A NOTE ON A PROBLEM OF CAPOBIANCO AND MOLLUZZO

DĂNUȚ MARCU (Bucharest) *

The aim of this paper is to solve a problem of Capobianco and Molluzzo [2, pag. 65]. More exactly, we show that for any two integers n and m, 1 < n < m, there exist a graph G, such that k(G) = n and k[L(G)] = m, where k(G) denotes the connectivity of G, and L(G) the line graph of G.

Introduction.

Graphs, considered here, are finite and simple (without loops or multiple lines (edges)), and Harary [4] is followed for terminology and notation. Chartrand and Stewart [3] have shown that the line graph L(G), of a point (vertex) n-connected graph G, is itself n-connected, if $n \geq 2$. In their book [2], Capobianco and Molluzzo, using $K_{1,n}$ as their example, have noted that the difference between the point (vertex) connectivity of a graph k(G) and its line graph k[L(G)] can be arbitrarily large. They then have posed the following open problem: «It is not known whether, for any two integers n, m, 1 < n < m, there exists a graph G, such that k(G) = n and k[L(G)] = m»[2, pag. 65]. \square

In this paper, we shall solve this problem, by constructing the desired graph.

PROPOSITION. For any two non negative integers r and s, we have

$$k[L(K_{r,s})] = r + s - 2.$$

^{*} Entrato in Redazione il 4 ottobre 1988

Proof. The result follows immediately, since $L(K_{r,s}) = K_r \times K_s$ [5], and $k(K_r \times K_s) = r + s - 2$ [1, problem 10.7, pag. 125].

The main result.

The main result of this paper is the following

THEOREM 1. For any two integers n, m, 1 < n < m, there exists a graph $G_{n,m}$, such that $k(G_{n,m}) = n$ and $k[L(G_{n,m})] = m$.

Proof. If $m \ge 2n-2$, then $m-n+2 \ge n$. Thus, $k(K_{n,m-n+2}) = n$ and, by the Proposition, $k[L(K_{n,m-n+2})] = m$. Therefore, we set $G_{n,m} = K_{n,m-n+2}$, when $m \ge 2n-2$.

If n=2 or n=3 and m>n, then $m\geq 2n-2$, and $G_{n,m}$ is defined as above. Thus, we assume that $n\geq 4$ and n< m< 2n-2. Let H and H' be complete graphs on the disjoint sets $V=\{v_1,\ldots,v_{2n}\}$ and $V'=\{v'_1,\ldots,v'_{2n}\}$, respectively. We form $G_{n,m}$, by adding to $H\cup H'$ the lines (edges) $e_i=(v_i,v'_i)$, $1\leq i\leq n$ and the lines $e_{n+j}=(v_j,v'_{j+1})$, $1\leq j\leq m-n$ (note that m-n< n-2). Since $G_{n,m}-v_1-\ldots-v_n$ is isomorphic to $K_n\cup K_{2n}$, we have that $k(G_{n,m})\leq n$. One can use Menger's Theorem to show that $k(G_{n,m})=n$, since H and H' are (2n-1)-connected, and the desired family of paths connecting a point (vertex) of H to one of H' is easily constructed.

Now, we must show that $k[L(G_{n,m})] = m$. Since the lines e_1, \ldots, e_m of $G_{n,m}$ form a disconnecting set of points for $L(G_{n,m})$, then $k[L(G_{n,m})] \leq m$.

We shall complete the proof, by showing that any disconnecting set $\{x_1, \ldots, x_k\}$ of points of $L(G_{n,m})$, with $k \leq m$, must contain the set $\{e_1, \ldots, e_m\}$. Hence, the sets coincide.

First, note that the degree of any point of $H - x_1 - \ldots - x_k$ is positive, since $H = K_{2n}$, and $k \leq m < 2n-1$. The same holds for H', as well.

Moreover, both $H-x_1-\ldots-x_k$ and $H'-x_1-\ldots-x_k$ are connected, since K_{2n} is (2n-1)-connected, and k<2n-1. Thus, if some e_i is not in $\{x_1,\ldots,x_k\}$, then e_i , H and H' all lie in the same component of $G_{n,m}-x_1-\ldots-x_k$. Then, it follows that $G_{n,m}-x_1-\ldots-x_k$ is connected, i.e., a contradiction. Therefore, every e_i is in $\{x_1,\ldots,x_k\}$, so

that k = m. Thus, $k[L(G_{n,m})] = m$, completing the proof. \square

Zamfirescu [6] has proved that $\lambda[L(G)] \geq 2n-2$, if $\lambda(G) \geq n$ ($\lambda(G)$ denotes the line (edge) connectivity of G). But, this suggests a line connectivity version of the question of Capobianco and Molluzzo. The examples constructed above suffice to answer this question, since, for $m \geq 2n-2$, the graph $G_{n,m} = K_{n,m-n+2}$ satisfies $\lambda(G_{n,m}) = n$ and $\lambda[L(G_{n,m})] = m$. Thus, we have established the following

THEOREM 2. For any integers n > 1 and $m \ge 2n - 2$, there exists a graph $G_{n,m}$, such that $\lambda(G_{n,m}) = n$, and $\lambda[L(G_{n,m})] = m$. \square

REFERENCES

- [1] Behzad M., Chartrand G., Introduction to the Theory of Graphs (Allyn and Bacon, Boston, 1971).
- [2] Capobianco M., Molluzzo J. C., Examples and Counterexamples in Graph Theory (North-Holland, Amsterdam, 1978).
- [3] Chartrand G., Stewart M.J., The connectivity of line graphs. Math. Ann., 182 (1969), 170-174.
- [4] Harary F., Graph Theory. (Addison-Wesley, Reading, 1969).
- [5] Palmer E.M., Prime line graphs. Nanta Math., 6 (2) (1973), 75-76.
- [6] Zamfirescu T., On the line connectivity of line graphs. Math. Ann., 187 (1970), 305-309.

Str. Pasului 3, sect. 2, 70241-Bucharest, Romania