A NOTE ON A PROBLEM OF CAPOBIANCO AND MOLLUZZO

DĂNUȚ MARCU (Bucharest) *

The aim of this paper is to solve a problem of Capobianco and Molluzzo [2, pag. 65]. More exactly, we show that for any two integers \(n \) and \(m \), \(1 < n < m \), there exist a graph \(G \), such that \(k(G) = n \) and \(k[L(G)] = m \), where \(k(G) \) denotes the connectivity of \(G \), and \(L(G) \) the line graph of \(G \).

Introduction.

Graphs, considered here, are finite and simple (without loops or multiple lines (edges)), and Harary [4] is followed for terminology and notation. Chartrand and Stewart [3] have shown that the line graph \(L(G) \), of a point (vertex) \(n \)-connected graph \(G \), is itself \(n \)-connected, if \(n \geq 2 \). In their book [2], Capobianco and Molluzzo, using \(K_{1,n} \) as their example, have noted that the difference between the point (vertex) connectivity of a graph \(k(G) \) and its line graph \(k[L(G)] \) can be arbitrarily large. They then have posed the following open problem: «It is not known whether, for any two integers \(n, m, 1 < n < m \), there exists a graph \(G \), such that \(k(G) = n \) and \(k[L(G)] = m \) [2, pag. 65]. □

In this paper, we shall solve this problem, by constructing the desired graph.

Proposition. For any two non negative integers \(r \) and \(s \), we have

\[
k[L(K_{r,s})] = r + s - 2.
\]

* *Entrato in Redazione il 4 ottobre 1988*
Proof. The result follows immediately, since \(L(K_{r,s}) = K_r \times K_s \) [5], and \(k(K_r \times K_s) = r + s - 2 \) [1, problem 10.7, pag. 125]. \(\square \)

The main result.

The main result of this paper is the following

THEOREM 1. For any two integers \(n, m \), \(1 < n < m \), there exists a graph \(G_{n,m} \), such that \(k(G_{n,m}) = n \) and \(k[L(G_{n,m})] = m \).

Proof. If \(m \geq 2n - 2 \), then \(m - n + 2 \geq n \). Thus, \(k(K_{n,m-n+2}) = n \) and, by the Proposition, \(k[L(K_{n,m-n+2})] = m \). Therefore, we set \(G_{n,m} = K_{n,m-n+2} \), when \(m \geq 2n - 2 \).

If \(n = 2 \) or \(n = 3 \) and \(m > n \), then \(m \geq 2n - 2 \), and \(G_{n,m} \) is defined as above. Thus, we assume that \(n \geq 4 \) and \(n < m < 2n - 2 \).

Let \(H \) and \(H' \) be complete graphs on the disjoint sets \(V = \{v_1, \ldots, v_{2n}\} \) and \(V' = \{v'_1, \ldots, v'_{2n}\} \), respectively. We form \(G_{n,m} \), by adding to \(H \cup H' \) the lines (edges) \(e_i = (v_i, v'_i) \), \(1 \leq i \leq n \) and the lines \(e_{n+j} = (v_j, v'_{j+1}) \), \(1 \leq j \leq m - n \) (note that \(m - n < n - 2 \)). Since \(G_{n,m} - v_1 - \ldots - v_n \) is isomorphic to \(K_n \cup K_{2n} \), we have that \(k(G_{n,m}) \leq n \). One can use Menger's Theorem to show that \(k(G_{n,m}) = n \), since \(H \) and \(H' \) are \((2n-1)\)-connected, and the desired family of paths connecting a point (vertex) of \(H \) to one of \(H' \) is easily constructed.

Now, we must show that \(k[L(G_{n,m})] = m \). Since the lines \(e_1, \ldots, e_m \) of \(G_{n,m} \) form a disconnecting set of points for \(L(G_{n,m}) \), then \(k[L(G_{n,m})] \leq m \).

We shall complete the proof, by showing that any disconnecting set \(\{x_1, \ldots, x_k\} \) of points of \(L(G_{n,m}) \), with \(k \leq m \), must contain the set \(\{e_1, \ldots, e_m\} \). Hence, the sets coincide.

First, note that the degree of any point of \(H - x_1 - \ldots - x_k \) is positive, since \(H = K_{2n} \), and \(k \leq m < 2n - 1 \). The same holds for \(H' \), as well.

Moreover, both \(H - x_1 - \ldots - x_k \) and \(H' - x_1 - \ldots - x_k \) are connected, since \(K_{2n} \) is \((2n-1)\)-connected, and \(k < 2n - 1 \). Thus, if some \(e_i \) is not in \(\{x_1, \ldots, x_k\} \), then \(e_i, H \) and \(H' \) all lie in the same component of \(G_{n,m} - x_1 - \ldots - x_k \). Then, it follows that \(G_{n,m} - x_1 - \ldots - x_k \) is connected, i.e., a contradiction. Therefore, every \(e_i \) is in \(\{x_1, \ldots, x_k\} \), so
that \(k = m \). Thus, \(k[L(G_{n,m})] = m \), completing the proof. \(\square \)

Zamfirescu [6] has proved that \(\lambda[L(G)] \geq 2n - 2 \), if \(\lambda(G) \geq n \) (\(\lambda(G) \) denotes the line (edge) connectivity of \(G \)). But, this suggests a line connectivity version of the question of Capobianco and Molluzzo. The examples constructed above suffice to answer this question, since, for \(m \geq 2n - 2 \), the graph \(G_{n,m} = K_{n,m-n+2} \) satisfies \(\lambda(G_{n,m}) = n \) and \(\lambda[L(G_{n,m})] = m \). Thus, we have established the following

Theorem 2. For any integers \(n > 1 \) and \(m \geq 2n - 2 \), there exists a graph \(G_{n,m} \), such that \(\lambda(G_{n,m}) = n \), and \(\lambda[L(G_{n,m})] = m \). \(\square \)

References

Str. Pasului 3, sect. 2, 70241-Bucharest, Romania