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We present a point approximation method of a space homogeneous
transport equation. A number-theoretical convergence proof of the method
is given.

1. Introduction. -

We consider a one-dimensional, space-homogeneous transport problem
in periodic geometry. This problem arises from a strong simplification
of a model equation for semi-conductors. In the past a drift-diffusion
approach was used in the computation of semiconductors ([11], [13]).
But this model is not satisfactory for the next generation of devices,
since the assumption of thermodynamical equilibrium is no longer true.
A better description for this case can be given by a kinetic model ([14]).
Previous attempts in using kinetic theory to model carrier transport in
semiconductors were based on Monte-Carlo methods ([1], [16]). One of the
major disadvantage of these methods is that they cannot be implemented
for a vectorcomputer. The computing time of the model is then too high
for realistic applications.

* Entrato in Redazione il 20 maggio 1988.
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Here we write down the electrostatic case only:

' 6f 5f !
DR 5;+E /Q(k N{f¢t, z, k") — f(t,z, k)}dk

v=g(k) divE= /f(t, z, k)dk — n(t, x)

The Lh.s. is similar to the Vlasov equation in plasmaphysics, which is
treated numerically using particles ([2], [6], [9]). The r.h.s. is similar to
a collision term in linear transport theory, where completely different
methods are used ([5], [7]). Our aim is to extend the particle method
to (1). Since the situation for the Vlasov-part is well-known, we have
concentrated on handling the collision term. We consider (1) in the space
homogeneous case with a more general collision term. For this purpose
let 7; ~ [0,1F be the j-dimensional torus, P,Q : 75 — IR* uniform
Lipschitz-continuous functions, tp > 0 and f :[0,t0] x T3 — R*, the
integrable solution of

@ f Lt k)= / Pk, KNF(t, KK — £, k) | Qk, )k,
11

T

where f(0, k) = fo(k) with /fo(lc)d/c =1 is given.
. Tl
For P = () we get the space-homogeneous case of (1).

In addition we require

3) /P(k,/c’)d/c=/@(/c’,k)d/c.

Tl Tl

Then (2) is a conservation equation

ad—t/f(t,/c)dk = //P(k,k/)f(t,k/)dk/dk ~//Q(/€,/C/)f(t,/c)dk/d/c
T i}

i)

- / / [Pk, k') — QUK k)} £ (2, Kbk
T )

=0.
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The equation (2) is similar to the master equation in the theory of
stochastic processes.

In this context Nanbu [14] has given a scheme, where the path
of the particles is described by a stochastic difference equation. Another
deterministic approach was given in [12] and [15]. For the implementation
of this method on a computer see [4].

The plan of the paper is the following. In § 2 we describe the
Euler scheme and we show its convergence. § 3 deals with the point
approximation and its convergence. For an easier reading we divided this
paragraph in two sections.

The first gives some definitions, that will be used in the proof. The
second one describes the point approximation and shows its convergence.
Finally § 4 gives some concluding remarks.

2. The Euler-scheme.

With respect to the time ¢ we discretize (2) with the timestep At
and indicate the time-levels by superscripts

@ k) = kA - At [ QUk, k)R + At / Pk, K (K)dk
T Ty
For an estimation of

17711 = [ 17 colas

11
we define

(5) G(k) :=/Q(/c,/c’)d/c’=/P(/c’,lc)d/c’.

11 T1
Then holds

1F| < / |1 — AtG(R)|| F™(k)|dk + At / | Pk, k") f™(K")|dk' dk
b3

1y

<1 = MtGlool | f7] + MG ool £]

<1+ 246G oo [| 711
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From the last inequality follows

1£7]] S 11T+ 24¢ G115, 117°)]

< (1N expllt +2t0Gleo)

Now we compare the Euler-solution (4) with the true solution of (2)
at t, = nAt.

I k) = fltw1, k) =) — ftn, b3+
298] '
+/ /P(k,/c’){f"(/c') — f(r, k' )}dk'dr—
tn Ty

2281
- [ [awmre - s pyavar
t 11

n

bl
1™ — Fad)]] < |IF™ = Ft)|] + 2/ lG(k)lf"(k) — f(7, k)|dkdT
tn 1
Lt
<™ = ft)|| +2 / l G| f" (k) — ™ (k)| dkdr+
tn 1
tn+l
) / / GE)| ™ (k) — f(, k)|dkdr
tn T

<™ = f@| + 248 [ G| Pk, k) fm(K')—

i}

— QU K) (k)| dk dk+

tn+1

+2 / G| F™ (k) — F(r, k)| dkdr
tn 1]

<" - f(tn)H_+ 20t / { l (GEHPE' k)+

T
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+ G(k)Q(k, lc’))d/c’} | (k)| dk+

+2/
t

n

tn+1

1Glloo [157 = f(D]|dr

(298]

<IIf" = el + 20057188 +2 [ 1IGlallf™ - £

tn

Here and in the sequal we use G, c, ¢ ,... to indicate constant
factors in the estimations.
From Gronwall’s Lemma follows

7™ = Fml] < (IF" = FE]| + CAL) exp(2]|Glloo A
and finally

™ — £l < 10 — f(to)||exp(C'nAL) + CAL? Z exp(C'vAL)

v=1

< |1£° ~ Fto)l|exp(C'tn) + CAt exp(C'tn)

which shows the convergence of the Euler-Scheme (4).

If 1 — AtG(k) > O the Euler-Scheme conserves the non-negativity
and the convergence transfers this to (2).

In this case from property (3) it follows

=10

3. The point-approximation.

Because of the non-negativity and the conservation property we can
interpret f™ as a density function of a probability-measure p", which
can be approximated by a discrete measure. In contrast to the situation
in plasma-physics a discrete measure is not preserved by (4), since the

gain term | Q(k, k")f"(k')dk' creates a continuous part. Therefore after

Iy
each time step we must approximate the new measure by an appropriate

discrete one.
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3.1 Preliminary definitions.

For this construction and to show convergence we introduce the
following definitions.

DEFINITION: Let
U:w={¢:T1—-1[0,1]:[¢(x) — ¢()| < r,nin(lf +z —y)}

and M be the set of all probability measures on Ty.

Then for u,v € My we define
/gbdy, —/quz/ .

We call a sequence {vy}yeNn C My (weakly) convergent to v, if
hrn p(yN,z/) 0.

p(p, v) = sup
$cU

Remarks:

1) p is the well-known bounded Lipschitz distance ({31, [8]) on a torus

geometry.
2) Our definition of (weak) converge coincides with the normal one
defined by
A;lm / ddvy = / ¢dv  for all ¢ € CUTY).
—00

DEFINITION: Let be u, v € Mi, then the discrepancy D(u,v) is

given by
/d;z—/ dv|.
0 o

Remarks: A.) This is an extension of the concept of discrepancy used
in number-theory (compare [9]).

D(u,v) :== sup
z€[0,1]

B.) D does not create the weak-convergence in M.

But it holds



A NUMBER-THEORETICAL CONVERGENCE PROOF OF A POINT.... 167

THEOREM. [Koksma]: Let h: Ty ——> IR be of bounded variation V (h),
N
1
= N Z §(x —x,) € M1 a discrete and v € M an absolutely continuous
n=1
measure, then

(6) < V(hD,v).

hdy — / hdu
T T}

1

Proof- In [10] this is shown for the equidistribution. The proof can
T

be easily extend. Let be P(z) :=/ v(dy) and o =0, Ty =1, then we
0
- compute the Stieltjes-integral

N
o> [
=0 YT

n

Tntl

1 N
(P& — ) dhiw) = [ POIMAG) — > FChans) — hian)
0 n=0

1

= P(y)h(®)|j — / }L(y)V(dy)+

0

1 N
v ; h(zn) — h(1)

= [ hdy — | hdv.

T T1
With a similar modification of the theorem 1.4 in Chapiter 2 of [10],

we get

| | _ L
D, v) =  Jax max <[P(arn) - 'J\_rl , lP(zn) — TI)

and (6) foolows.

M
1
COROLLARY: (6) is also true, if v = 7 25 (y — ym). Analogous to
m=1

(7) we get

Ym+t Tutl

M N
hdy — / hdv = Z —}Z—dh(y) — Z/ %dh(y)

T T m=0 “Ym n=0 “on
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and from the direct computation of the discrepancy the desired assertion
follows.

Since for all ¢ € U the variation V($) <1, we get in this case

Py, v) < D(u, v).

3.2 The method and its convergence.

Now we can proceed to describe our discretization method.
We define with the initial measure 1° an approximation

by
21 [N '
1 — 0 .
= =1(1)N.
IN [ ay 1=1N
. o o, 1
This guarantees [10]: D(u ) = N

Then we define by application of (4)
9) v = (1 — At Q(/c,/c’)d/c’) ud + At / Pk, k") dk),
. 11 i§l

Which belongs to M; if At is small enough, and contains a discrete and
an absolutely continuous part. In order to build the approximation of 1/19,
we define

/ / 1 al
(10) ¢ = / Qk, K )dk' 1S (dk) = 5 }; G(k?).

T

From (3) follows

(11) Qk, k' )dk'u% (dk) =.. / Pk, k"dkud (dk').
5

1
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Now let
0 0 0 1
(12) (¢ At+E)N =: N, € N, where [¢7] < N
Then we choose
1= 0 1 | = “———Z—NC =
(P1) k; = lc] with 7 : [1 —qOAtJ , 1=N.+1(1)N

to form the approximétion of the discrete part. [z] indicates here the
Gaussian bracket.
For the continuous part we put

| 21 —1
(P2)

k!
= At / / Pk, Kb (dkDNdk,  i=1()N,
0 T

Finally we sort kl in increasing order and call the values lc1
1 = 1(1)N. This defines

1 N
e _ !
L N;:l:a(k kD)

Remark: The k! can be also obtained by a similar order-preserving
procedure which is used in the numerical scheme But in this form we
avoid too many indices.

With this algorithm we can proceed and obtain successively

{1 }n=00tym -
Now we wish to estimate p(u™!, u ™1). From the triangle inequality
follows

nt+l

(13) pu™ !, ui ) < o™ R + pf, wirt

Here and in the sequal we extend the definitions (9), (10) and (12)
to all time - levels and notice from (11)

(14) Qk, KNdk % (dlc)—/P(/c,/c’)d/cu%(d/c’).

T _ T
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We consider both terms of (13) separately

w1l UR) = sup
U

p(p

0 (1 — At / Qk, k’)dk) (u"(dk) — 3y (@)
T

11

+At [ p(k)P(k, k") (" (dk") — iy (dk))dk
/L)

/ {fﬁ(k)(l - At/ Q(k, k)dk")+
T1 11

+At [ p(KHP(K', k)dk'} (u"(dk) — pi(dk))
T

= sup
pelU

We define

P(k) = pk) (1 — At/Q(/c, k')dk') +At/ (KNP, k)dk'
T

T

A =max{¥(k),k € T1}

B = max <1, the smallest global Lipschitz-constant of %‘I’ in T1>

It follows directly |
A < (1 +2At|G||o0)

and form the Lipschitz-continuity of P, and ¢ € U

k) — Pk < |dkr) — dk)| + Atdlhr) | QU k)

1

— QUka, KN|dk" + At|p(k1) — (k)| [ Qlka, KK+
T

+At [ SUDIPUK, k1) — P, k)|dK'
T

< lkl — /Czl +AtL]/C1 — k:zl +At”Gl|oo |/C1 o /Cz' +AtL‘k1 — k2|,
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where L is the Lipschitz constant of P and Q.
Therefore there exists a constant C, such that

AB < 1+ CAt.

1
NOW, Z§¢ & U and

1
15)  p(u™,uh) < sup AB f L k) @k) — ut (k)
(}SEU T AB

< A +CA)pW", uh).
For the second term of (13) holds

(UN),u'nJrl) = Sup

(k) (1 At / Qk, k’)dk’) ul(dk)+

171

pelU Ty 11
1 N
+At | (k)P (k, ku® (dk)dk — — ZQs(k””
ip) 1=1
< sup | pk) (1 — At | QUk, k’)dk’) uh(dk)—
U T 11
1 N
—= > ¢
N 1=N+1
+sup |At [ (k)P (k, k) (dkYdk—
peU Ty ' :
R
—ﬁgqs(k?“) = S +5,.
The second term is easy to handle:
At + €7 Ne
Sa:=sup (At | GUP(k, Kyl (dk')dk — =5 ™ gty
el T NC -
2 1=1
1 1 Qe
< sup |¢"At / ¢ (k) / —P(k, KDk (dk") | dk — — ) (k™)
¢l { Ty T 4 Y Ne ;
+ sup (k)
E
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N,
1 = - 1
Let g™ := A > 8(k — k') and 4 -(;;P(k,lc’)u%(dk’) be the
=1 1

density function of the measure 4" € M, then it follows from Koksma’s
theorem and the explicit calculation of the discrepancy

0
1 1
Sy < sup |q"AtV (@) DE™!, A™M)| + — < ¢"At su / 1K + —
¢egl AL 2N ke[OI,)l] A H 2N
< ¢"At su ' 2n-1), 1
S o N, T aNgnAt| T 2N
q" At 1 1 -
+q" At ————(Nq"At — No)| + —
S Ingar TUN S NN ar Y )| * 5N
1 N3
— +q"At - .
SNTCA Nea SN
With (12) follows
3™ At
(16) SZSZNc—l'
. . . 1 — Ne .
We call again J = {] EN:j= [m} .0 =NC+1(1)N}. Then we
know 3 _
kP =k} j €J,i=Ng+1(1)N.
Therefore

! ! n / 1 n
an s:=sw| | ) (1 — At / QUk, k )d/c) u (k) = <= D bG)

PEN T jeJ

1
= sup i E ¢>(lc}-‘) (1 — At/ Q(/c}-‘, lc’)dlc’) —
A T

$€U |27 gy

1
5 St [ QU Kk

jeJ Ty

nAt n
< sup | L S gmy [ 1- ¢ [ Qe kyak' | -
¢l NC igt T
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1 —q"At — ¢ n INAL
S vy v Z P(kTIAL Q(/c k"dk
< sup Z $(kT) (1 — At l QE?, k’)dk')‘_
sev | Ne i3 1

1—g"At '
—— _qN ALY (kT | QUT, KK’
¢ jeu Ty

+ sup 1€7

At n n / !/
Y Eqs(/cj)ﬂ@(k,-,k)dk

¢jes

-+

< R+ Rs.
For the first term we get

Qk, Ky (dk")dk-

(18) R =sup At
. Tz

peU

T 60 (1 ~ A / Qk ,/c’)cz/c') -

;¢J .

- (1 — At Q(k,k’)u%(dk')dk) .
1

N 2D | QU E)ak.

JEJ

Now it holds

11
Ne> Nq"At — 2 = = + NAt / QUk, &)™ (dk')dk

e

1
> —2 + NAtmin{Q(k, &) : (k, k) € T5}.

ch" (1 — At / Q3 k’)dk’) +
T

173
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Since min Q(k, k') > 0 we can choose N T oo and At | 0, such that
N;: T oco. Then

—-Zs(k k)  and NE(S(/C k)

JéJ , JjeJ

have the same limit o™ by construction and from (18) follows in the limit

Qk, KNo™dk"dk | ¢(k) <1 — At/ Qk, k')dk’) o"(dk)—
T

Ty

i)

— (1 — At Q(k,k')an(dk/)dk> -/gb(/c)Q(k,k')G"(d/c)dk’
17 _

12

QUk, ko™ (dk"dk | ¢(k)o™(dk)—
iy Ty

P(k)Q(k, k)™ (dk)dk'

T

= COAt
and, in general, C > 0. This is not enough to show convergence. However,

under the additional assumption

(19) Qk, kHdk' = /P(r’c', k)dk' = constant =: q

Ti T

we can procéed. Then (18) takes the form

Ry = sup Atg(1 — gAt) Z D) — 7 2o )

229 J¢J €jes

and we estimate the discrepany D of these two point sets.

J—1 1 1
D — + —
Sm?X Nc N—NC Nc,
where j = [1 qut} , 1=1(1)N — N,
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Remark: 1 counts the points in J, j — ¢ the points in {1,... N nNJ
calculates the ”discrepancy-function”

until 7 and m?x ]J\;CZ—N—zNC

1
in 1 € J. — take into account the ”discrepancy-function” in the other

[
points.

i j—1 1 gAt 1 n
- = — . — + — 1
N_N, N l(NeNC 1— gt NC> N, n&l01]
-1
) (N ( qAt —§) N7 kq t) +th +Nc
. —1
! ¢ -1 -1 £ U
= — . ——(1 - gAt — 1 — gAt 1+ =] + =,
N th( q £ (1 — qAt) < th> N

1

If N. is large enough, then (1 — gAt) <1 + f&t) < 1 since €] < 3
q

2ig] om0 _gAt  m

+

1 J =1
N — N, N¢ NgAt N, qAt N 1 N,
=3
I N
<1N-—Nc+n< _:77” 1 .4
I T A A
c 2 [ 2 [+ 2
And therefore _ 6
| D<sn 1
which gives

6
Atg(l — A . }
| Ry < Atg( tq) SN, 1

For R, we have

JEJ

1 1 qAt 1
—_— 1 — qA)PkT) + k7 —
RZSZEBQN Nc,ég( gAP(k5) N_NCE PR < o
which leads to
13

6 qAt
_ A
1< A = gA) a5 <Ay
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and finally

10qAt
2N, —1°

(20) Wi, uw ) < S1+8; <

Together with (15) we have now

. 10gAt
p(u™, ) < (1+ CAt)pL™, MR+

and by iteration

n

10gAt
ntl n+1 0 0 v
p(u™ i) < A+ CAY™ pu ,NN)+2N 7 E (1+CALY .

Let be t = nAt, t € [0, o], then

10gAt (1 + CA™! — 1
n on 1 A 0,0
p(u”, uiy) < (1+ CAL)Y" p(u >.U’N)+2NC__1 CAt

Since (1 + CAt)" < exp(Ct) < exp(Ctp), we showed convergence, if
N, — oco. We summarize this in the

THEOREM: Let be T ~ [0, 1) the J-dimensional iorus, P,Q : T — R*
uniform Lipschitz-continuous functions with
/P'(lc, KNdk = | Qk, kHdk' = q.
T T

Then the approximation uy, defined by (P1), (P2) converges to u®, where
p™(dk) = f(t, k)dk

and f is the solution of

98 [ pee ke, kDK — £t k) [ Qe KK

bt I I

£0, ) = folk) > 0, [ fo(k)dk = 1.

T



A NUMBER-THEORETICAL CONVERGENCE PROOF OF A POINT.. 177

for every finite time-interval, if NAt — 00 and At — 0, provided

lim 5% = .
Nlinoﬂzv M

4. Conclusion.

We presented. a number-thoretical convergence proof of a point
approximation of a space homogeneous transport equation. Computer-
implementation seems promising but still needs some refinements. The
extension of the method to the space inhomogeneous case is still under
investigation and results will be published in due course.
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