A CHARACTERIZATION OF ACM 0-DIMENSIONAL SCHEMES IN Q

LUCIA MARINO

Let $\mathbb{X} \subset Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$ be a reduced 0-dimensional subscheme of the quadric Q and let $P \in \mathbb{X}$ be any point. Using the separating degree of P for \mathbb{X} we give a sufficient condition so that \mathbb{X} is ACM. This result, together with the previous ones (see [9]) gives a new characterization of ACM 0 -dimensional schemes of Q by using separators.

1. Introduction

Let $Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$ be the smooth (abstract) quadric and let $\mathbb{X} \subset Q$ be a reduced 0 -dimensional scheme. A form f is a separator for $P \in \mathbb{X}$ if $f(P) \neq 0$ and $f(Q)=0$ for all $Q \in \mathbb{X} \backslash\{P\}$. The set of minimal bi-degrees of separators for P is called the set of separating degrees of P in \mathbb{X}; we denote it by

$$
\operatorname{s.deg}_{\mathbb{X}} P
$$

The ordering we are using is the natural partial order on \mathbb{N}^{2}, i.e., $(a, b) \leq(c, d)$ if and only if $a \leq c$ and $b \leq d$. Compared with the conductor degree of a point of a 0 -dimensional scheme in the projective space \mathbb{P}^{r}, ([1], [2], [6], [7], [8], [9]) the separating degrees of a point of the reduced 0 -dimensional schemes on the smooth quadric Q is a new investigation that justifies the use of this name.

[^0]AMS 2000 Subject Classification: 13H10, 13D40
Keywords: scheme, separator, ACM

Presently, characterizations of ACM 0-dimensional schemes of multi projective spaces $\mathbb{P}^{n_{1}} \times \ldots \times \mathbb{P}^{n_{k}}$ are not known. Precisely, a geometrical classification of ACM 0-dimensional schemes of Q using the Hilbert Function of the considered scheme is given in [5], and combinatorial classifications are presented by [11] and [6].

In this paper we give a new characterization of ACM 0-dimensional schemes of $Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$ using the separating degree s. $\operatorname{deg}_{\mathbb{X}} P$, for $P \in \mathbb{X}$. In particular,

$$
\mathbb{X} \quad \text { is } \mathrm{ACM} \Leftrightarrow\left|\operatorname{s.deg}_{\mathbb{X}} P\right|=1 \quad \text { for all } \mathrm{P} \in \mathbb{X}
$$

The necessary condition (\Rightarrow) was proved by the author in a previous paper (see [9]) and shortly presented in Section 3; the sufficient condition (\Leftarrow) is proved in Section 6, Proposition 6.7.

Results on ACM reduced 0-dimensional schemes of $\mathbb{P}^{n_{1}} \times \ldots \times \mathbb{P}^{n_{k}}$ can be found in [11]. Probably, the main result of this paper could be generalized in order to give a characterization of ACM reduced 0-dimensional schemes of multi-projective spaces.

2. Preliminaries and notation

Here we collect some terminology (see [5] for details). Let $\mathbb{X} \subset Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$ be the quadric and let \mathscr{O}_{Q} be its structure sheaf.

If $D \subset Q$ is any divisor of type (a, b) we denote by $\mathscr{O}_{Q}(a, b)$ the associated sheaf. We use the ring $S=\bigoplus_{a, b} H^{0} \mathscr{O}_{Q}(a, b)$. S is, in a natural way, a k-algebra using product of sections. It is easy to check that S is generated, as a bi-graded k-algebra, by $H^{0} \mathscr{O}_{Q}(1,0)$ and $H^{0} \mathscr{O}_{Q}(0,1)$ (both vector spaces of dimension 2) since for every $a, b \geq 0$ the map $H^{0} \mathscr{O}_{Q}(a, b) \otimes H^{0} \mathscr{O}_{Q}(1,0) \otimes H^{0} \mathscr{O}_{Q}(0,1) \rightarrow$ $H^{0} \mathscr{O}_{Q}(a+1, b+1)$ given by the product, is surjective. Let u, u^{\prime} and v, v^{\prime} be bases for $H^{0} \mathscr{O}_{Q}(1,0)$ and $H^{0} \mathscr{O}_{Q}(0,1)$; then we have a bi-graded ring isomorphism $S \cong k\left[u, u^{\prime} ; v, v^{\prime}\right]$. We use the above isomorphism to identify elements of S and elements of $k\left[u, u^{\prime} ; v, v^{\prime}\right]$; of course we deal only with bi-homogeneous ideals of S.

When $s \in H^{0} \mathscr{O}_{Q}(a, b)$ its zero locus $(s)_{0}$ will be called a curve of type (a, b). We mention as lines of type $(1,0)$ or $(1,0)$-lines, and lines of type $(0,1)$ or $(0,1)$-lines respectively, $L=(l)_{0}$ and $L^{\prime}=\left(l^{\prime}\right)_{0}$, with $l \in H^{0} \mathscr{O}_{Q}(1,0)$ and $l^{\prime} \in$ $H^{0} \mathscr{O}_{Q}(0,1)$. Every point $P \in Q$ is the intersection of two lines $l \in H^{0} \mathscr{O}_{Q}(1,0)$, $l^{\prime} \in H^{0} \mathscr{O}_{Q}(0,1)$. If l and l^{\prime} have equations $a^{\prime} u-a u^{\prime}=0, b^{\prime} v-b v^{\prime}=0$ respectively, then the 4-tuple $\left(a, a^{\prime} ; b, b^{\prime}\right)$ gives the coordinates of P.

When no confusion can arise we will not distinguish between curves and their defining forms. A saturated ideal of S of height 2 is a complete intersection iff it is generated by 2 elements of type $h\left(u, u^{\prime}\right) \otimes 1,1 \otimes h^{\prime}\left(v, v^{\prime}\right)$, where h and
h^{\prime} are any forms. From now on we shall mean by complete intersection on Q (c.i. for short) a subscheme whose saturated ideal has just 2 generators. (more details see in [5].)

Thus a zero-dimensional scheme $\mathbb{X} \subset Q$ is a complete intersection on Q only when $I_{\mathbb{X}}$ is generated by a curve of the type $(a, 0)$ and a curve of type $(0, b)$. We can associate to \mathbb{X} the bi-graded S-algebra $S_{\mathbb{X}}=S / I_{\mathbb{X}}$, where $I_{\mathbb{X}}$ is the homogeneous saturated ideal of \mathbb{X} in S and $\mathscr{I}_{X} \subset \mathscr{O}_{Q}$ its ideal sheaf.

By analogy with the definition of Hilbert functions for graded modules, we can define the function $M_{\mathbb{X}}: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{N}$ by $M_{\mathbb{X}}(i, j)=\operatorname{dim}_{k}(S)_{(i, j)}-$ $\operatorname{dim}_{k}\left(I_{\mathbb{X}}\right)_{(i, j)}=\operatorname{dim}_{k} S_{\mathbb{X}}(i, j)$ where for every bi-graded S-module N we denote by $(N)_{(i, j)}$ the component of N of degree (i, j). The function $M_{\mathbb{X}}$ is the bigraded Hilbert function of \mathbb{X}. The function $M_{\mathbb{X}}$ can be represented as a matrix with infinitive integer entries,

$$
M_{\mathbb{X}}=\left(M_{\mathbb{X}}(i, j)\right)=\left(m_{i j}\right)
$$

which will be called the Hilbert matrix of \mathbb{X}. Note that $M_{\mathbb{X}}(i, j)=0$ for $i<0$ or $j<0$. So, from now on we restrict ourselves to the range $i \geq 0, j \geq 0$.

It is well known that not every 0 -dimensional scheme $\mathbb{X} \subset Q$ is ACM; see for instance two "non-collinear" points on Q. The ACM 0-dimensional schemes of Q were classified in terms of their Hilbert function in [5].

3. The set of separating degrees: the ACM case.

We recall the following definition, given in [9].

Definition 3.1. Let $\mathbb{X} \subset Q$ be a reduced 0 -dimensional scheme. We say that a form $f \in S$ is a separator for $P \in \mathbb{X}$ if $f(P) \neq 0$ and $f(Q)=0$ for all $Q \in \mathbb{X} \backslash\{P\}$. The set of minimal bi-degrees of separators for P is called the set of separating degrees of P in \mathbb{X}; we denote it by

$$
\operatorname{s.deg}_{\mathbb{X}} P
$$

We observe that the cardinality of this set is not necessarily one for any point $P \in \mathbb{X}$. This is a very great difference with the conductor degree of P in a reduced 0 -dimensional scheme of \mathbb{P}^{n} (for more details on the the conductor degree of P see [9]).

Example 3.2. Let $\mathbb{X}=\left\{P_{1}, P_{2}\right\}$ two non-collinear points on Q. Each point of \mathbb{X} has s. $\operatorname{deg}_{\mathbb{X}} P=\{(0,1),(1,0)\}$

Theorem 3.3. (Cayley-Bacharach on Q). Let

$$
\mathbb{Y}=C . I .((a, 0),(0, b)) \subset Q
$$

be a complete intersection on Q, let $P \in \mathbb{Y}$ and $\mathbb{Y}^{\prime}=\mathbb{Y} \backslash\{P\}$. Then $M_{\mathbb{Y}^{\prime}}(i, j)=$ $\begin{cases}M_{\mathbb{Y}}(i, j)-1 & \forall(i, j) \geq(a-1, b-1) \\ M_{\mathbb{Y}}(i, j) & \text { otherwise }\end{cases}$
Proof. The proof is trivial.
Corollary 3.4. Let

$$
\mathbb{Y}=C . I .((a, 0),(0, b)) \subset Q
$$

be a complete intersection on Q and let P be a point of \mathbb{Y}. Then $\operatorname{s.deg}_{\mathbb{Y}} P=$ $\{(a-1, b-1)\}$.

Proof. The proof is a direct consequence of Theorem 3.3
We need some terminology to give a geometrical description of an ACM 0 -dimensional scheme of Q (see [5], in [6] and [11]).

Definition 3.5. Let $a_{1}<a_{2}<\ldots<a_{n}$ and $b_{1}>b_{2}>\ldots>b_{n}$ be integers. The set $\mathscr{A}^{\prime}=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}$ is said a set of vertices.

For any 0 -dimensional ACM scheme $\mathbb{X} \subseteq Q$ the set of vertices of $\Delta M_{\mathbb{X}}$ (see [5], section 4) can be assumed to be of this type and conversely, given a set \mathscr{A}^{\prime} there exists an ACM 0-dimensional scheme of Q whose vertices are the elements of \mathscr{A}^{\prime}. From now on we suppose that the points of any 0 -dimensional scheme $\mathbb{X} \subseteq Q$ have integers coordinates.

For any couple $\left(a_{q}, b_{q}\right) \in \mathscr{A}^{\prime}$ we denote by Δ_{q} the rectangle the set

$$
\Delta_{q}=\left\{(r, s) \in \mathbb{Z}^{2} \mid(1,1) \leq(r, s) \leq\left(a_{q}, b_{q}\right)\right\}
$$

For a fixed \mathscr{A}^{\prime} we set

$$
\mathscr{A}=\cup_{1 \leq q \leq|\mathscr{A}|} \mid \Delta_{q}
$$

For any couple $(i, 1) \in \mathscr{A}$ we call $R_{i 0}$ the $(1,0)$-line of equation $u-i u^{\prime}=0$ and for any $(1, j) \in \mathscr{A}$ we call $R_{0 j}$ the line of equation $j v-v^{\prime}=0$.

Setting $P_{i j}=R_{i 0} \cap R_{0 j}$ the set

$$
\mathbb{X}=\left\{P_{i j} \mid(i, j) \in \mathscr{A}\right\}
$$

is an ACM 0-dimensional subscheme of Q whose vertices are the couples of \mathscr{A}^{\prime}. We say that \mathbb{X} has support in \mathscr{A}.

It is known, by [4], [6] and [11], that every ACM 0-dimensional scheme of Q can be described, after a suitable permutation of lines, as a ACM 0-dimensional subcheme with support on \mathscr{A}. This construction is equivalent to the Ferrer's diagram approach.

Remark 3.6. Every couple $(i, j) \in \mathscr{A}$ will determine two elements $\left(a_{h}, b_{h}\right)$, $\left(a_{k}, b_{k}\right) \in \mathscr{A}^{\prime}$ such that $a_{h-1}<i \leq a_{h} \quad$ and $\quad b_{k} \geq j>b_{k+1}$. Considering the corresponding $P_{i j} \in \mathbb{X}$, we can translate this notation with the existence of two rectangles Δ_{h} and Δ_{k}, where Δ_{h} is the "higher"rectangle containing the point $P_{i j}$ and Δ_{k} is the "lowest"rectangle containing the point $P_{i j}$. Thus the couple $(i, j) \in \mathscr{A}$ determines two couples

$$
\left(a_{h}, b_{h}\right),\left(a_{k}, b_{k}\right)
$$

With the above notation, note that $h \leq k$.
Let

$$
D_{i j}=\{(m, n) \mid(m, n) \geq(i, j)\} .
$$

It has the property that $\left|D_{i j} \cap \mathscr{A}^{\prime}\right| \geq 2$ (i.e. it contains at least two vertices) if and only if the point $P_{i j}$ belongs to at least two rectangles Δ_{q} defined in 3.5.

Lemma 3.7. With the above notation, if $\left|D_{i j} \cap \mathscr{A}^{\prime}\right|=1$ then $\mathbb{X} \backslash\left\{P_{i j}\right\}$ is $A C M$.

Proof. By hypothesis, $\mathbb{X} \subset Q$, is a reduced 0 -dimensional scheme, the point $P_{i j}$ in one of parts marked in the following figure:

We recall the following result of [9]:
Proposition 3.8. Let $\mathbb{X} \subset Q$ be an $A C M$ reduced 0 -dimensional scheme. Then for all $(i, j) \in \mathscr{A}$, the set of separating degrees of the point $P_{i j}$ is given by

$$
\operatorname{s.deg}_{\mathbb{X}} P_{i j}=\left\{\left(a_{k}-1, b_{h}-1\right)\right\}
$$

Corollary 3.9. Let $\mathbb{X} \subset Q$ be an ACM 0-dimensional scheme then for each point $P \in \mathbb{X},\left|\operatorname{s.deg}_{\mathbb{X}} P\right|=1$.

This shows that the ACM 0-dimensional subschemes of Q have the same behaviour on the 0 -dimensional subschemes of a projective space \mathbb{P}^{r} with respect to the set of separating degrees.

Let us proceed to the general analysis of the unicity of the separator degrees of the point P belonging to a scheme $\mathbb{X} \subset Q$.

Proposition 3.10. Let $\mathbb{X} \subset Q$ be a reduced 0-dimensional scheme. Let F be a separator of minimal bi-degree (α, β) for the point $P \in \mathbb{X}$. Then F is unique modulo $I_{\mathbb{X}}(\alpha, \beta)$ up to a scalar.

Proof. Let $\mathbb{X}^{\prime}=\mathbb{X} \backslash\{P\}$. If $h^{0}\left(\mathscr{I}_{\mathbb{X}^{\prime}}(\alpha, \beta)\right)=p>1$ then imposing to pass through the point P, we have a family of dimension $p-1$. Since these are elements of $I_{\mathbb{X}}$ we have $\operatorname{dim}_{k}\left(I_{\mathbb{X}^{\prime}}(\alpha, \beta) / I_{\mathbb{X}}(\alpha, \beta)\right)=1$.

Lemma 3.11. Let $\mathbb{X} \subset Q$ be a reduced 0 -dimensional scheme. Given $P \in \mathbb{X}$ with $(\alpha, \beta) \in \operatorname{s.deg}_{\mathbb{X}} P$, let $\mathbb{X}^{\prime}=\mathbb{X} \backslash\{P\}$. If $h^{0}\left(\mathscr{I}_{\mathbb{X}}(\alpha, \beta)\right)=r$ then $h^{0}\left(\mathscr{I}_{\mathbb{X}^{\prime}}(\alpha, \beta)\right)=$ $r+1$.

Proof. It is sufficient to prove that two indipendent separators for the point $P \in$ $\mathbb{X}, f, g \in H^{0}\left(\mathscr{I}_{\mathbb{X}^{\prime}}(\alpha, \beta)\right)$, differ for an element of $H^{0}\left(\mathscr{I}_{\mathbb{X}}(\alpha, \beta)\right)$. In the pencil $\lambda f+\mu g$ there exists an element passing through the point, thus

$$
\exists h \in H^{0}\left(\mathscr{I}_{\mathbb{X}}(\alpha, \beta)\right) \mid h=\bar{\lambda} f+\bar{\mu} g \rightarrow g=k f+h^{\prime}
$$

with $h^{\prime} \in H^{0}\left(\mathscr{I}_{\mathbb{X}}(\alpha, \beta)\right)$.
It follows that if $H^{0}\left(\mathscr{I}_{\mathbb{X}}(\alpha, \beta)\right)=<f_{1}, f_{2}, \ldots, f_{r}>$ and $g \in H^{0}\left(\mathscr{I}_{\mathbb{X}^{\prime}}(\alpha, \beta)\right)$ is a separator for the point $P \in \mathbb{X}$, then $H^{0}\left(\mathscr{I}_{\mathbb{X}^{\prime}}(\alpha, \beta)\right)=<g, g+f_{1}, g+f_{2}, \ldots, g+$ $f_{r}>$. In particular, if $r=0$ in degree (α, β) then there exists just one separator for the point P in \mathbb{X}.

Let $\mathbb{X} \subset Q$ be a reduced $A C M$ 0-dimensional scheme. Using the notation introduced in this section, it is known by [5] that the generators of $I_{\mathbb{X}}$ are forms having minimal degrees corresponding to the corners of \mathscr{A} :

$$
\left\{(1, b+1),\left(a_{1}+1, b_{2}+1\right), \ldots,\left(a_{i}+1, b_{i+1}+1\right), \ldots,\left(a_{n-1}, b_{n}+1\right),\left(a_{n}+1,1\right)\right\}
$$

Let \mathscr{A}^{\prime} be the set of vertices of $\mathbb{X},\left(a_{i}, b_{i}\right) \in \mathscr{A}^{\prime}$ and let P_{i} be the corresponding point. By [9],

$$
\operatorname{s.deg}_{\mathbb{X}} P_{i}=\left\{\left(a_{i}-1, b_{i}-1\right)\right\}
$$

Note that the couple $\left(a_{i}-1, b_{i}-1\right)$ is a minimal degree of a generator of $\mathbb{X}^{\prime}=$ $\mathbb{X} \backslash\{P\}$ but it is not a minimal degree of a generator of \mathbb{X}, thus $I_{\mathbb{X}}\left(a_{i}-1, b_{i}-\right.$ 1) $=0 \rightarrow r=0$. Hence we have the corollary

Corollary 3.12. Let $\mathbb{X} \subset Q$ be a $A C M$ reduced 0 -dimensional scheme. Given $P \in \mathbb{X}$ a vertex, there exists only one separator for the point P in \mathbb{X}.

4. Gaps

In this section we show that a reduced 0 -dimensional scheme $\mathbb{X} \subset Q$ can be seen as a reduced ACM 0-dimensional scheme minus some points which lie in at least two rectangles Δ_{q}, (see Definition 3.5) as we see in the following figure

For any reduced 0 -dimensional scheme \mathbb{X} we consider a reduced ACM 0 dimensional scheme containing \mathbb{X} having minimal degree. Such scheme always exists.

Remark 4.1. Let $\mathbb{X} \subset Q$ be a reduced 0 -dimensional scheme and let $Y \supseteq \mathbb{X}$ a minimal 0 -dimensional reduced ACM scheme. Let $T=Y \backslash \mathbb{X}$. If \mathbb{X} is ACM then $T=\emptyset$, otherwise for every $P \in T, P$ belongs to two different rectangles of the type Δ_{q}.

It is enough to note that erasing from Y a point P contained in just a rectangle (marked in black in the following picture) $Y \backslash\{P\}$ is still ACM, against the minimality of Y.

Moreover if $\mathbb{X}=Y \backslash \cup\left\{P_{i j}\right\}$ where each $P_{i j}$ belongs to two different rectangles of type Δ_{q} it is easy to see that if we permute in all the possible ways
the lines of type $(0,1)$, and/or $(1,0)$, we never obtain an ACM scheme according with the previous arguments (See Section 3).

Definition 4.2. Let $Z=Y \backslash \mathbb{X}$. Z is said the set of gaps of \mathbb{X}.
Definition 4.3. Let $\mathbb{X}=Y \backslash \cup\left\{P_{i j}\right\}$. Let $\left(i_{1}, j_{1}\right) \in \mathscr{A}=\cup \Delta_{q}$ with $i_{1}=\min \left\{i \mid P_{i j}\right.$ is a gap of $\mathbb{X}\}$ and, fixed i_{1}, let $j_{1}=\min \left\{j \mid P_{i_{1} j}\right.$ is a gap of $\left.\mathbb{X}\right\}$. We define Min Gap $G^{\min }$ the point $P_{i_{1}, j_{1}} \in Y$. (i.e. among the higher gaps the Min Gap is the one on the left side). Let $\left(i_{m}, j_{m}\right) \in \mathscr{A}$, with $i_{m}=\max \left\{i \mid P_{i j}\right.$ is a gap $\}$ and, $j_{m}=\max \left\{j \mid P_{i_{1} j}\right.$ is a gap $\}$. We define Max Gap $G^{\max }$ the point $P_{i_{m}, j_{m}} \in Y$. (i.e. among the lower gaps the Max Gap is the one on the right side).

Notation. As it has been seen in remark 3.6, each of the gaps $G^{\text {min }}$ and G^{max} are associated to at least two couples of \mathscr{A}^{\prime}, the set of the vertices. In particular to the gap $G^{\min }$ of \mathbb{X} we associate the couple $\left(a_{\delta}, b_{\delta}\right)$ where $a_{\delta}=\min \left\{a_{p} \mid \Delta_{p}\right.$ is a rectangle containing
$\left.G^{\min }\right\}$; in similar way we have the couple $\left(a_{\lambda}, b_{\lambda}\right)$ associated to the gap $G^{\max }$ of \mathbb{X}.

Definition 4.4. The couples $\left(a_{\delta}, b_{\delta}\right),\left(a_{\lambda}, b_{\lambda}\right) \in \mathscr{A}^{\prime}$ related to the gaps $G^{\text {min }}$ and G^{max} of \mathbb{X} are called special couples respectively associated to the gaps $G^{\min }$ and $G^{\max }$. Moreover the point $\bar{P}=R_{i_{1} 0} \cap R_{0 b_{\delta}}$ of \mathbb{X} with $R_{i_{1} 0}$ is the (1,0)line of equation $u-i_{1} u^{\prime}=0$ and $R_{0 b_{\delta}}$ the $(0,1)$-line of equation $b_{\delta} v-v^{\prime}=0$ is called special point of the scheme \mathbb{X}.

See the following figure.

5. Some results

Let $\mathbb{X} \subset Q$ be a 0 -dimensional scheme and let Y be a minimal ACM scheme containing \mathbb{X} described by $\mathscr{A}=\bigcup \Delta_{q}$.

Definition 5.1. The element (α, β) of $\operatorname{s.deg}_{X} P$ maximal with respect to the first component is called max - couple for \mathbb{X} of the point P. In similar way, the smallest element $\left(\alpha^{\prime}, \beta^{\prime}\right)$ of $\operatorname{s.deg}_{\mathbb{X}} P$ with respect to the second component is called min - couple for \mathbb{X} of the point P.

Remark 5.2. If the scheme $\mathbb{X} \subset Q$ is ACM , then $(\alpha, \beta)=\left(\alpha^{\prime}, \beta^{\prime}\right)$.
Remark 5.3. Given $\widetilde{\mathbb{X}} \subset \mathbb{X}$ a reduced subscheme let $P \in \widetilde{\mathbb{X}}$. Note that a separator of P in \mathbb{X} is also a separator of P in $\widetilde{\mathbb{X}}$. Then each couple of the set s.deg ${ }_{\mathbb{X}} P$ not belonging to $\mathrm{s.deg}_{\widetilde{\mathbb{X}}} P$ must be comparable with at least one couple of the set s. $^{\operatorname{deg}_{\widetilde{\mathbb{X}}}} P$.

It follows that if $(\widetilde{\alpha}, \widetilde{\beta}) \in \operatorname{s.deg}_{\mathbb{X}} P$ then it is comparable with at least one couple in $\operatorname{s.deg}_{\widetilde{\mathbb{X}}} P$: let (γ, δ) be such couple. Hence

$$
\text { (1) }\left\{\begin{array}{l}
\widetilde{\alpha} \geq \gamma \\
\widetilde{\beta} \geq \delta
\end{array}\right.
$$

Lemma 5.4. If the max-couple for $\widetilde{\mathbb{X}}$ of the point $P,(\alpha, \beta)$, doesn't belong to $\mathrm{s.}_{\mathrm{deg}}^{\mathbb{X}} \boldsymbol{P}$ and if there exists a separator for $P \in \mathbb{X}$ having bi-degree $(\bar{\alpha}, \beta)$ with $\bar{\alpha}>\alpha$ then,

$$
\exists \widetilde{\alpha} \mid(\widetilde{\alpha}, \beta) \in \operatorname{s.deg}_{\mathbb{X}} P, \text { with } \widetilde{\alpha} \leq \bar{\alpha}
$$

(Similarly, if $\left(\alpha^{\prime}, \beta^{\prime}\right) \notin \operatorname{s.deg}_{\mathbb{X}} P$ and if there exists a separator for $P \in \mathbb{X}$ having bi-degree $\left(\alpha^{\prime}, \overline{\beta^{\prime}}\right)$ with $\overline{\beta^{\prime}}>\beta^{\prime}$ then,

$$
\left.\exists \widetilde{\beta^{\prime}} \mid\left(\alpha^{\prime}, \widetilde{\beta^{\prime}}\right) \in \operatorname{s.\operatorname {deg}_{\mathbb {X}}} P, \text { with } \widetilde{\beta^{\prime}} \leq \overline{\beta^{\prime}}\right)
$$

Proof. If $(\bar{\alpha}, \beta)$ is a minimal bi-degree of separator for P then $\widetilde{\alpha}=\bar{\alpha}$. If $(\bar{\alpha}, \beta)$ is not a minimal bi-degree of separator then there exists a minimal bi-degree $(\widetilde{\alpha}, \widetilde{\beta}) \in \operatorname{s.deg}_{\mathbb{X}} P$ where either

$$
\text { case }(i)\left\{\begin{array} { l }
{ \widetilde { \alpha } < \overline { \alpha } } \\
{ \widetilde { \beta } \leq \beta }
\end{array} \quad \text { or } \quad \text { case } (i i) \left\{\begin{array}{l}
\widetilde{\alpha} \leq \bar{\alpha} \\
\widetilde{\beta}<\beta
\end{array}\right.\right.
$$

If we prove $\widetilde{\beta}=\beta$, the case (ii) is impossible.
Let (γ, δ) be the couple of the set s.deg $\widetilde{\mathbb{X}} P$ comparable with the couple $(\widetilde{\alpha}, \widetilde{\beta}) \in$ ${\mathrm{s} . \operatorname{deg}_{\mathbb{X}}}$. Now since (α, β) and (γ, δ) are in $\operatorname{s.deg}_{\widetilde{\mathbb{X}}} P$ these couples must be either equals or not comparable. If these couples are equals, i.e. $\gamma=\alpha, \delta=\beta$,
it follows that $\beta=\delta \leq \widetilde{\beta}$; moreover, if the case (i) is true we have $\widetilde{\beta} \leq \beta$. Thus $\widetilde{\beta}=\beta$.
Conversely, if the case (ii) is true, that is $\widetilde{\beta}<\beta$, with $\gamma=\alpha, \delta=\beta$ is impossible because $\beta=\delta \leq \widetilde{\beta}$.
If the couples (α, β) and $(\underset{\sim}{\gamma}, \boldsymbol{\delta})$ are not comparable, since by hypothesis (α, β) is the max-couple for P in $\widetilde{\mathbb{X}}$ then $\alpha \geq \gamma$. Consequently, $\beta<\delta$. By (1), $\delta \leq \widetilde{\beta}$. For both cases (i) and (ii) we have $\beta<\beta$. It is impossible. The proof of the second result is similar to the proof given above and it is left to the reader.

Corollary 5.5. Let $(\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right)$ be the max-couple and the min-couple for $\widetilde{\mathbb{X}}$ of the point P non belonging to $\operatorname{s.deg}_{\mathbb{X}} P$. If there exists a separator for $P \in \mathbb{X}$ having bi-degree $(\bar{\alpha}, \beta) \in \operatorname{s.deg}_{\mathbb{X}} P$ with $\bar{\alpha}>\alpha$ and if there exists a separator for $P \in \mathbb{X}$ having bi-degree $\left(\alpha^{\prime}, \overline{\beta^{\prime}}\right) \in \operatorname{s.deg} \mathbb{X}_{\mathbb{X}} P$ with $\overline{\beta^{\prime}}>\beta^{\prime}$ then, $\left|\operatorname{s.deg}_{\mathbb{X}} P\right| \geq 2$.

Proof. It is a obvious consequence of Lemma 5.4

6. The set of separating degrees for points in a 0 -dimensional scheme on Q

Let $\mathbb{X} \subset Q$ be a 0 -dimensional scheme; with the above notation $\mathbb{X}=Y \backslash \cup\left\{P_{i j}\right\}$ where Y is a ACM scheme of minimal degree containing \mathbb{X}.

Definition 6.1. Let $\mathbb{X} \subset Q$ be a 0 -dimensional scheme, and let $\left(a_{\lambda}, b_{\lambda}\right)$ be the special couple associated to the gap $G^{\max }$ (see definition 4.4). Let \mathscr{A}^{\prime} be the set of vertices of \mathbb{X} and let $\mathscr{A}^{\prime(1)}=\left\{\left(a_{i}, b_{i}\right), i=1, \ldots, \lambda\right\} \subset \mathscr{A}^{\prime}$. The subscheme $\mathbb{X}^{(1)} \subset \mathbb{X}$, having $\mathscr{A}^{\prime(1)}$ as set of its vertices is said subscheme of order one.

Let $Z^{(1)}$ be the ACM subscheme of \mathbb{X} such that $Z^{(1)}=\mathbb{X} \backslash \mathbb{X}^{(1)}$

The number of gaps of $\mathbb{X}^{(1)}$ is less than the number of gaps of \mathbb{X}. In fact in $\mathbb{X}^{(1)}$ permuting the $(0,1)$-line containing $G^{\max }$ with the $(0,1)$-line containing $P_{a_{\lambda}, b_{\lambda}}$ and if it necessary permuting the (1,0)-line containing $G^{\max }$ with the (1,0)-line containing $P_{a_{\lambda}, b_{\lambda}}$ we obtain a new configuration of $\mathbb{X}^{(1)}$ having G^{m} in the position $\left(a_{\lambda}, b_{\lambda}\right)$ i.e. the gap $G^{\max }$ of \mathbb{X} has been eliminated in $\mathbb{X}^{(1)}$. Moreover if permuting the lines we obtain a scheme where all gaps have been eliminated, then $\mathbb{X}^{(1)}$ is a ACM 0 -dimensional subscheme of \mathbb{X}, otherwise $\mathbb{X}^{(1)}$ is not-ACM.

Definition 6.2. Let $\mathbb{X}^{(1)} \subset Q$ be the 0 -dimensional subscheme of \mathbb{X} of order one. We say permutation scheme $\mathbb{X}_{p}^{(1)}$ related to $\mathbb{X}^{(1)}$ a particular description of $\mathbb{X}^{(1)}$ with one gap of \mathbb{X} in $\left(a_{\lambda}, b_{\lambda}\right)$.

Remark 6.3. The subschemes $\mathbb{X}^{(1)}$ and $\mathbb{X}_{p}^{(1)}$ of \mathbb{X} don't have the same behaviour. In fact $\mathbb{X}_{p}^{(1)} \cup Z^{(1)}$ is not equal to \mathbb{X} and $\mathbb{X}^{(1)} \cup Z^{(1)}=\mathbb{X}$. Observe that to reconstruct the scheme \mathbb{X} it is necessary to make inverse permutations on $\mathbb{X}_{p}^{(1)}$ to obtain $\mathbb{X}^{(1)}$ and $\mathbb{X}^{(1)} \cup Z^{(1)}=\mathbb{X}$. Thus at first we reconstruct $\mathbb{X}^{(1)}$ then we add $Z^{(1)}$ to obtain \mathbb{X}.

If $\mathbb{X}^{(1)} \subset \mathbb{X}$ is the 0 -dimensional subscheme of order one, then we permute the lines to obtain $\mathbb{X}_{p}^{(1)}$. Going on it is possible to define the 0 -dimensional subscheme of $\mathbb{X}^{(1)}$ of order one, called $\mathbb{X}^{(2)} \subset Q$, which will be of order 2 for \mathbb{X}, etc. In conclusion, there exists a 0 -dimensional subscheme of \mathbb{X} of maximal order n for some $n \in \mathbb{N}$ which will be a ACM 0 -dimensional subscheme of \mathbb{X}, called $\mathbb{X}^{(n)}$. We assume $\mathbb{X}^{(0)}=\mathbb{X}$.

Note that if $\mathbb{X} \subset Q$ is a ACM 0 -dimensional scheme then the derived scheme from \mathbb{X} doesn't exists, because \mathbb{X} has no gaps.

Proposition 6.4. Let $\mathbb{X} \subset Q$ be a 0 -dimensional scheme and $\mathbb{X}^{(1)}$ be the 0 dimensional subscheme of \mathbb{X} of order one. Then if the special point \bar{P} of the subscheme $\mathbb{X}^{(1)}$ has $\left|\operatorname{s.deg}_{\mathbb{X}^{(1)}} \bar{P}\right| \geq 2$ then $\left|\operatorname{s.deg}_{\mathbb{X}} \bar{P}\right| \geq 2$.

Proof. Consider the special point $\bar{P} \in \mathbb{X}^{(1)}$, having $\left|\operatorname{s.deg}_{\mathbb{X}^{(1)}} \bar{P}\right| \geq 2$. (see Definition 4.4). Let (α, β) be the max-couple for the point \bar{P} in $\mathbb{X}^{(1)}$ and $\left(\alpha^{\prime}, \beta^{\prime}\right)$ be the min-couple for the point \bar{P} in $\mathbb{X}^{(1)}$.

It is obvious that if the max and min-couple for \bar{P} in $\mathbb{X}^{(1)}$ belong to the set s. $\operatorname{deg}_{\mathbb{X}} \bar{P}$ then the proof is ended.

If $(\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right) \notin \mathrm{s}^{\prime} \operatorname{deg}_{\mathbb{X}} \bar{P}$ we note that there always exist two separators for the special point \bar{P} in \mathbb{X} of bi-degrees $(\bar{\alpha}, \beta),\left(\alpha^{\prime}, \bar{\beta}^{\prime}\right)$ with $\bar{\alpha}>\alpha, \bar{\beta}^{\prime}>\beta^{\prime}$: it is sufficient to consider the form of bi-degree (α, β) and to add to it $(1,0)$ - lines until to cover the ACM 0-dimensional sbscheme $Z^{(1)}$ of \mathbb{X} so that we obtain the bi-degree $(\bar{\alpha}, \beta)$ of a separator for \bar{P} in \mathbb{X}. (In similar way we consider the form of bi-degree $\left(\alpha^{\prime}, \beta^{\prime}\right)$ and adding (0,1)-lines until to cover $Z^{(1)}$ we have $\left(\alpha^{\prime}, \bar{\beta}^{\prime}\right)$). Thus applying 5.4 there exist at least two couples of bi-degrees belonging to the set s.deg $\bar{X} \bar{P}$, i.e. $(\widetilde{\alpha}, \beta),\left(\alpha^{\prime}, \widetilde{\beta}^{\prime}\right) \in \operatorname{s.deg}_{\mathbb{X}} P$, with $\alpha<\widetilde{\alpha} \leq \bar{\alpha}, \beta^{\prime}<\widetilde{\beta}^{\prime} \leq \bar{\beta}^{\prime}$.

If $(\alpha, \beta) \in \operatorname{s.deg}_{X} \bar{P},\left(\alpha^{\prime}, \beta^{\prime}\right) \notin \operatorname{s.deg}_{X} \bar{P}$ then similarly we obtain two not comparable couples $(\alpha, \beta),\left(\alpha^{\prime}, \widetilde{\beta^{\prime}}\right) \in \operatorname{s.deg}_{\mathbb{X}} P$, with $\beta^{\prime}<\widetilde{\beta}^{\prime} \leq \bar{\beta}^{\prime}$. (The proof is similar if $\left.(\alpha, \beta) \notin \operatorname{s.deg}_{\mathbb{X}} \bar{P},\left(\alpha^{\prime}, \beta^{\prime}\right) \in \operatorname{s.deg}_{\mathbb{X}} \bar{P}\right)$.

The above proposition can be generalized
Proposition 6.5. Let $\mathbb{X}^{(r-1)} \subset Q$ be a 0-dimensional subscheme of order $r-1$ of \mathbb{X} and $\mathbb{X}^{(r)}$ the subcheme 0-dimensional of \mathbb{X} of order r. Then if the special point \bar{P} of the subscheme $\mathbb{X}^{(r)}$ has $\left|\operatorname{s.deg}_{\mathbb{X}^{(r)}} \bar{P}\right| \geq 2$ then $\left|\operatorname{s.deg}_{\mathbb{X}^{(r-1)}} \bar{P}\right| \geq 2, \forall r=$ $1, \ldots, n$, where n is the max order of \mathbb{X}.

Proof. Use the same argument as in Proposition 6.4.
Corollary 6.6. With the above notation,

$$
\text { if }\left|\operatorname{s.deg}_{\mathbb{X}(r)} \bar{P}\right| \geq 2 \text { then }\left|\operatorname{s.deg}_{\mathbb{X}} \bar{P}\right| \geq 2
$$

Proof. By the Proposition 6.5 if $\left|\operatorname{s.deg}_{\mathbb{X}^{(r)}} \bar{P}\right| \geq 2 \Rightarrow \mid{\mathrm{s} . \operatorname{deg}_{\mathbb{X}^{(r-1)}} \bar{P} \mid \geq 2 \Rightarrow \ldots \Rightarrow, ~}$ $\left|\operatorname{s.deg}_{\mathbb{X}^{\prime}} \bar{P}\right| \geq 2 \Rightarrow\left|\operatorname{s.deg}_{\mathbb{X}} \bar{P}\right| \geq 2$.

Theorem 6.7. Let $\mathbb{X} \subset Q$ be a 0 -dimensional scheme.

$$
\text { If }\left|\operatorname{s.deg}_{\mathbb{X}} P\right|=1 \quad \text { for all } P \in \mathbb{X} \text { then } \mathbb{X} \quad \text { is } A C M
$$

Proof. Let $\mathbb{X} \subset Q$ be a 0 -dimensional scheme not ACM and $\mathbb{X}^{(n)} \subset \mathbb{X}$ be the subscheme of order max n so that

$$
\mathbb{X} \supset \mathbb{X}^{(1)} \supset \mathbb{X}^{(2)} \supset \ldots \supset \mathbb{X}^{(n)}
$$

Consider the special point $\bar{P}=R_{i_{1} 0} \cap R_{0 b_{\delta}}$ of \mathbb{X}, defined in 4.4.
Call $Z^{(r)}$ the ACM 0-dimensional scheme such that $\mathbb{X}^{(r)} \cup Z^{(r)}=\mathbb{X}_{p}^{(r-1)}, r=$ $1, \ldots, n$.

By the above construction $\mathbb{X}_{p}^{(n)}$ is as in the following figure

Now, $\mathbb{X}_{p}^{(n)}$ is evidently ACM. By Proposition 3.8 it is known that the set of separating degree of the point \bar{P} is exactly

$$
\mathrm{s.deg}_{\mathbb{X}_{p}^{(n)}} \bar{P}=\left\{\left(a_{\delta}-1, b_{\delta}-s-1\right)\right\}
$$

where s is the number of the gaps in the $(1,0)$-line of G^{min}.
Since $\mathbb{X}^{(n)}$ is ACM (by Corollary 3.11) there exists one and one only separator F for the special point \bar{P} in $\mathbb{X}^{(n)}$ having bi-degree $\left(a_{\delta}-1, b_{\delta}-s-1\right)$

$$
F: R_{1,0} \cdot R_{2,0} \cdot \ldots \cdot R_{a_{\delta}-1,0} \cdot R_{0,1} \cdot R_{0,2} \cdot \ldots \cdot R_{0, b_{\delta}-s-1}
$$

By Remark 6.3 to reconstruct the subscheme $\mathbb{X}^{(n-1)}$ it is necessary to make inverse permutations on $\mathbb{X}_{p}^{(n)}$ to obtain $\mathbb{X}^{(n)}$ and $\mathbb{X}^{(n)} \cup Z^{(n)}=\mathbb{X}_{p}^{(n-1)}$ (see the following figure in which the gaps on the right of \bar{P} have moved in the left).

Observe that each of s lines of type $(0,1)$ containing the gaps of $\mathbb{X}^{(n)}$ contain points of Z^{n} and moreover these points are not contained in F. Some of these points have been black marked in the above figure. It follows that F for the special point \bar{P} is the separator in $\mathbb{X}^{(n)}$ but it is not a separator for \bar{P} in $\mathbb{X}^{(n-1)}$. By Corollary 3.12, then we have

$$
\left(a_{\delta}-1, b_{\delta}-s-1\right) \notin \operatorname{s.deg}_{\mathbb{X}^{(n-1)}} \bar{P}
$$

but easily we can construct a separator for \bar{P} in $\mathbb{X}^{(n-1)}$ having bi-degree $\left(c, b_{\delta}-\right.$ $s-1$) with $c>a_{\delta}-1$ (to consider the form F and to add to it $(1,0)$-lines until to cover the entire scheme).

Thus by Lemma 5.4

$$
\left(\bar{c}, b_{\delta}-s-1\right) \in \operatorname{s.deg}_{\mathbb{X}^{(n-1)}} \bar{P}
$$

where $a_{\delta}-1<\bar{c} \leq c$.
(Similarly, there exists the couple $\left(a_{\delta}-1, \bar{d}\right) \in \operatorname{s.deg}_{\mathbb{X}^{(n-1)}} \bar{P}$ where $b_{\delta}-s-1<$ $\bar{d} \leq d$.) Then

$$
\mid{\text { s. } \operatorname{deg}_{\mathbb{X}^{(n-1)}} \bar{P} \mid \geq 2 .}
$$

Then by Corollary $6.6\left|{\text { s. } \operatorname{deg}_{X}}^{\bar{P}}\right| \geq 2$.

This result gives a new characterization of ACM sets of points in the quadric Q. Precisely,

$$
\mathbb{X} \quad \text { is } \mathrm{ACM} \Leftrightarrow\left|\operatorname{s.deg}_{\mathbb{X}} P\right|=1 \quad \text { for all } \mathrm{P} \in \mathbb{X}
$$

This result also provides another perspective on the problem of classifying ACM sets of points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, and perhaps this result will provide insight
into more general problem of classifying ACM sets of points in multi-projective spaces.

Acknowledgements. I would like to thank Salvatore Giuffrida for his comments on this article. The computer program CoCoA [3] was used during the preliminary steps to this article.

REFERENCES

[1] S. Abrescia - L. Bazzotti - L. Marino, Conductor degree and Socle Degree, Le Matematiche 56 (1) (2001), 129-148.
[2] L. Bazzotti, Sets of Points and their Conductor, J. Algebra 283 (2005), 799820.
[3] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it
[4] S. Giuffrida - R. Maggioni, Curves on a smooth quadric, Collect. Math. 54 (3) (2003), 309-325.
[5] S. Giuffrida - R. Maggioni - A. Ragusa, On the postulation of O-dimensional subschemes on a smooth quadric, Pacific J. of Mathematics 155 (1992), 251282.
[6] E. Guardo, Fat points schemes on a smooth quadric, J. Pure Appl. Alg. 162 (2001), 183-208.
[7] L. Marino, On 0-dimensional schemes with all permissible conductor degrees, Tesi di Dottorato, ciclo XIII Università di Catania.
[8] L. Marino, On 0-dimensional schemes with all permissible conductor degrees, Rendiconti del Circolo Matematico di Palermo, Serie II (lii) (2003), 263-280.
[9] L. Marino, Conductor and separating degrees for sets of points in \mathbb{P}^{r} and in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ Bollettino Unione Matematica Italiana 9 (8) B (2006), 397-421.
[10] F. Orecchia, Points in generic positon and conductors of curves with ordinary singularities, J. Lond. Math. Soc. 24 (2) (1981), 85-96.
[11] A. Van Tuyl, The Hilbert function of ACM set of points in $P^{n_{1}} x \ldots x P^{n_{k}}$. Journal of Algebra 264 (2003), 420-441.

LUCIA MARINO
Dipartimento di Matematica e Informatica
Viale A. Doria, 6-95100-Catania, Italy
e-mail: lmarino@dmi.unict.it

[^0]: Entrato in redazione: 9 luglio 2009

