EXISTENCE THEOREMS FOR COMPLETELY
NON CONVEX PROBLEMS

OTTAVIO CALIGARIS (Genova) *

In this note we give some existence theorems for integral functionals with
non convex integrand. We consider first the simpler case in which minimization
is taken on decomposable spaces and successively we prove an existence theorem
also for the minimum of an integral functional on non-decomposable space.

Introduction.

Let f:[0,1] x R® - RU {+0c0} be a normal proper lower semicon-
tinuous integrand as it is defined in [1] by R.T. Rockafellar; for every
function z € M (0, 1, R") the space of all measurable functions from [0, 1]
to R", we can consider f(-,z(-)) and it results a measurable function in
its turn.

So we can define an integral functional Iy : ' = RU {+o0}, where
N is a suitable subspace of M (0, 1,R®), by

1
Ij(z)= A £t @) dt

and we can set the problem to

(1) Mimimize{Is(z):z € N}.

* Entrato in Redazione il 10 marzo 1988
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This problem is deeply affected by two distinct features: the convexity
of f and the decomposability of A/. When at least one of these two
conditions holds an existence theorem for problem (1) can be easily found,
but when both conditions lack the question is a bit more complicated.

In this note we are intended to consider existence theorems for
problem (1) without any convexity properties on f; first of all we study
the situation on a typically decomposable space such as L!(0,1,R")
and secondly we face the less simple case which is created by the

substitution of L1(0,1,R") with a non-decomposable space such as the
1

space L{(0,1,R®) of all functions in L1(0,1,R") such that z(t) dt = 0.
0

This last problem is obviously equivalent to a problem of calculus
~ of variations in Hg’l(O, 1,R") associated to a non convex integrand
depending only on velocity.

The characterization of biconjugate integrands contained in [2] plays
here a fundamental role and also allows us to prove an interesting result
about the range of an integral functional.

Some Notations and Preliminaries.

In this paper we shall use the following notations: R® is the usual
euclidean space with norm || - || and inner product (-,-) while [0, 1] is
the unit interval on the real line equipped with the Lebesgue measure.
We indicate with B the o — algebra of all Borel sets in R® and with £
the o — algebra of all Lebesgue sets in [0, 1].

f 10,11 x R* — RU {+00} is a normal, proper, lower semicontinuous
integrand in the sense of [1] i.e. f is a measurable function with respect
to the o —algebra LR B in R x R", f(t,-) is a lower semicontinuous
function and f(t,-) Z 400 , a.e. —t € [0, 1].

M(O,1,R") is the space of all measurable functions from [0, 1] to
R" and we shall also consider the spaces

1
LY0,1,R™ = {z € M(0,1,R"): / |lz()]| dt < +o0}
0

Lg(o,l,R“)={zeLl(o,J,Rn):/ x(t) dt = 0}.
0

Obviously both spaces are normed by the L! — norm defined as
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[E21% =ﬁ 2 ()| dt.

By means of this norm L'(0,1,R") and L} 7(0,1,R™) are Banach
spaces and we can also easily prove that LO(O, 1,R") is a closed subspace
of L1(0,1,R™) with respect to the weak convergence; moreover let
us observe that L! (0,1,R") is a decomposable space (see [1]) while

O(O 1,R") has not this property.

We define, as in [1],

¢, v) =sup{(y, z) — f(t,z) : = € R"}

~and

@, 2) = (f*¢, ) ().

Both f* and f** are normal proper lower semicontinuous and convex
integrands; and for every z € M (0, 1, R®) we indicate

1

Ip(z) = ﬁ £, z(t)) dt
1

Ip(z) = A £, o)) dt

| 1 |
Ipn(z) = / (¢, (b)) dt.

Moreover E(Iz), R(Iy+) and R(I+) indicate the range of | 75 Lps and | fos
respectively.

Now, if we consider Iy : L'(0,1,R") — RU {400} and the duality
between L!(0,1,R™) and L*(,1,R" ) it can be proven that

(If)"=Ip0 and  (I;)* = Ipm.

This fact prov1des a useful representation of the convex regularization
Ipee of Iy on LY(0, 1,Rn) and greatly simplify the study of the minimum
problem for I on LY(0,1,R).

Unfortunately analogous results cannot be stated in L0, 1, R") and
this makes all things more complicated as we shall see later.
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Non convex problems on decomposable spaces.

We illustrate in this brief section the simple result that can be
proven in (0, 1,R™).

We consider here a normal proper l.s.c. integrand f which satisfies
the following condition:

(M.B.G.C.) Jr € R+, 3y € L'(0,1,R)  such that

f*,p) <yt) YpeR" |p]|<r ae —te]0,1]

(M.B.G.C.) is a milder version of the “basic growth condition” which is
a classical hypothesis in calculus of variations and which will be used
later for non convex problems in non decomposable spaces.

We prove in this section a simple existence result and a property of
the range of the integral functional Iy on L'(0,1,R™).

THEOREM 1. When (M.B.G.C.) holds and when there is at least
2 € L'(0,1,R") such that 1;(Z) € R, then Jzo € L'(0,1,R®) such that

If(zo) < Ip(x) Yz € L'(0,1,RM).

Proof. By (M.B.G.C.) and the definition of f*, we have

f(tav) Z <p1 'U> - f*(t,P) 2 <p) U) - ’Y(t)

VpeR™ |lp[| <r
and

f@,v) > rfjv]] = ~®.

So, by a standard generalization of the Weierstrass theorem, we can

find
a(t) =min{f(t,v) : v € R*}

and it results
—®) < at) < f(t,20);

hence o € L1(0,1,R™).
Let T": [0,1] — R" be the multifunction defined by

I'(t)={veR": f(t,v) < a®)};
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I' has non-empty and closed values and, by measurable selection
theorems [1], we can find a measurable function z; such that

zo(t) ET(t)  a.e.—t € [0,1].
Moreover, since
alt) > f(t,z0®) > rl|zo®)]| - (@),
we deduce that zo € L1(0,1,R").

But '
1 1
I¢(o) = / £(t, mo@®)dt < / at)dt <
0 0
1 _
< / F(t,y®)dt = I;(w) Vy € L'©,1,RY)
0
and the theorem is proven. n

COROLLARY 2. Assuming the hypotheses and the notations of theorem

1
If**(CU()) S If**(CL') Vz & Ll(O, 1, Rn).
Proof. We have
Ifu(.’ro) < If(il:) Vo € Ll(O, 1,R%)
S0 ' :
Ip(@0) < U™ (@) = I () Vz € L'(0,1,R)
and the thesis. ||

The previous results may be completed using [1]; indeed we can

assert that:
inf{Is(z): z € L'(0,1,R%)} =

= —(I)*(0) = —(I)™*(0) =
=inf{(I;)*(z): z € L'(0,1,R")} =

= inf{Ip(z) : z € L'(0, 1,R™)},
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and we deduce that

X =min{Is(z) : z € L'(0,1,R")} =
@) =min{I;(z) : z € L'(0,1,RM)} =

= If(iro) = Ifu(a:()) = ——If*(O).

We conclude this section comparing the range of the integral
functionals Iy and Iy, on L!(0,1,R®).
To this end let us define, limitedly to this section,

R(I;)={If(z) :x € L'(0,1,RM}

and

R(Ifw) = {If(z) : v € L'(0,1,RM}.

We wish to recall that the same notation will be used in the next section
with different significance.

THEOREM 3. Let us suppose that the conditions of theorem 1 are

satisfied, then
R(If+) C R(Iy) C [A, +00). -

Proof. Let o € R(Iy~),then
A =Ip(@o) = Ipn(zo) < @ = Ipn(z) < I(2).

Fof some 2z € LI(O,l,Rn) and for zp and )\ defined as in (2).
Moreover we can find y € L1(0,1,R*) such that

a< If(y) € R,
Indeed, if it were
Ir(y) < o Vy € dom (Iy),

we should have
Ite(u) <o Vu € dom (Ife)
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and this is false because o € R(Ifw).
Let us consider ¢ : [0, 1] — R defined as

1 1
p(t) = ﬁ £(s,9())ds + / 7 (s, 0(s)) ds.
t

@ is absolutely continuos and
pM= <o g ().

So, there is ¢y € [0, 1] such that p(tp) = o and if we define

yt), te€0,to].
w(t) = {
zo(t), t € (fo,1]

we have
Ifwy=a , weL'(©0,1,RY

and the theorem is proven. [ ]

We conclude this section with two examples which show as condition
(M.B.G.C.) is not yet sufficient to work with problems defined in
L(l)(O,l,Rn) instead of L!(0,1,R") neither when the integrand f is
convex. ’ '

Indéed, let us consider

F@v)=10+tv— 1.

If we choose

1—k, te[O,l]

k

z(t) = {
1 - 1].
, tE(k,]

We have z; € L}(0,1,R),
I4( )—1+——1— 1
fCE}C = 2k -

and moreover, Yz € L{(0,1,R)

1 1
If(a;)>/ l:z:(t)-—l]dtzlf (z(t) — 1)dt| = 1.
0 0
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So
inf{I;(z) : € L§(0,1,R)} =1 < Ig(x)  Vz € L3(0,1,R).

Moreover it could be true that I4. attains its minimun on the space
0(0 1,R), while I has not this property.

Let
vZ+2

f@v)=|v—1 i1

whence

e, v)=v-1|.

It can be proven, as in preceding example that

Ipn(z) > 1= Ip(0) Vz € L}(0,1,R)
but 2 .
—2k+3
RA Ty
and
If(z) > 1 Vz € L(0,1,R).

Non convex problems in non decomposable spaces.

Let us now consider a problem of calculus of variations on the space
L(l)(O, 1,R) which we introduced in earlier pages.

As we saw, (M.B.G.C.) is no longer sufficient to estabilish an
existence theorem in this space, even in convex case; so we need to
introduce a condition which is typical in existence theorems for calculus
of variations: the basic growth condition, which we simply call (B.G.C.).

Here we prove that (B.G.C.) is still sufficient to assure the existence
of a minimum, also in non convex case, for a problem of calculus of

variations in LO(O 1,RM).
We recall that f satisfies the basic growth condition when

(B.G.C.) ¥p € R® 3, € L'(0,1,R) such that

f*(t:p) S ’Yp(t)
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We also need, in this section, a condition which we used in [2] to
prove a representation theorem for f**,
We say that it is satisfied a Caratheodory condition on f** when

(C.C.*) @, v) <+c0 Vv e R

As a comment we remark that this condition assures that f**(¢,.)
is convex and finite; so it is continuous and f** is a Caratheodory
integrand. : :

For functions satisfying property (C.C.**) we proved in [2] the
following representation theorem. '

THEOREM 4. - [2] - Let f be a normal proper integrand satisfying
(B.G.C.) and (C.C.**), then for every z € L'(0,1, R™) there is a measurable

multifunction
r:[0,11 -R*xR

which has compact values and which satisfies the following properties:
I'(t) C {(v,) e R* x R = f(t,v) = [, v)}
(@), fM (@, z(t))) € co T'(t) a.e.—t €[0,1].

We remark that
I')#9 a.e.—t € [0,1]

because

@(t), F*¢, o(t) € co TQ).

Using this result we prove a lemma which is essential for non-convex
existence theorems; in this lemma and throughout the remaining part
of this section we use the notation R(Iy) and R(Is+) to indicate

R(If) = {I(z): = € Ly(0, 1,R™)}

and
R(Ipw) = {Im(z): x € L}(0,1,R™)}

LEMMA 5. Let f be a normal proper integrand satisfying (B.G.C.)
and (C.C.**); let us moreover suppose that there is T € L(l)(O, 1,R™) such
that Is(Z) € R. Then

R(z+) C RUy).
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Proof. Let z € L(l)(O, 1,R") and let I" be the multifunction defined in
theorem 4.

Since I' is measurable and has non-empty compact values, we can
find a Castaing representation for T, [1].

So there exist {u; :4 € N} , u; : [0,1] — R" x R such that

T(¢) = cl{ui(t) 1 i € N}.

Let us define
?(t) = sup{[[u;@)[| : i € N}

" Jis a measurable function and we have
') co@e) B

where B = {z € R" xR : ||z]| < 1}.
Let us moreover define

Ap={t€[0,1]1:m -1 <9t < m} ;

A, is a measurable set Ym € N and we have:

(3) AmmAp=m mFp
) 4m=10,11.
meN

Finally let I'y, : A, — R™ x R defined as T,,(t) = co (FI Am) . where
' 4, is the restriction of T to A,,.

It results
r,&)Cm B

and, by theorem IV-17 in [3],we can find
(ym:‘am) . Am — R" xR

such that if we indicate with ext K the set of all extremal points of a
closed convex set K C R",
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Wm®), am®) € ext (Tn®) =ext (co (T[4, ®)) ae. —t€ An

@) / Um(@)dt = / z(t)dt
Am An

/ o (t)dt = / (@, z(t))dt.
Am Am .

By theorem 11.2.2 in [4], since I'({) is a compact set, we have
ext (co(I'®))) CT' ()

so that
(ym(t)a am(t)) eI'(t) ae —teE Am

and, by theorem 4, we have

&) am®) = £ yn@) = Cym@) ae —tE€ An

Now let us define a function y : [0,1] — R" which coincides with
Ym on A, , Ym € N. In other words let y be the measurable function

defined by
y(t) = ym () VieAn VmeN

and let us consider the sequence of functions
2 . [0,1] = R

defined as
ym(t); (S Am 1 S mg k
2,(t) = {

z(t), elsewhere .
It results z; € L1(0,1,R") and moreover, by (3), if we set
Bi=|JAn and Gy =[0,1\Bs
m<k

we have by (4)
1

1
/ zk(t)dt=/ U () + / z(t)dt = /' Z(t)dt = 0
0 By Ck 0

1 1
A P, 20t = ﬁ £, T())dt.

(©6)
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So by (6) we can assert z; € L}(0,1,R"), while it is obvious that
z,(t) — y@) ae. —te[0,1]

Again, by (6), we obtain that ] fe(z) = I f(x), so that z; belong to
a level set of I, which is, by (B.G.C.), a weakly compact set and we
can find a subsequence of z;, which we call 2 again, such that

zr — 2z  weakly in L(0,1,RY).

Since Lé(O, 1,R") is closed under weak convergence in L'(0,1,R™)
we have z € L}(0,1,R™) . Moreover

1
/ 124t — y(®)||dt = / llz6(®) — y®)] > 0
0 Ci

since z; is a weakly convergent sequence, [|26(-)—y(-)|] is an equiabsolutely
continuous family of functions and meas (C}) — O.

So 2z, — y strongly in L'(0,1,R") and we have 2 = .
In similar way, when k is sufficiently large, for some m € N, we
have

FEy@®) = £, 2e(®) = £, ym(?)) =
= (¢, ym(@) = @, 26() = £, y(@©))

and f*(t, z¢(t)) — f**@,y®) , ae. —t € [0, 1].
Moreover, by (B.G.C.) and (6)

1 ) 1
~ / £, 0)dt < / G, y@)dt <
0 0

1 -1
< lim inf / F¥(E, ze(t))dt = / P, T(t))dt
0 0

and f**('a y()) € Ll(oa I)R)

So, since we have
—f*@,0) < (¢, (@) < max{f*(, y@)), ¢, z(t)},

and since the latter function is in L1, I,R), by dominated convergence
theorem and by (5) we deduce

Ipe(y) = lim Ipe(2g) = ().
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Since, by (5),
ft,v@®) = ¢, v@)

we have
It (y) = Ipu(y) = Ipn(x)

and the theorem is proved. -
We are now able to prove an existence theorem.

THEOREM 6. Let -us suppose that f is a normal proper integrand
satisfying (B.G.C.) and (C.C.**); let us moreover suppose that there is
T e L(I)(O, 1,R") such that Is+(Z) € R. ‘

Then there is o € L{(0,1,R™) such that

I(zo) =min{I;(z) : v € L{(0,1,R™)}.

Proof. Since f**.is a convex normal integrand satisfying (B.G.C.),
we can find yp € L(l)(O, 1,R") such that

I(yo) < Ipw(z)  Vz € L}(0,1,RY)
By lemma 5 we can find z( € L(l)(O, 1,R") such that
Ign(yo) = If(zo)

so that .
' Ii(wo) < Ipn(z) < If(w) Yz € L(0,1,RD) |

Some final considerations.

A problem of calculus of variations associated to a non convex
integrand has been considered in [5], [6], [7], [8], [9], [10], [11] and [12]
by various authors.

There are two features common to the majority of the previous
cited works: the first one is that integrands are requested to satisfy a
polinomial growth condition of degree strictly greater than 1, the second
one is that integrands must be upper bounded by suitable polinomial
functions.
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The remaining works allow the integrand to satisfy only a superlinar
growth condition but it must be essentially defined on the real line.

In the present work we only use a "basic growth condition" ie. a
superlinear growth condition which is not necessarily of polinomial type
with degree greater than one, moreover a very weak upper boundedness
condition is required: i.e. f** must be finite.

Finally we wish to remark that our integrands can also assume
infinite values and this fact allow us to modify the integrand itself in
order to take also into account of a certain type of constraints.

Infinite values for f** can be allowed but much more work is
necessary, this is the theme of further research.
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