and (C.C.**). Then for every £ € LY(0,1,R") there is
a compact valued measurable multifunction

I':[0,1] — R" x R

such that
IO C{w,0) = ft,v)= /¢ v)}

and
(@), [, @) EcoT(t) aetc [0, 1].

Proof. Since t +— Jf**(t, z(t)) is a closed convex not empty valued
measurable multifucntion [3] (8f**(¢, z(t)) indicates the subdifferential of
the convex function f**(t,.) at z(t) which is not empty because f**(¢,-)
is everywhere finite), we can find a measurable selection

—B(t) € F™ (¢, z(t)).
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So we can assert that
4) (B@®), z®) + (¢, 2(®) < (BX),v) + f*(t,v) Vv € R".
Let’s define the multifunction I': [0,1] — R® x R by

I'®)={v,0) eER" xR :a = f(t,v) = f*{,v),
(B, 5@)) + F™(t, 2(1)) = (BE), v) + F**(t, v) =
=(B®),v) +a} =
={(,®) ER" X R :a= f(t,v) = f**,v),

(B®), z®) + f™(t, 2(t)) > (BX), v) + a}.

Since f and f** are normal proper integrands and since f** is,
by (C.C.*), continuous I' is a closed valued measurable multifunction.
Moreover we can prove that " has bounded values so that it is a compact
valued multifunction. Let’s prove the last assertion.

Let (v, ) € I'(t), we have
(B(0),v) + £7*(t,0) < (BE), 2) + £, 20) = £(1)
and, by (B.G.C.), it results - |
]| < r@).
Moreover we have
—FU0) < £t ) =@ < E0) — (B, 0) < £O) + O

whence

(v, ]| < R().

- Finally let’s prove that

(z(t), f* (¢, z(t))) € co T'(t).
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By theorem 2 we have
@(@), f @ z@®) = Y M(@i®), £, ()
1=1

where
m

O<M<L, Y n=1

i=1
7@, i) = f(t, z:@t).
By (4) we have

(B, 2®) + £, 2®) = 3 M((BE), ®)) + £, zE)) <
1=1

< STNUBW, @) + £, () = (B2, 3@)) + £, 2().
1=1

So we can assert that

D oNB®), zi®) — 2@®)) — ¢, ) + £, 7i(t) = O

i=1
and every term, being non-negative, must be equal to zero. So

(B®), z:() + [ (¢, z:i(®) = (BE), z(®)) + [ (¢, z(t))

and

(z:i@®), [, () € TE)

This allows us to conclude. : |
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