ON THE EVOLUTION OF ORDINARY DISCONTINUITY AND
CHARACTERISTIC SHOCKS

GIOVANNI RUSSO (Catania) *

The evolution laws of ordinary discontinuity and characteristic shocks
are derived using the kinematic and geometric of singular surfaces.
Applications to contact discontinuity in gas dynamics and to Alfvén shocks
are made.

1. Introduction.

The evolution of ordinary discontinuity and characteristic shocks
in hyperbolic system is a well established subject [1, 2, 3, 4]. Several
approaches have been used in this area according to different physical
context. Here we want to investigate in detail an approach which is
derived in the framework of a much more general method, the so called
«Generalized Wavefront Expansion» (GWE), already used in the study of
the propagation of weak shock waves [5,6] and of «step shocks» [7]. The
same method has been used in the context of «corrugation stability» [8].
The advantage of the method consists in its simplicity in deriving the
transport equations and in the fact that it does not require the solution
of the partial differential equation for the phase.

Instead a system of ordinary differential equations has to be solved in
order to find the evolution of the weak discontinuity or the characteristic
shock, along the «rays». A transport equation for the second fundamental
form of the characteristic surface is also derived, which closes the system
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of differential equations. As an application of the method we derive
the transport equations for the contact discontinuity in gas dynamics
and the Alfvén shock in magneto-fluid dynamics. The equations are
then solved in the case of a contact discontinuity in an isothermal
stratified athmosphere. The plan of the paper is the following: in Section
2 we introduce the formalism and derive the transport equations for
the ordinary discontinuity and for the second fundamental form of the
surface; in Section 3 we derive the transport equations for characteristic
shocks and for one-dimensional intermediate discontinuities and make

the applications.

2. General formalism and weak discontinuities.

Let us consider a hyperbolic system of conservation laws in R* [2]
(2.1) 8, F'(U) + 5, F (U) = f(U)

where FO(U), F'(U) are regular functions of the N-vector field U defined
in an open domain Q C RY.
The system may be written in the form:

2.2) . A%, U+ A3 U=f
where A% = VyF?, A? ='VUF?’, or, in the expliéit form:
(2.3) HU+M'oU=¢g

where M = (491, g = (4%, and the hyperbolicity of the system (2.2)
ensure us that A% is non-singular.

Let Z(t) be a surface across which there is a discontinuity in the
field derivatives. The first and second order kinematic and geometric
compatibility relations across the singular surface generally read:

2.4.0) o, Ul = % — ViZ

(2.4.b) 16;,U1 = &;,[UT + n,Z



ON THE EVOLUTION OF ORDINARY DISCONTINUITY AND,... 125

82 . 6n; 6 -
240 105Ul =n +Z7 ;‘; = (G;TUD)

— V50, Z — Ve, W — Vet 641U

(2.4.d) [18;0;U1 = 8;IUT + Ziiy +m0; L+ m; 8, Z + mymy W + mim 8, TUT)

where, for any quantity h(U), we define [All = h_ — hy, h_ and h, being
the values evaluated just behind or ahead of X(t), and

(2.5) Z = [7'6;,UT, W = [[v'n/ 6;;UTl

6 ~ 1 o
(2.6) 5 = 0; + Vsn'0; (the Thomas displacement derivative)
2.7 o; = h{ 05, h{ = 5{ — w7/ (derivative along %)

and x;; = 5-71]' is the second fundamental form of the surface.

In the case of a weak discontinuity the relations (2. 4) simplify
because the field is continuous across X(t).

Now let us take the jump of equation (2.3) across X:
2.8) 16, Ul + M*[; Ul = 0

(note that M*(U) and g(U) are continuous across X).
Using (2.4) we have:

(2.9) (M'n; — VeDZ =0

This means that Vs is an eigenvalue and Z an eingenvector of M'n;.
Let A = A(U, @) = V5 be the corresponding eigenvalue and let m be
its multiplicity.
Then equation (2.9) gives:

(2.10) 7 =Z<I>IRI
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where R! are the m (independent) eigenvectors corresponding to ).

Now if we take the jump in the space derivative of the system (2.3)
across X, use the compatibility relations (2.4) and multiply by 7/, we get:

. 11)§§+(Mn1 ADW+Nin Z°Z + Nimgrd 8, USZ + N} 7°8,U,

+ M2 —V,82° =0

where NV} = OM?/oU°.
Now multiplying (2.11) by TL;, the J-th left eigenvector of M'n; we
have:

(2.12) XJ‘(TLJRI)‘Sa ZCDI TLJ 5R Z TL;M'RIG @f
I

I

: +Eq)l' TLJMig,'RI'F E(DI(DK TL]N;’I’L;‘RIGRK
I

+> O Ly Nimrd §;UsR! +7 Ly N R™8;Up T L;V,gR™) =0
I

Now, using the identities [11:

(2.13.0) TLyM'R! = —a-A—TL JRI
. on; .

(2.13.5) TLyNimRY = V5 TL;R!

equation (2.12) may be written, after some easy manipulation,

(2.14) > TLJRI it +Z(¢>I¢Kv AR TL;RE+
I .
OR! 6n LT

o\ ;. ORI
—_— --TLJRI+X,J-6—~ LJa

+ Ly MV, RIG,US+

E(DI (TL V R16U0 TLJ
- ot

Ty

+ ' LyRIV A\’ 0,U¢ +F LyN} RT6,Uy T Ljvang“> =0
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where

d_§ O\«

is the total derivative along the «rays» defined by

dz - o))
2. =\n s 2
2.16) & =g

and Up is the unperturbed field ahead of £ and is supposed to be a
known function of z.

Note that in (2.14) the derivatives (d®* /dt) are well defined, because
det(LyRT) %0 [1].

In the case of propagation into a constant state these equations
have already been derived by Giambé [9].

This system must be supplemented with transport equations for 7
and x;;.

The transport equation for n' is given by [10]:

on =«
2.17) v EV=0
ot
Which can be written:
. i .
(2.18) A —dt~+VG>\8,-U0 =0

We use the dependence of Uy on z* to write
(2.19) X =2(Up, @) =\, )

We derive now a transport equation for the second fundamental
form in cartesian coordinates.
We shall make use of the following properties, which are proven in
the appendix:
i) Symmetry of the second fundamental form:

(2.20) Xij = Xji
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ii) First commutation relation:

6 5 N N N\ 4] A
(2.21) 5t8 —0;— 57 [(awk + . x3> n; — AX]} Ok

iii) second commutation relation:
(2.22) 8i; — i = (nx? — mix3)0s
Now let us take the derivative of relation (2.1 7

~ 8 & k. O o)) = OA )
(2.23) a,?’?-ﬂa,h‘“)a =+ hf <a,a k) (a,a k>><¢ +5——ajx, =0

or, developing the derivatives:

~ Om; oA 9%\ PN
%3 dt — G’ +”11X])6 g+ i (h”azkaxs Oz Ons 5;-713)

O\ O\ oM x =
+ <hj318:1;38nk + 8nk8n3 st> Xki + 57—1;8,-8,-71,6 =0

Now, making use of (2 20), (2.21) and (2.22) we get, after some easy
manipulations,

dxij 92\ 0%\ 52\
225 —_— + h ] his—""""_ hz 8 + 13
Q25 =g Fhikhis gt hik g Xis ¥ hik X
+_a_2_>\__ RV __6_5_( 0N F Y + . .)+ N\ = a>\ s
ankans XisXik a.'IIk Xik"My T X5iTk T XkjTh ank M | X5 Xsi

The essential advantage of this method is that we obtain a closed
set of O.D.E.s. Instead, with other methods we must solve the eikonal
equation for the phase, which is a partial differential equation for the
phase. It can be checked that the transport equations obtained are
equivalent to those obtained by Boillat [1].
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3. The evolution of characteristic shocks and intermediate di-
scontinuities.

For a characteristic shock the shock surface X coincides With a
characteristic surface and its velocity Vs with an eigenvalue of the
system, both ahead and behind the shock [11].

Ve = A(Uo, 1) = A(U, 7)

where we denote by a subscript 0 the field ahead.

The corresponding eigenvalue may be single (in this case the shock
is characteristic iff the so called «exceptionality condition», (V,AR%) =0,
is satisfied, or have multiplicity m > 1 (the shock corresponding to
multiple eigenvalue is always exceptional [11]).

We shall consider the general case m > 1.
The Rankine-Hugoniot conditions at the shock surface:

(3.2) —V:IF°T + n[F'T =0

constitute a set of N relatibns, N — m independent, and the system may
be solved giving the field the shock as a function of the field behind
ahead and of m parameter [11].

(3.3) TUD =YW, 7,u"), I=1,....m

By taking the jump of the field equations (3.3) and using first order
compatibility relations we get:

(3.4) % + M1 — VeD)Z+ MEB,Y + IMT8:U — gl = 0

By developing the derivatives of Y as

8Y _ (8Ug , OY bul  8Y b
5t - Ve g T ol 5t Tsw o
(3.5) -
oY 9Y -

8Y V. YO U +52L—1.—(9u +6]3 n
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and using definition (2.15) and transport equation (2.14) we get:

(3.6) Z TY, aY d“ 52]0 +T Ly MV, Y8,U8
"L
o L (MFny — ”)a Xis
T aY T 1 T
~"Ly 5=V AG;UE +F LyIM 16;Up —T L;Igl = 0

where the fact that (0Y/0u!) is a right eigenvector of Min; [11] and
relation (2.13.a) have been used.

System (3.6), together with equations (2.16), (2.18) and (2. 25)
constltute a set of m + 12 equations for the unknown quantities u?, z¢,
', Xij-

In the case of an intermediate discontinuity, that is when Vs = \(U_)
[2], the method is not directly applicable for multidimensional propagation
because the spatial derivatives of the field just behind the shock are not
known. But in the one dimensional case the extension is straightforward.

Let us consider such a situation, described by the system
3.7 U+ Mo, U=¢g

By using the usual technique we get

(3.8) 5%? +(M_ = VaD)Z + IMI0,Up — gl = 0

Let u be a parameter describing the jump of the field across &, that
is let us solve (3.2) in the form

(3.9) IUI = Y(Uy, u)

By multiplying (3.8) by the left eigenvector of M _ corresponding to
the eigenvalue \; = Vz we get the transport equation:

(3.10) ry, OY bu Ly, vl

T T -
= 5o+ LIM19,Up —7 LIgl = 0

Contact discontinuity in gas dynamics
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As an application of the theory developed we study the evolution of
a contact discontinuity in classical gas dynamics [12, 13].

In this case the field U is given by

(3.11) TU = (p,v',v%,0°,p)
and
p Ay
(3.12) Fo=|p7|, F=|pé+piv
w (w +p)?

where p, v, p are, respectively, density, velocity and pressure of the gas,
w = p(|7]*/2 +¢), £ is the internal energy and is related to p and p by a
given equation of state &€ = e(p, p) and é' is the unit vector of the z' axis.

In the case of a contact discontinuity the jump relations across X

read:
(3.13) [v1-7=0, Ipll=0

The matrices M* are given by

vk plek 0
(3.14) M= ( 0 ofI ék/p>
0 pa?Ték o

where a? = (Op/0p)s.

The eigenvales are A\; = v, — a, A\p = vU,, A3 =1, +a.

The multiplicity of the characteristic eigenvalue \ = )\, is m = 3.
Instead of using three independent parameters for describing the shock
we use four parameters linked by a relation. We obtain a set of four
equations, not all independent.

The eigenvectors are given by:

1 0
: , 0 0
(3.15) Ly = 0 |, Li=| m |,
0 —T
—1/a? 0
0 ' 0
—n3 0
L2 = 0 ) .L'_z, = ™ ,
ny- —Mm

0 0
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TRy =(1,0,0,0,0), R;=L;1=1,2,3.

These are not independent because n'L; is the null vector.

By choosing [p]l and [[v] as parameters for describing the shock
and performing all the calculations one obtains the following transport
equations:

(3.16) %ﬁum- <Vﬂo—£§‘7po> — po (1—Z—§>v- 7 =0
(3.17) <d5tm + [[%]]Vpo) >< 7=0

(3.18) % +n;8;v) =0

(3.19) %fti = v} +[v'T

where x denotes the vector product.

These equations are not in a useful form because it is not possible
to obtain expressions for the single jump [v*].

By performing a change of variables let

(3.20) =01 x #
Then we have:

(3.21° AxMN=Ax (T x7) =00, H-7=0

In terms of I1 equations (3.17) are written in the form:

dil /= di 1
3.22 —_—t (Il — | T+ [-TV 7 =0
(3.22) dt < dt > L p]] po X 1

and the constraint I1 -7 = 0 is automatically satisfied by the equations.

Note that in this case the second form of the surface does not
appear in the equations.
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Let us solve these equation in the case of a contact discontinuity
in a stratified isothermal polytropic gas. We consider a two dimensional
problem with z and y denoting, respectively, the horizontal and vertical
coordinates. At time t = O the contact line is a straight line forming
an angle 0 with the direction of the z-axes. Above the contact line the
unperturbed state is at rest with an exponential decreasing density:

(3.23) pWdo = foe*/*

and the pressure is given by po/po = po/po. Here L = po/(gpo) and g is
the acceleration of gravity.

From equations (8.18) and (3.19) it follows that the position of the
contact line remains unchanged.

Equations (3.16), (3.17), (3.19) become:

alt el :
(3.24) dt-—p0+ﬂpngmn9
dllpll _ Ilposin® [ po+ [pll
2 = —1
.2 di L < YPo
dy _ :
(3.26) i —~IIsin6

where I1 = 1€, and ~ is the polytropic constant.
The equations can be put in a non-dimensional form. Let

(3.27) ¢ =y/L, V =1I\/po/Do, ™ = p/po, T= +/po/Pogtsinf
then the system (3.24)-(3.26) becomes:

(3.28) E=V

(329 V=-—

(3.30) F=kVr
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where £ =1— 1/ and the dot denotes the differentiation with respect
to 7. From the last two equations we get the relation between V and r:

(3.31) v =:t\/—2- <1 I §>
k\T r T

where 7 is the value of r for which V =0.
- The system (3.28-30) has periodic solutions which represent oscillating
gravity waves in the fluid: in the second equation the restoring force for
the velocity of the fluid is proportional to the jump in the density.

The system is solved numerically and the amplitude and the period
of the oscillations are evaluated as a function of the initial density ratio
7, for various value of 7. The results are shown in Figure 1 and 2
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Fig. 1 - Amplitude gy — Emin of the oscillation described by equations (3.28-30)
as a function of the maximum (or minimum) compression ratio p/po- The value
of y are:

v =4/3 (comtinuous line), = 7/5 (dotted line) and ~ = 5/3 (dot-dash).
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Fig. 2 - Perid of the oscillation expressed in terms of the non dimensional time

T = /Po/Pogt sin g

We remark that this is a rather idealized case in which the
interaction of acoustic waves with the discontinuity surface have been
neglected. These interactions, generally, cause an instability of the surface
and a perturbation of the flow on both sides.

The Alfvén shock.

As another application we consider the propagation of an Alfvén
shock in magneto-fluid dynamics [14, 15].

In this case the field is given by

q
3.32 : u=|"
(3.32) p
S

where H is the magnetic field vector, ¢’ the velocity of the fluid, p the
density and s the specific entropy.
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The eigenvalue correspondlng to the Alfvén shock is A=v,+wH,

where for any vector f we put f, = f 7 and w? = u/p, p being the
magnetic permeability of the fluid. The matrices governing the system

may be written:

[ vI-TTe FTé-pmt 0 0
3.33) MF = PORE—HD L et @t
- ) 0 pTek vk 0
\ 0 0 0 vk /

Let us consider the + eigenvalue: )\ = Un +wH,. Then the left and
right eigenvectors may be written:

#ix H \ /w[ﬁxﬁ—(ﬁxﬁ-ﬂ')ﬁ/k]\
—wi x H —Ax H
(3.34) R= .
0 0

\ o /0 0

The Rankine-Hugoniot relations across the shock give [14, 15].
(3.35) [H.1=0, [p] =0, [pll = 0, Lv,] =0, 71 = —w[F1
Furthermore, if we call h=H— nH,, then we have:
(3.36) =0

and hence, if the field ahead of the shock is known, the only unknown
quantity is a rotational angle 6 for the tangential component of the
magnetic field. We choose this parameter for descnbmg the evolution of
the shock

In terms of the parameter § we have:
(3.37) / h* = M0, h],

where M ;(9, 7) is a matrix which rotates a vector by an angle § around
the direction 7. It is easy to show that:

(3.38) M; = (8 — n'n;) cos 0+ niny — ek sin 6
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where s}k is the pseudo-tensor completely antisymmetric and 853 = 1.
The magnetic field behind the shock is given by

(3.39) H' = (M} — vin)Hj

By evaluating all the terms of the transport system (3.6) one obtains
the following transport equation:

o di + 8Ho

3.4 — +N— - Qi+ ——P. ——24+B=0
(3.40) @ TV it |h|2 5t
where
P=axh=@ixH
_ 1 P71\
M= onp (P’ ) ”7> >
. J . . .
S/ = BHH I = —(w Ho; + H,6!)cos0 — &, HF sin @
i a,n, 1 . ki++0
(3.41) | b= ! P*H,S!
' ~ 2|h)? s
1 [P.# - o
B = 2lhlz[ '3kA6+2P0jA§3kH6

- . P.T .
+kahj3/cHé — T(A‘f@kw +wakv(§)}

A=wH+7

The rays equations are given by:

dzt :
3.42 — =A'
( ) dt
The equation for =':
dn* ~
(3.43) ~ rmBiAE =0

dt



138 GIOVANNI RUSSO

and the equations for x;; become:

dXz" 82 T aAg .
J _ hjkh;?nra’lisawk + o (hiiXs; + b Xsi — XhiTisTy

(3.44)

XjiTsMk — Xkjmns) =0

Here Ko = woﬁo + 7 is supposed to be a known function of z*.
Note that using cartesian orthogonal coordinates in R> there is no
difference between covariant and contravariant tensors. J
Equations (3.39)-(3.43) constitute a closed system of therteen ordinary
. differential equatins which describes the evolution of an Alfvén shock
propagating into a known state.

4. Conclusions.

The method of singular surfaces has been investigated in depth in
order to derive transport equations, along the «rays», for the parameters
defining a weak discontinuity or a characteristic shock in hyperbolic
systems of conservation laws.

The method is part of a more general method (Generalized Wavefront
Expansion) [5], which has been already developed in the context of
propagation of weak shock waves [6], of step shocks [7] and in the study
of corrugation stability of plane shocks [8].

A transport equation for the second fundamental form of the
singular surface is also derived and this yields to a closed set of ordinary
differential equations for the parameters of the discontinuity, the position
of the point on the ray, the unit normal and the second form of the
surface. This is the main advantage of the method which escapes the
solution of the eikonal equation for the phase.

The method is easily extended to the propagation of intermediate
discontinuities in one dimensional.

We applied the theory developed to the contact discontinuity in
fluid dynamics and to the Alfvén shocks in magneto-fluid dynamics. In
the first case we obtained an explicit system of O.E.D.s for the jump
in the density and a vector defining the jump in the velocity field,
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the position and the unit normal, while the second fundamental form
does not appear in the equations. We solved the equations in the case
of a plane contact discontinuity in a stratified isothermal athmosphere,
evaluating the period and the amplitude of the oscillations of the waves.

In the second case the jump conditions are explicitly solved in terms
of a rotation angle and a transport equation for this angle is evaluated,
together with equations for position, normal and second form of the
surface.

5. Appendix.

Proof. (2.20). First note that hsakns = Oy — min®Ogms = Okmy

because Ok(n°ns) =0, and recall that [1] n; = agy, (¢; = 0p/0z"), where
$(z*,t) is the phase which obeys the characteristic equation and define

the surface of discontinuity; a = [Vé| 1.
Then
Xij = Oimy = hiBkmy = hfhOp(as) = hEhI(Bra)ds + ahfhipys
Now the first term in the last expression is zero and the second is

symmetric in ¢ and j thus yx;; = x;;.
Proof. (2.21). For a generic function {(z,t) we have:

cSh
8 (= h (O, + An°9,)0kC + —2 akg

3 k 3 k5n] én F
= h Ok (0 +>\n 0s)¢ — h OO\ )0s¢ — 5t + ny 57 0rC
. _cs_g , , L 6ny snF
= 5 (8)\)718( Xanag ( 5t + 7y 5t>ak€
_5.56 s (g Or O 5y

)
) ox o\ ~
= j‘g + K'a';; + o o Xf) n — kxf} Ok ¢ Q.E.D.
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Proof. (2.22). For a generic function ¢(z') we have:

07 8¢ =h$hfou¢ + (67RO
= hiB,(hBk() — hi(Bk()(BshE) + (B BB
= 8.5,¢+ (B3 — BihDosC
= 8;0;{Hxijn® + nixD)0s¢ — Guiym® + mix 8¢
= 8;0;¢ + (x5 — mix)0sC

= 0;0;¢ + (mix{ — mix})0s¢ QED.
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