A CHARACTERIZATION OF ACM 0-DIMENSIONAL SCHEMES IN Q

LUCIA MARINO

Let $\mathbb{X} \subset Q = \mathbb{P}^1 \times \mathbb{P}^1$ be a reduced 0-dimensional subscheme of the quadric Q and let $P \in \mathbb{X}$ be any point. Using the separating degree of P for \mathbb{X} we give a sufficient condition so that \mathbb{X} is ACM. This result, together with the previous ones (see [9]) gives a new characterization of ACM 0-dimensional schemes of Q by using separators.

1. Introduction

Let $Q = \mathbb{P}^1 \times \mathbb{P}^1$ be the smooth (abstract) quadric and let $\mathbb{X} \subset Q$ be a reduced 0-dimensional scheme. A form *f* is a *separator* for $P \in \mathbb{X}$ if $f(P) \neq 0$ and f(Q) = 0 for all $Q \in \mathbb{X} \setminus \{P\}$. The *set of minimal bi-degrees of separators for P* is called the *set of separating degrees of P in* \mathbb{X} ; we denote it by

s.deg $_{\mathbb{X}}P$.

The ordering we are using is the natural partial order on \mathbb{N}^2 , i.e., $(a,b) \leq (c,d)$ if and only if $a \leq c$ and $b \leq d$. Compared with the conductor degree of a point of a 0-dimensional scheme in the projective space \mathbb{P}^r , ([1], [2], [6], [7], [8], [9]) the separating degrees of a point of the reduced 0-dimensional schemes on the smooth quadric Q is a new investigation that justifies the use of this name.

Entrato in redazione: 9 luglio 2009

AMS 2000 Subject Classification: 13H10, 13D40 Keywords: scheme, separator, ACM

Presently, characterizations of ACM 0-dimensional schemes of multi projective spaces $\mathbb{P}^{n_1} \times ... \times \mathbb{P}^{n_k}$ are not known. Precisely, a geometrical classification of ACM 0-dimensional schemes of Q using the Hilbert Function of the considered scheme is given in [5], and combinatorial classifications are presented by [11] and [6].

In this paper we give a new characterization of ACM 0-dimensional schemes of $Q = \mathbb{P}^1 \times \mathbb{P}^1$ using the separating degree s.deg_X *P*, for $P \in X$. In particular,

$$\mathbb{X}$$
 is ACM \Leftrightarrow $|s.deg_{\mathbb{X}}P| = 1$ for all $P \in \mathbb{X}$.

The necessary condition (\Rightarrow) was proved by the author in a previous paper (see [9])and shortly presented in Section 3; the sufficient condition (\Leftarrow) is proved in Section 6, Proposition 6.7.

Results on ACM reduced 0-dimensional schemes of $\mathbb{P}^{n_1} \times ... \times \mathbb{P}^{n_k}$ can be found in [11]. Probably, the main result of this paper could be generalized in order to give a characterization of ACM reduced 0-dimensional schemes of multi-projective spaces.

2. Preliminaries and notation

Here we collect some terminology (see [5] for details). Let $\mathbb{X} \subset Q = \mathbb{P}^1 \times \mathbb{P}^1$ be the quadric and let \mathcal{O}_Q be its structure sheaf.

If $D \subset Q$ is any divisor of type (a,b) we denote by $\mathcal{O}_Q(a,b)$ the associated sheaf. We use the ring $S = \bigoplus_{a,b} H^0 \mathcal{O}_Q(a,b)$. *S* is, in a natural way, a *k*-algebra using product of sections. It is easy to check that *S* is generated, as a bi-graded *k*-algebra, by $H^0 \mathcal{O}_Q(1,0)$ and $H^0 \mathcal{O}_Q(0,1)$ (both vector spaces of dimension 2) since for every $a,b \ge 0$ the map $H^0 \mathcal{O}_Q(a,b) \otimes H^0 \mathcal{O}_Q(1,0) \otimes H^0 \mathcal{O}_Q(0,1) \rightarrow$ $H^0 \mathcal{O}_Q(a+1,b+1)$ given by the product, is surjective. Let u,u' and v,v' be bases for $H^0 \mathcal{O}_Q(1,0)$ and $H^0 \mathcal{O}_Q(0,1)$; then we have a bi-graded ring isomorphism $S \cong k[u,u';v,v']$. We use the above isomorphism to identify elements of *S* and elements of k[u,u';v,v']; of course we deal only with bi-homogeneous ideals of *S*.

When $s \in H^0 \mathcal{O}_Q(a, b)$ its zero locus $(s)_0$ will be called a curve of type (a, b). We mention as lines of type (1,0) or (1,0)-lines, and lines of type (0,1) or (0,1)-lines respectively, $L = (l)_0$ and $L' = (l')_0$, with $l \in H^0 \mathcal{O}_Q(1,0)$ and $l' \in H^0 \mathcal{O}_Q(0,1)$. Every point $P \in Q$ is the intersection of two lines $l \in H^0 \mathcal{O}_Q(1,0)$, $l' \in H^0 \mathcal{O}_Q(0,1)$. If l and l' have equations a'u - au' = 0, b'v - bv' = 0 respectively, then the 4-tuple (a,a';b,b') gives the coordinates of P.

When no confusion can arise we will not distinguish between curves and their defining forms. A saturated ideal of S of height 2 is a complete intersection iff it is generated by 2 elements of type $h(u, u') \otimes 1$, $1 \otimes h'(v, v')$, where h and

h' are any forms. From now on we shall mean by complete intersection on Q (c.i. for short) a subscheme whose saturated ideal has just 2 generators. (more details see in [5].)

Thus a zero-dimensional scheme $\mathbb{X} \subset Q$ is a complete intersection on Q only when $I_{\mathbb{X}}$ is generated by a curve of the type (a,0) and a curve of type (0,b). We can associate to \mathbb{X} the bi-graded S-algebra $S_{\mathbb{X}} = S/I_{\mathbb{X}}$, where $I_{\mathbb{X}}$ is the homogeneous saturated ideal of \mathbb{X} in S and $\mathscr{I}_{X} \subset \mathscr{O}_{Q}$ its ideal sheaf.

By analogy with the definition of Hilbert functions for graded modules, we can define the function $M_{\mathbb{X}}: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{N}$ by $M_{\mathbb{X}}(i,j) = \dim_k(S)_{(i,j)} - \dim_k(I_{\mathbb{X}})_{(i,j)} = \dim_k S_{\mathbb{X}}(i,j)$ where for every bi-graded S-module N we denote by $(N)_{(i,j)}$ the component of N of degree (i, j). The function $M_{\mathbb{X}}$ is the bigraded Hilbert function of \mathbb{X} . The function $M_{\mathbb{X}}$ can be represented as a matrix with infinitive integer entries,

$$M_{\mathbb{X}} = (M_{\mathbb{X}}(i,j)) = (m_{ij})$$

which will be called the *Hilbert matrix of* X. Note that $M_X(i, j) = 0$ for i < 0 or j < 0. So, from now on we restrict ourselves to the range $i \ge 0, j \ge 0$.

It is well known that not every 0-dimensional scheme $X \subset Q$ is ACM; see for instance two "non-collinear" points on Q. The ACM 0-dimensional schemes of Q were classified in terms of their Hilbert function in [5].

3. The set of separating degrees: the ACM case.

We recall the following definition, given in [9].

Definition 3.1. Let $X \subset Q$ be a reduced 0-dimensional scheme. We say that a form $f \in S$ is a *separator* for $P \in X$ if $f(P) \neq 0$ and f(Q) = 0 for all $Q \in X \setminus \{P\}$. The *set of minimal bi-degrees of separators for P* is called the *set of separating degrees of P in* X; we denote it by

s.deg
$$\mathbb{X}P$$
.

We observe that the cardinality of this set is not necessarily one for any point $P \in \mathbb{X}$. This is a very great difference with the conductor degree of P in a reduced 0-dimensional scheme of \mathbb{P}^n (for more details on the the conductor degree of P see [9]).

Example 3.2. Let $\mathbb{X} = \{P_1, P_2\}$ two non-collinear points on Q. Each point of \mathbb{X} has s.deg_{\mathbb{X}} $P = \{(0, 1), (1, 0)\}$

Theorem 3.3. (Cayley-Bacharach on Q). Let

$$\mathbb{Y} = C.I.((a,0),(0,b)) \subset Q$$

be a complete intersection on Q, let $P \in \mathbb{Y}$ and $\mathbb{Y}' = \mathbb{Y} \setminus \{P\}$. Then $M_{\mathbb{Y}'}(i, j) = \begin{cases} M_{\mathbb{Y}}(i, j) - 1 & \forall (i, j) \geq (a - 1, b - 1) \\ M_{\mathbb{Y}}(i, j) & \text{otherwise} \end{cases}$

Proof. The proof is trivial.

Corollary 3.4. Let

$$\mathbb{Y} = C.I.((a,0),(0,b)) \subset Q$$

be a complete intersection on Q and let P be a point of \mathbb{Y} . Then $s.deg_{\mathbb{Y}}P = \{(a-1,b-1)\}.$

Proof. The proof is a direct consequence of Theorem 3.3

We need some terminology to give a geometrical description of an ACM 0-dimensional scheme of Q (see [5], in [6] and [11]).

Definition 3.5. Let $a_1 < a_2 < ... < a_n$ and $b_1 > b_2 > ... > b_n$ be integers. The set $\mathscr{A}' = \{(a_1, b_1), ..., (a_n, b_n)\}$ is said a *set of vertices*.

For any 0-dimensional ACM scheme $\mathbb{X} \subseteq Q$ the set of vertices of $\Delta M_{\mathbb{X}}$ (see [5], section 4) can be assumed to be of this type and conversely, given a set \mathscr{A}' there exists an ACM 0-dimensional scheme of Q whose vertices are the elements of \mathscr{A}' . From now on we suppose that the points of any 0-dimensional scheme $\mathbb{X} \subseteq Q$ have integers coordinates.

For any couple $(a_a, b_a) \in \mathscr{A}'$ we denote by Δ_a the *rectangle* the set

 $\Delta_q = \{ (r,s) \in \mathbb{Z}^2 | (1,1) \le (r,s) \le (a_q, b_q) \}.$

For a fixed \mathscr{A}' we set

$$\mathscr{A} = \cup_{1 \le q \le |\mathscr{A}'|} \Delta_q$$

For any couple $(i, 1) \in \mathscr{A}$ we call R_{i0} the (1, 0)-line of equation u - iu' = 0 and for any $(1, j) \in \mathscr{A}$ we call R_{0j} the line of equation jv - v' = 0.

Setting $P_{ij} = R_{i0} \cap R_{0j}$ the set

$$\mathbb{X} = \{P_{ij} | (i,j) \in \mathscr{A}\}$$

is an ACM 0-dimensional subscheme of Q whose vertices are the couples of \mathscr{A}' . We say that \mathbb{X} has support in \mathscr{A} .

It is known, by [4], [6] and [11], that every ACM 0-dimensional scheme of Q can be described, after a suitable permutation of lines, as a ACM 0-dimensional subcheme with support on \mathscr{A} . This construction is equivalent to the Ferrer's diagram approach.

Remark 3.6. Every couple $(i, j) \in \mathscr{A}$ will determine two elements (a_h, b_h) , $(a_k, b_k) \in \mathscr{A}'$ such that $a_{h-1} < i \leq a_h$ and $b_k \geq j > b_{k+1}$. Considering the corresponding $P_{ij} \in \mathbb{X}$, we can translate this notation with the existence of two rectangles Δ_h and Δ_k , where Δ_h is the "higher" rectangle containing the point P_{ij} and Δ_k is the "lowest" rectangle containing the point P_{ij} . Thus the couple $(i, j) \in \mathscr{A}$ determines two couples

$$(a_h,b_h), (a_k,b_k).$$

With the above notation, note that $h \leq k$. Let

$$D_{ij} = \{ (m,n) \mid (m,n) \ge (i,j) \}.$$

It has the property that $|D_{ij} \cap \mathscr{A}'| \ge 2$ (i.e. it contains at least two vertices) if and only if the point P_{ij} belongs to at least two rectangles Δ_q defined in 3.5.

Lemma 3.7. With the above notation, if $|D_{ii} \cap \mathscr{A}'| = 1$ then $\mathbb{X} \setminus \{P_{ii}\}$ is ACM.

Proof. By hypothesis, $X \subset Q$, is a reduced 0-dimensional scheme, the point P_{ij} in one of parts marked in the following figure:

We recall the following result of [9]:

Proposition 3.8. Let $X \subset Q$ be an ACM reduced 0-dimensional scheme. Then for all $(i, j) \in \mathcal{A}$, the set of separating degrees of the point P_{ij} is given by

s.deg
$$_{\mathbb{X}}P_{ij} = \{(a_k - 1, b_h - 1)\}.$$

Corollary 3.9. Let $X \subset Q$ be an ACM 0-dimensional scheme then for each point $P \in X$, $|s.deg_X P| = 1$.

This shows that the ACM 0-dimensional subschemes of Q have the same behaviour on the 0-dimensional subschemes of a projective space \mathbb{P}^r with respect to the set of separating degrees.

Let us proceed to the general analysis of the unicity of the separator degrees of the point *P* belonging to a scheme $\mathbb{X} \subset Q$.

Proposition 3.10. Let $\mathbb{X} \subset Q$ be a reduced 0-dimensional scheme. Let F be a separator of minimal bi-degree (α, β) for the point $P \in \mathbb{X}$. Then F is unique modulo $I_{\mathbb{X}}(\alpha, \beta)$ up to a scalar.

Proof. Let $\mathbb{X}' = \mathbb{X} \setminus \{P\}$. If $h^0(\mathscr{I}_{\mathbb{X}'}(\alpha, \beta)) = p > 1$ then imposing to pass through the point *P*, we have a family of dimension p - 1. Since these are elements of $I_{\mathbb{X}}$ we have $\dim_k(I_{\mathbb{X}'}(\alpha, \beta)/I_{\mathbb{X}}(\alpha, \beta)) = 1$.

Lemma 3.11. Let $\mathbb{X} \subset Q$ be a reduced 0-dimensional scheme. Given $P \in \mathbb{X}$ with $(\alpha, \beta) \in \text{s.deg}_{\mathbb{X}} P$, let $\mathbb{X}' = \mathbb{X} \setminus \{P\}$. If $h^0(\mathscr{I}_{\mathbb{X}}(\alpha, \beta)) = r$ then $h^0(\mathscr{I}_{\mathbb{X}'}(\alpha, \beta)) = r+1$.

Proof. It is sufficient to prove that two indipendent separators for the point $P \in \mathbb{X}$, $f, g \in H^0(\mathscr{I}_{\mathbb{X}'}(\alpha, \beta))$, differ for an element of $H^0(\mathscr{I}_{\mathbb{X}}(\alpha, \beta))$. In the pencil $\lambda f + \mu g$ there exists an element passing through the point, thus

$$\exists h \in H^0(\mathscr{I}_{\mathbb{X}}(\alpha,\beta)) \mid h = \overline{\lambda}f + \overline{\mu}g \to g = kf + h'$$

with $h' \in H^0(\mathscr{I}_{\mathbb{X}}(\alpha,\beta))$.

It follows that if $H^0(\mathscr{I}_{\mathbb{X}}(\alpha,\beta)) = \langle f_1, f_2, ..., f_r \rangle$ and $g \in H^0(\mathscr{I}_{\mathbb{X}'}(\alpha,\beta))$ is a separator for the point $P \in \mathbb{X}$, then $H^0(\mathscr{I}_{\mathbb{X}'}(\alpha,\beta)) = \langle g, g + f_1, g + f_2, ..., g + f_r \rangle$. In particular, if r = 0 in degree (α,β) then there exists just one separator for the point P in \mathbb{X} .

Let $\mathbb{X} \subset Q$ be a reduced ACM 0-dimensional scheme. Using the notation introduced in this section, it is known by [5] that the generators of $I_{\mathbb{X}}$ are forms having minimal degrees corresponding to the *corners* of \mathscr{A} :

$$\{(1, b+1), (a_1+1, b_2+1), \dots, (a_i+1, b_{i+1}+1), \dots, (a_{n-1}, b_n+1), (a_n+1, 1)\}.$$

Let \mathscr{A}' be the set of vertices of \mathbb{X} , $(a_i, b_i) \in \mathscr{A}'$ and let P_i be the corresponding point. By [9],

s.deg_X
$$P_i = \{(a_i - 1, b_i - 1)\}$$

Note that the couple $(a_i - 1, b_i - 1)$ is a minimal degree of a generator of $\mathbb{X}' = \mathbb{X} \setminus \{P\}$ but it is not a minimal degree of a generator of \mathbb{X} , thus $I_{\mathbb{X}}(a_i - 1, b_i - 1) = 0 \rightarrow r = 0$. Hence we have the corollary

Corollary 3.12. Let $X \subset Q$ be a ACM reduced 0-dimensional scheme. Given $P \in X$ a vertex, there exists only one separator for the point P in X.

4. Gaps

In this section we show that a reduced 0-dimensional scheme $\mathbb{X} \subset Q$ can be seen as a reduced ACM 0-dimensional scheme minus some points which lie in at least two rectangles Δ_q , (see Definition 3.5) as we see in the following figure

For any reduced 0-dimensional scheme X we consider a reduced ACM 0-dimensional scheme containing X having minimal degree. Such scheme always exists.

Remark 4.1. Let $\mathbb{X} \subset Q$ be a reduced 0-dimensional scheme and let $Y \supseteq \mathbb{X}$ a minimal 0-dimensional reduced ACM scheme. Let $T = Y \setminus \mathbb{X}$. If \mathbb{X} is ACM then $T = \emptyset$, otherwise for every $P \in T$, *P* belongs to two different rectangles of the type Δ_q .

It is enough to note that erasing from Y a point P contained in just a rectangle (marked in black in the following picture) $Y \setminus \{P\}$ is still ACM, against the minimality of Y.

Moreover if $\mathbb{X} = Y \setminus \bigcup \{P_{ij}\}$ where each P_{ij} belongs to two different rectangles of type Δ_q it is easy to see that if we permute in all the possible ways

the lines of type (0,1), and/or (1,0), we never obtain an ACM scheme according with the previous arguments (See Section 3).

Definition 4.2. Let $Z = Y \setminus X$. Z is said the set of gaps of X.

Definition 4.3. Let $X = Y \setminus \bigcup \{P_{ij}\}$. Let $(i_1, j_1) \in \mathscr{A} = \bigcup \Delta_q$ with $i_1 = \min\{i \mid P_{ij}\}$ is a gap of X and, fixed i_1 , let $j_1 = \min\{j \mid P_{i_1j}\}$ is a gap of X. We define *Min Gap* G^{\min} the point $P_{i_1,j_1} \in Y$. (i.e. among the higher gaps the Min Gap is the one on the left side). Let $(i_m, j_m) \in \mathscr{A}$, with $i_m = \max\{i \mid P_{ij} \text{ is a gap }\}$ and, $j_m = \max\{j \mid P_{i_1j} \text{ is a gap }\}$. We define *Max Gap* G^{\max} the point $P_{i_m,j_m} \in Y$. (i.e. among the lower gaps the Max Gap is the one on the right side).

Notation. As it has been seen in remark 3.6, each of the gaps G^{\min} and G^{\max} are associated to at least two couples of \mathscr{A}' , the set of the vertices. In particular to the gap G^{\min} of \mathbb{X} we associate the couple (a_{δ}, b_{δ}) where $a_{\delta} = \min\{a_p \mid \Delta_p \text{ is a rectangle containing}\}$

 G^{\min} ; in similar way we have the couple $(a_{\lambda}, b_{\lambda})$ associated to the gap G^{\max} of X.

Definition 4.4. The couples $(a_{\delta}, b_{\delta}), (a_{\lambda}, b_{\lambda}) \in \mathscr{A}'$ related to the gaps G^{\min} and G^{\max} of \mathbb{X} are called *special couples* respectively associated to the gaps G^{\min} and G^{\max} . Moreover the point $\overline{P} = R_{i_10} \cap R_{0b_{\delta}}$ of \mathbb{X} with R_{i_10} is the (1,0)-line of equation $u - i_1u' = 0$ and $R_{0b_{\delta}}$ the (0,1)-line of equation $b_{\delta}v - v' = 0$ is called *special point* of the scheme \mathbb{X} .

See the following figure.

5. Some results

Let $X \subset Q$ be a 0-dimensional scheme and let *Y* be a minimal ACM scheme containing X described by $\mathscr{A} = \bigcup \Delta_q$.

Definition 5.1. The element (α, β) of $s.deg_X P$ maximal with respect to the first component is called max - couple for X of the point *P*. In similar way, the smallest element (α', β') of $s.deg_X P$ with respect to the second component is called min - couple for X of the point *P*.

Remark 5.2. If the scheme $\mathbb{X} \subset Q$ is ACM, then $(\alpha, \beta) = (\alpha', \beta')$.

Remark 5.3. Given $\widetilde{\mathbb{X}} \subset \mathbb{X}$ a reduced subscheme let $P \in \widetilde{\mathbb{X}}$. Note that a separator of P in \mathbb{X} is also a separator of P in $\widetilde{\mathbb{X}}$. Then each couple of the set $s.deg_{\mathbb{X}}P$ not belonging to $s.deg_{\widetilde{\mathbb{X}}}P$ must be comparable with at least one couple of the set $s.deg_{\widetilde{\mathbb{X}}}P$.

It follows that if $(\tilde{\alpha}, \tilde{\beta}) \in s.deg_{\mathbb{X}} P$ then it is comparable with at least one couple in $s.deg_{\mathbb{X}} P$: let (γ, δ) be such couple. Hence

$$(1) \begin{cases} \widetilde{\alpha} \ge \gamma \\ \widetilde{\beta} \ge \delta \end{cases}$$

Lemma 5.4. *If the max-couple for* $\widetilde{\mathbb{X}}$ *of the point* P, (α, β) , *doesn't belong to* s.deg_X P *and if there exists a separator for* $P \in \mathbb{X}$ *having bi-degree* $(\overline{\alpha}, \beta)$ *with* $\overline{\alpha} > \alpha$ *then,*

$$\exists \widetilde{\alpha} \mid (\widetilde{\alpha}, \beta) \in \text{s.deg}_{\mathbb{X}} P$$
, with $\widetilde{\alpha} \leq \overline{\alpha}$

(Similarly, if $(\alpha', \beta') \notin s.\deg_{\mathbb{X}} P$ and if there exists a separator for $P \in \mathbb{X}$ having bi-degree $(\alpha', \overline{\beta'})$ with $\overline{\beta'} > \beta'$ then,

$$\exists \widetilde{\beta'} \mid (\alpha', \widetilde{\beta'}) \in \text{s.deg}_{\mathbb{X}} P, \text{ with } \widetilde{\beta'} \leq \overline{\beta'})$$

Proof. If $(\overline{\alpha}, \beta)$ is a minimal bi-degree of separator for *P* then $\widetilde{\alpha} = \overline{\alpha}$. If $(\overline{\alpha}, \beta)$ is not a minimal bi-degree of separator then there exists a minimal bi-degree $(\widetilde{\alpha}, \widetilde{\beta}) \in s.deg_{\mathbb{X}}P$ where either

$$case\ (i)\ \begin{cases} \widetilde{\alpha} < \overline{\alpha} \\ \widetilde{\beta} \le \beta \end{cases} \qquad \text{or} \quad case\ (ii)\ \begin{cases} \widetilde{\alpha} \le \overline{\alpha} \\ \widetilde{\beta} < \beta \end{cases}$$

If we prove $\tilde{\beta} = \beta$, the case (*ii*) is impossible.

Let (γ, δ) be the couple of the set s.deg_{\widetilde{X}} *P* comparable with the couple $(\widetilde{\alpha}, \widetilde{\beta}) \in$ s.deg_{\widetilde{X}} *P*. Now since (α, β) and (γ, δ) are in s.deg_{\widetilde{X}} *P* these couples must be either equals or not comparable. If these couples are equals, i.e. $\gamma = \alpha, \delta = \beta$,

it follows that $\beta = \delta \leq \tilde{\beta}$; moreover, if the case (*i*) is true we have $\tilde{\beta} \leq \beta$. Thus $\tilde{\beta} = \beta$.

Conversely, if the case (*ii*) is true, that is $\tilde{\beta} < \beta$, with $\gamma = \alpha$, $\delta = \beta$ is impossible because $\beta = \delta \le \tilde{\beta}$.

If the couples (α, β) and (γ, δ) are not comparable, since by hypothesis (α, β) is the max-couple for *P* in $\widetilde{\mathbb{X}}$ then $\alpha \ge \gamma$. Consequently, $\beta < \delta$. By (1), $\delta \le \widetilde{\beta}$. For both cases (*i*) and (*ii*) we have $\beta < \beta$. It is impossible. The proof of the second result is similar to the proof given above and it is left to the reader. \Box

Corollary 5.5. Let $(\alpha, \beta), (\alpha', \beta')$ be the max-couple and the min-couple for $\widetilde{\mathbb{X}}$ of the point *P* non belonging to $\operatorname{s.deg}_{\mathbb{X}} P$. If there exists a separator for $P \in \mathbb{X}$ having bi-degree $(\overline{\alpha}, \beta) \in \operatorname{s.deg}_{\mathbb{X}} P$ with $\overline{\alpha} > \alpha$ and if there exists a separator for $P \in \mathbb{X}$ having bi-degree $(\alpha', \overline{\beta'}) \in \operatorname{s.deg}_{\mathbb{X}} P$ with $\overline{\beta'} > \beta'$ then, $|\operatorname{s.deg}_{\mathbb{X}} P| \geq 2$.

Proof. It is a obvious consequence of Lemma 5.4

6. The set of separating degrees for points in a 0-dimensional scheme on Q

Let $X \subset Q$ be a 0-dimensional scheme; with the above notation $X = Y \setminus \bigcup \{P_{ij}\}$ where *Y* is a ACM scheme of minimal degree containing X.

Definition 6.1. Let $\mathbb{X} \subset Q$ be a 0-dimensional scheme, and let $(a_{\lambda}, b_{\lambda})$ be the special couple associated to the gap G^{\max} (see definition 4.4). Let \mathscr{A}' be the set of vertices of \mathbb{X} and let $\mathscr{A}'^{(1)} = \{(a_i, b_i), i = 1, ..., \lambda\} \subset \mathscr{A}'$. The subscheme $\mathbb{X}^{(1)} \subset \mathbb{X}$, having $\mathscr{A}'^{(1)}$ as set of its vertices is said subscheme *of order one*.

Let $Z^{(1)}$ be the ACM subscheme of X such that $Z^{(1)} = X \setminus X^{(1)}$

The number of gaps of $\mathbb{X}^{(1)}$ is less than the number of gaps of \mathbb{X} . In fact in $\mathbb{X}^{(1)}$ permuting the (0,1)-line containing G^{\max} with the (0,1)-line containing $P_{a_{\lambda},b_{\lambda}}$ and if it necessary permuting the (1,0)-line containing G^{\max} with the (1,0)-line containing $P_{a_{\lambda},b_{\lambda}}$ we obtain a new configuration of $\mathbb{X}^{(1)}$ having G^{\max} in the position $(a_{\lambda},b_{\lambda})$ i.e. the gap G^{\max} of \mathbb{X} has been eliminated in $\mathbb{X}^{(1)}$. Moreover if permuting the lines we obtain a scheme where all gaps have been eliminated, then $\mathbb{X}^{(1)}$ is a ACM 0-dimensional subscheme of \mathbb{X} , otherwise $\mathbb{X}^{(1)}$ is not-ACM.

Definition 6.2. Let $\mathbb{X}^{(1)} \subset Q$ be the 0-dimensional subscheme of \mathbb{X} of order one. We say *permutation scheme* $\mathbb{X}_p^{(1)}$ *related to* $\mathbb{X}^{(1)}$ a particular description of $\mathbb{X}^{(1)}$ with one gap of \mathbb{X} in $(a_{\lambda}, b_{\lambda})$.

Remark 6.3. The subschemes $\mathbb{X}^{(1)}$ and $\mathbb{X}^{(1)}_p$ of \mathbb{X} don't have the same behaviour. In fact $\mathbb{X}^{(1)}_p \cup Z^{(1)}$ is not equal to \mathbb{X} and $\mathbb{X}^{(1)} \cup Z^{(1)} = \mathbb{X}$. Observe that to reconstruct the scheme \mathbb{X} it is necessary to make inverse permutations on $\mathbb{X}^{(1)}_p$ to obtain $\mathbb{X}^{(1)}$ and $\mathbb{X}^{(1)} \cup Z^{(1)} = \mathbb{X}$. Thus at first we reconstruct $\mathbb{X}^{(1)}$ then we add $Z^{(1)}$ to obtain \mathbb{X} .

If $\mathbb{X}^{(1)} \subset \mathbb{X}$ is the 0-dimensional subscheme of order one, then we permute the lines to obtain $\mathbb{X}_p^{(1)}$. Going on it is possible to define the 0-dimensional subscheme of $\mathbb{X}^{(1)}$ of *order one*, called $\mathbb{X}^{(2)} \subset Q$, which will be of order 2 for \mathbb{X} , etc. In conclusion, there exists a 0-dimensional subscheme of \mathbb{X} of maximal order *n* for some $n \in \mathbb{N}$ which will be a ACM 0-dimensional subscheme of \mathbb{X} , called $\mathbb{X}^{(n)}$. We assume $\mathbb{X}^{(0)} = \mathbb{X}$.

Note that if $X \subset Q$ is a ACM 0-dimensional scheme then the derived scheme from X doesn't exists, because X has no gaps.

Proposition 6.4. Let $\mathbb{X} \subset Q$ be a 0-dimensional scheme and $\mathbb{X}^{(1)}$ be the 0dimensional subscheme of \mathbb{X} of order one. Then if the special point \overline{P} of the subscheme $\mathbb{X}^{(1)}$ has $|\operatorname{s.deg}_{\mathbb{X}^{(1)}}\overline{P}| \geq 2$ then $|\operatorname{s.deg}_{\mathbb{X}}\overline{P}| \geq 2$.

Proof. Consider the special point $\overline{P} \in \mathbb{X}^{(1)}$, having $|s.deg_{\mathbb{X}^{(1)}}\overline{P}| \ge 2$. (see Definition 4.4). Let (α, β) be the max-couple for the point \overline{P} in $\mathbb{X}^{(1)}$ and (α', β') be the min-couple for the point \overline{P} in $\mathbb{X}^{(1)}$.

It is obvious that if the max and min-couple for \overline{P} in $\mathbb{X}^{(1)}$ belong to the set s.deg_X \overline{P} then the proof is ended.

If $(\alpha, \beta), (\alpha', \beta') \notin s.deg_{\mathbb{X}} \overline{P}$ we note that there always exist two separators for the special point \overline{P} in \mathbb{X} of bi-degrees $(\overline{\alpha}, \beta), (\alpha', \overline{\beta}')$ with $\overline{\alpha} > \alpha, \overline{\beta}' > \beta'$: it is sufficient to consider the form of bi-degree (α, β) and to add to it (1,0)- lines until to cover the ACM 0-dimensional sbscheme $Z^{(1)}$ of \mathbb{X} so that we obtain the bi-degree $(\overline{\alpha}, \beta)$ of a separator for \overline{P} in \mathbb{X} . (In similar way we consider the form of bi-degree (α', β') and adding (0,1)-lines until to cover $Z^{(1)}$ we have $(\alpha', \overline{\beta}')$). Thus applying 5.4 there exist at least two couples of bi-degrees belonging to the set s.deg_ $\mathbb{X}\overline{P}$, i.e. $(\widetilde{\alpha}, \beta), (\alpha', \widetilde{\beta'}) \in s.deg_{\mathbb{X}} P$, with $\alpha < \widetilde{\alpha} \leq \overline{\alpha}, \beta' < \widetilde{\beta'} \leq \overline{\beta'}$.

If $(\alpha, \beta) \in s.deg_{\mathbb{X}}\overline{P}, (\alpha', \beta') \notin s.deg_{\mathbb{X}}\overline{P}$ then similarly we obtain two not comparable couples $(\alpha, \beta), (\alpha', \widetilde{\beta'}) \in s.deg_{\mathbb{X}}P$, with $\beta' < \widetilde{\beta'} \leq \overline{\beta'}$. (The proof is similar if $(\alpha, \beta) \notin s.deg_{\mathbb{X}}\overline{P}, (\alpha', \beta') \in s.deg_{\mathbb{X}}\overline{P}$).

The above proposition can be generalized

Proposition 6.5. Let $\mathbb{X}^{(r-1)} \subset Q$ be a 0-dimensional subscheme of order r-1 of \mathbb{X} and $\mathbb{X}^{(r)}$ the subcheme 0-dimensional of \mathbb{X} of order r. Then if the special point \overline{P} of the subscheme $\mathbb{X}^{(r)}$ has $|\operatorname{s.deg}_{\mathbb{X}^{(r)}}\overline{P}| \geq 2$ then $|\operatorname{s.deg}_{\mathbb{X}^{(r-1)}}\overline{P}| \geq 2$, $\forall r = 1, \ldots, n$, where n is the max order of \mathbb{X} .

Proof. Use the same argument as in Proposition 6.4.

Corollary 6.6. With the above notation, if $|s.deg_{\mathbb{W}(r)}\overline{P}| > 2$ then $|s.deg_{\mathbb{W}}\overline{P}| > 2$.

Proof. By the Proposition 6.5 if $|s.deg_{\mathbb{X}^{(r)}}\overline{P}| \ge 2 \Rightarrow |s.deg_{\mathbb{X}^{(r-1)}}\overline{P}| \ge 2 \Rightarrow \ldots \Rightarrow |s.deg_{\mathbb{X}'}\overline{P}| \ge 2 \Rightarrow |s.deg_{\mathbb{X}}\overline{P}| \ge 2.$

Theorem 6.7. Let $X \subset Q$ be a 0-dimensional scheme.

If
$$|s.deg_{\mathbb{X}}P| = 1$$
 for all $P \in \mathbb{X}$ then \mathbb{X} is ACM.

Proof. Let $\mathbb{X} \subset Q$ be a 0-dimensional scheme not ACM and $\mathbb{X}^{(n)} \subset \mathbb{X}$ be the subscheme of *order max n* so that

$$\mathbb{X} \supset \mathbb{X}^{(1)} \supset \mathbb{X}^{(2)} \supset \ldots \supset \mathbb{X}^{(n)}.$$

LUCIA MARINO

Consider the special point $\overline{P} = R_{i_10} \cap R_{0b_{\delta}}$ of X, defined in 4.4.

Call $Z^{(r)}$ the ACM 0-dimensional scheme such that $\mathbb{X}^{(r)} \cup Z^{(r)} = \mathbb{X}_p^{(r-1)}, r = 1, \dots, n.$

By the above construction $\mathbb{X}_p^{(n)}$ is as in the following figure

Now, $\mathbb{X}_p^{(n)}$ is evidently ACM. By Proposition 3.8 it is known that the set of separating degree of the point \overline{P} is exactly

s.deg_{$$\mathbb{X}_{n}^{(n)}$$} $\overline{P} = \{(a_{\delta} - 1, b_{\delta} - s - 1)\}$

where *s* is the number of the gaps in the (1,0)-line of G^{\min} . Since $\mathbb{X}^{(n)}$ is ACM (by Corollary 3.11) there exists one and one only separator *F* for the special point \overline{P} in $\mathbb{X}^{(n)}$ having bi-degree $(a_{\delta} - 1, b_{\delta} - s - 1)$

$$F: R_{1,0} \cdot R_{2,0} \cdot \ldots \cdot R_{a_{\delta}-1,0} \cdot R_{0,1} \cdot R_{0,2} \cdot \ldots \cdot R_{0,b_{\delta}-s-1}$$

By Remark 6.3 to reconstruct the subscheme $\mathbb{X}^{(n-1)}$ it is necessary to make inverse permutations on $\mathbb{X}_p^{(n)}$ to obtain $\mathbb{X}^{(n)}$ and $\mathbb{X}^{(n)} \cup Z^{(n)} = \mathbb{X}_p^{(n-1)}$ (see the following figure in which the gaps on the right of \overline{P} have moved in the left).

Observe that each of *s* lines of type (0,1) containing the gaps of $\mathbb{X}^{(n)}$ contain points of Z^n and moreover these points are not contained in *F*. Some of these points have been black marked in the above figure . It follows that *F* for the special point \overline{P} is the separator in $\mathbb{X}^{(n)}$ but it is not a separator for \overline{P} in $\mathbb{X}^{(n-1)}$. By Corollary 3.12, then we have

$$(a_{\delta}-1, b_{\delta}-s-1) \notin s.deg_{\mathbb{X}^{(n-1)}}\overline{P}$$

but easily we can construct a separator for \overline{P} in $\mathbb{X}^{(n-1)}$ having bi-degree $(c, b_{\delta} - s - 1)$ with $c > a_{\delta} - 1$ (to consider the form *F* and to add to it (1,0)-lines until to cover the entire scheme).

Thus by Lemma 5.4

$$(\overline{c}, b_{\delta} - s - 1) \in \mathrm{s.deg}_{\mathbb{X}^{(n-1)}}\overline{P}$$

where $a_{\delta} - 1 < \overline{c} \le c$. (Similarly, there exists the couple $(a_{\delta} - 1, \overline{d}) \in s.deg_{\mathbb{X}^{(n-1)}}\overline{P}$ where $b_{\delta} - s - 1 < \overline{d} \le d$.) Then

$$|\operatorname{s.deg}_{\mathbb{X}^{(n-1)}}\overline{P}| \geq 2.$$

Then by Corollary 6.6 $|s.deg_{\mathbb{X}}\overline{P}| \geq 2$.

This result gives a new characterization of ACM sets of points in the quadric Q. Precisely,

$$\mathbb{X}$$
 is ACM $\Leftrightarrow |s.deg_{\mathbb{X}}P| = 1$ for all $P \in \mathbb{X}$.

This result also provides another perspective on the problem of classifying ACM sets of points in $\mathbb{P}^1 \times \mathbb{P}^1$, and perhaps this result will provide insight

55

into more general problem of classifying ACM sets of points in multi-projective spaces.

Acknowledgements. I would like to thank Salvatore Giuffrida for his comments on this article. The computer program CoCoA [3] was used during the preliminary steps to this article.

REFERENCES

- S. Abrescia L. Bazzotti L. Marino, *Conductor degree and Socle Degree*, Le Matematiche 56 (1) (2001), 129–148.
- [2] L. Bazzotti, Sets of Points and their Conductor, J. Algebra 283 (2005), 799-820.
- [3] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it
- [4] S. Giuffrida R. Maggioni, *Curves on a smooth quadric*, Collect. Math. 54 (3) (2003), 309–325.
- [5] S. Giuffrida R. Maggioni A. Ragusa, On the postulation of 0-dimensional subschemes on a smooth quadric, Pacific J. of Mathematics 155 (1992), 251– 282.
- [6] E. Guardo, *Fat points schemes on a smooth quadric*, J. Pure Appl. Alg. 162 (2001), 183–208.
- [7] L. Marino, *On* 0-*dimensional schemes with all permissible conductor degrees*, Tesi di Dottorato, ciclo XIII Università di Catania.
- [8] L. Marino, On 0-dimensional schemes with all permissible conductor degrees, Rendiconti del Circolo Matematico di Palermo, Serie II (lii) (2003), 263–280.
- [9] L. Marino, *Conductor and separating degrees for sets of points in* \mathbb{P}^r *and in* $\mathbb{P}^1 \times \mathbb{P}^1$ Bollettino Unione Matematica Italiana 9 (8) B (2006), 397–421.
- [10] F. Orecchia, Points in generic positon and conductors of curves with ordinary singularities, J. Lond. Math. Soc. 24 (2) (1981), 85–96.
- [11] A. Van Tuyl, *The Hilbert function of ACM set of points in* $P^{n_1}x...xP^{n_k}$. Journal of Algebra 264 (2003), 420–441.

LUCIA MARINO Dipartimento di Matematica e Informatica Viale A. Doria, 6 - 95100 - Catania, Italy e-mail: lmarino@dmi.unict.it