LE MATEMATICHE
Vol. LXIV (2009) — Fasc. II, pp. 41-56

A CHARACTERIZATION OF ACM 0-DIMENSIONAL
SCHEMES IN 0

LUCIA MARINO

Let X C Q = P! x P! be a reduced 0-dimensional subscheme of the
quadric Q and let P € X be any point. Using the separating degree of P for
X we give a sufficient condition so that X is ACM. This result, together
with the previous ones (see [9]) gives a new characterization of ACM
0-dimensional schemes of Q by using separators.

1. Introduction

Let Q = P! x P! be the smooth (abstract) quadric and let X C Q be a reduced
0-dimensional scheme. A form f is a separator for P € X if f(P) # 0 and
f(Q) =0forall Q € X\ {P}. The set of minimal bi-degrees of separators for P
is called the set of separating degrees of P in X; we denote it by

s.degxP.

The ordering we are using is the natural partial order on N2, i.e., (a,b) < (c,d)
if and only if a < c and b < d. Compared with the conductor degree of a point
of a 0-dimensional scheme in the projective space P’, ([1], [2], [6], [7]. [8], [9])
the separating degrees of a point of the reduced 0-dimensional schemes on the
smooth quadric Q is a new investigation that justifies the use of this name.
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Presently, characterizations of ACM 0-dimensional schemes of multi pro-
jective spaces P! x ... x [P are not known. Precisely, a geometrical classifica-
tion of ACM 0-dimensional schemes of Q using the Hilbert Function of the con-
sidered scheme is given in [5], and combinatorial classifications are presented
by [11] and [6].

In this paper we give a new characterization of ACM 0-dimensional schemes
of @ = P! x P! using the separating degree s.degy P, for P € X. In particular,

X isACM < |s.degxP|=1 forallPeX.

The necessary condition (=) was proved by the author in a previous paper (see
[9])and shortly presented in Section 3; the sufficient condition (<) is proved in
Section 6, Proposition 6.7.

Results on ACM reduced 0-dimensional schemes of P X ... x P can be
found in [11]. Probably, the main result of this paper could be generalized
in order to give a characterization of ACM reduced O-dimensional schemes of
multi-projective spaces.

2. Preliminaries and notation

Here we collect some terminology (see [5] for details). Let X C O = P! x P! be
the quadric and let &y be its structure sheaf.

If D C Q is any divisor of type (a,b) we denote by Uy (a,b) the associated
sheaf. We use the ring S = D, ;, H'0y(a,b). S is, in a natural way, a k-algebra
using product of sections. It is easy to check that S is generated, as a bi-graded
k-algebra, by H0p(1,0) and H°0p(0,1) (both vector spaces of dimension 2)
since for every a,b > 0 the map H0p(a,b) ® H°Op(1,0) @ H0p(0,1) —
H°0p(a+1,b+ 1) given by the product, is surjective. Let u,u’ and v,»’ be
bases for H0p(1,0) and H0p(0,1); then we have a bi-graded ring isomor-
phism S = k[u,u’;v,V']. We use the above isomorphism to identify elements of S
and elements of k[u, u’;v,V']; of course we deal only with bi-homogeneous ideals
of S.

When s € HOp(a,b) its zero locus (s)o will be called a curve of type (a,b).
We mention as lines of type (1,0) or (1,0)-lines, and lines of type (0,1) or
(0,1)-lines respectively, L = (1) and L' = (I')o, with [ € H0p(1,0) and I €
H°0y(0,1). Every point P € Q is the intersection of two lines [ € H0p(1,0),
I' e H0p(0,1). If I and I’ have equations @'u — au’ = 0, b'v — bV’ = 0 respec-
tively, then the 4-tuple (a,d’;b,b’) gives the coordinates of P.

When no confusion can arise we will not distinguish between curves and
their defining forms. A saturated ideal of S of height 2 is a complete intersection
iff it is generated by 2 elements of type h(u,u’) @1, 1 @K' (v,V'), where h and
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K’ are any forms. From now on we shall mean by complete intersection on Q
(c.i. for short) a subscheme whose saturated ideal has just 2 generators. (more
details see in [5]. )

Thus a zero-dimensional scheme X C Q is a complete intersection on Q
only when Ix is generated by a curve of the type (a,0) and a curve of type
(0,b). We can associate to X the bi-graded S-algebra Sx = §/Ix, where Ix is the
homogeneous saturated ideal of X in § and .y C O its ideal sheaf.

By analogy with the definition of Hilbert functions for graded modules,
we can define the function Mx : Z x Z — N by Mx(i, j) = dimy(S); ;) —
dimy (Ix);, ) = dim;Sx (i, j) where for every bi-graded S-module N we denote
by (N)(; ;) the component of N of degree (i, j). The function M is the bigraded
Hilbert function of X. The function Mx can be represented as a matrix with
infinitive integer entries,

My = (Mx(i, j)) = (mj)

which will be called the Hilbert matrix of X. Note that Mx (i, j) = 0 for i < 0 or
j < 0. So, from now on we restrict ourselves to the range i > 0, j > 0.

It is well known that not every O-dimensional scheme X C Q is ACM; see
for instance two “non-collinear” points on Q. The ACM 0-dimensional schemes
of Q were classified in terms of their Hilbert function in [5].

3. The set of separating degrees: the ACM case.

We recall the following definition, given in [9].

Definition 3.1. Let X C Q be a reduced 0-dimensional scheme. We say that a
form f € Sis a separator for P € X if f(P) #0and f(Q) =0forall Q € X\ {P}.
The set of minimal bi-degrees of separators for P is called the set of separating
degrees of P in X; we denote it by

s.degxP.

We observe that the cardinality of this set is not necessarily one for any
point P € X. This is a very great difference with the conductor degree of P in
a reduced 0-dimensional scheme of IP" (for more details on the the conductor
degree of P see [9]).

Example 3.2. Let X = {P;,P,} two non-collinear points on Q. Each point of X
has s.degx P ={(0,1),(1,0)}
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Theorem 3.3. (Cayley-Bacharach on Q). Let
Y =C.1.((a,0),(0,b)) C QO

be a complete intersection on Q, let P €Y and Y' =Y\ {P}. Then My (i, j) =
MY(ILI)_I V(l,])Z((l—l,b—l)
My (i, j) otherwise

Proof. The proof is trivial. O

Corollary 3.4. Let
Y =C.1.((a,0),(0,b)) C Q

be a complete intersection on Q and let P be a point of Y. Then s.degy P =
{(a_ 17b_ 1)}

Proof. The proof is a direct consequence of Theorem 3.3 O

We need some terminology to give a geometrical description of an ACM
0-dimensional scheme of Q (see [5], in [6] and [11]).

Definition 3.5. Leta; < ay < ... < a, and by > by > ... > b, be integers. The
set &' = {(a1,b1),...,(an,by)} is said a set of vertices.

For any 0-dimensional ACM scheme X C Q the set of vertices of AMx (see
[5], section 4) can be assumed to be of this type and conversely, given a set .o/’
there exists an ACM 0-dimensional scheme of Q whose vertices are the elements
of «7'. From now on we suppose that the points of any 0-dimensional scheme
X C Q have integers coordinates.

For any couple (a4,b,) € o/’ we denote by A, the rectangle the set

Ag=A{(rs) € 2| (1,1) < (1) < (ag,by)}.

For a fixed .2/’ we set
o = UlSqSW/IAq

For any couple (i,1) € o7 we call Ry the (1,0)—line of equation u — iu’ = 0 and
for any (1, j) € &/ we call Ry; the line of equation jv —v' = 0.
Setting P;j = Rijo N Ry, the set

X = (P (i.j) € o}

is an ACM 0-dimensional subscheme of Q whose vertices are the couples of
</'. We say that X has support in 7.

It is known, by [4], [6] and [11], that every ACM 0-dimensional scheme of Q
can be described, after a suitable permutation of lines, as a ACM 0-dimensional
subcheme with support on 7. This construction is equivalent to the Ferrer’s
diagram approach.
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Remark 3.6. Every couple (i, j) € &/ will determine two elements (ay,bp),
(ar,by) € &' such that @,y <i<a, and by > j> biyy. Considering the
corresponding P;; € X, we can translate this notation with the existence of two
rectangles A, and Ay, where Ay, is the “higher’rectangle containing the point
F;j and Ay is the “lowest’rectangle containing the point F;;. Thus the couple
(i,j) € o determines two couples

(ah,bh), (Clk,bk).

(1,1)

(an,bn)

(ak,bx)

With the above notation, note that 2 < k.
Let

Dij={(m;n) [ (m,n) > (i, )}

It has the property that |[D;; N .<7’| > 2 (i.e. it contains at least two vertices) if
and only if the point P;; belongs to at least two rectangles A, defined in 3.5.

Lemma 3.7. With the above notation, if |D;jN.o/'| =1 then X\ {P;;} is ACM .

Proof. By hypothesis, X C 0, is a reduced 0-dimensional scheme, the point F;;
in one of parts marked in the following figure:
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® |
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We recall the following result of [9]:

Proposition 3.8. Let X C Q be an ACM reduced 0-dimensional scheme. Then
forall (i, j) € o, the set of separating degrees of the point P;j is given by

s.degxPj = {(ax— 1,0, —1)}.

Corollary 3.9. Let X C Q be an ACM 0-dimensional scheme
then for each point P € X, |s.degx P| = 1.

This shows that the ACM 0-dimensional subschemes of Q have the same be-
haviour on the 0-dimensional subschemes of a projective space P with respect
to the set of separating degrees.

Let us proceed to the general analysis of the unicity of the separator degrees
of the point P belonging to a scheme X C Q.

Proposition 3.10. Let X C Q be a reduced 0-dimensional scheme. Let F be a
separator of minimal bi-degree (@, ) for the point P € X. Then F is unique
modulo Ix(a, B) up to a scalar.

Proof. Let X' = X\ {P}. If i°( S (o, B)) = p > 1 then imposing to pass
through the point P, we have a family of dimension p — 1. Since these are
elements of Ix we have dimy(Ix/(a,B)/Ix(c,B)) = 1. O

Lemma 3.11. Let X C Q be a reduced 0-dimensional scheme. Given P € X with
(o, B) € s.deg P, let X' = X\ {P}. If (< (a, B)) = r then h°( I (at, B)) =
r+1.
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Proof. 1t is sufficient to prove that two indipendent separators for the point P €
X, f,e € H( S (a,B)), differ for an element of H(#x(ct, B)). In the pencil
A f + ng there exists an element passing through the point, thus

Fhe H(Ix(a, ) | h=Af+Tig— g =kf+H

with b’ € HO(Ix(at, B)).

It follows that if H*( S (o, B)) =< fi, f2, .-, f» > and g € H( S (o, B)) is
a separator for the point P € X, then H*( S (a, B)) =< 8,8+ f1,8 + fo, ., 8+
fr > . In particular, if r = 0 in degree (¢, B) then there exists just one separator
for the point P in X. O

Let X C Q be a reduced ACM 0-dimensional scheme. Using the notation
introduced in this section, it is known by [5] that the generators of Ix are forms
having minimal degrees corresponding to the corners of <7 :

{(1,b+1), (a1 + L,by+1),....(ai+ 1,bir1 + 1), ..., (an—1,bp + 1), (an + 1,1) }.

Let <7’ be the set of vertices of X, (a;,b;) € o/’ and let P, be the corresponding
point. By [9],

s.degxP, = {(a;— 1,b; — 1)}
Note that the couple (a; — 1,b; — 1) is a minimal degree of a generator of X' =

X\ {P} but it is not a minimal degree of a generator of X, thus Ix(a; — 1,b; —
1) =0 — r = 0. Hence we have the corollary

Corollary 3.12. Let X C Q be a ACM reduced 0-dimensional scheme. Given
P € X a vertex, there exists only one separator for the point P in X.

4. Gaps

In this section we show that a reduced 0-dimensional scheme X C Q can be
seen as a reduced ACM 0-dimensional scheme minus some points which lie in
at least two rectangles A,, (see Definition 3.5) as we see in the following figure
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@

For any reduced 0-dimensional scheme X we consider a reduced ACM 0-
dimensional scheme containing X having minimal degree. Such scheme always
exists.

Remark 4.1. Let X C Q be a reduced 0-dimensional scheme and let Y O X a
minimal 0-dimensional reduced ACM scheme. Let T =Y \ X. If X is ACM
then T = 0, otherwise for every P € T, P belongs to two different rectangles of
the type A,.

It is enough to note that erasing from Y a point P contained in just a rectangle
(marked in black in the following picture) ¥ \ {P} is still ACM, against the
minimality of Y.

o |

Moreover if X =Y \ U{P;;} where each P;; belongs to two different rect-
angles of type A, it is easy to see that if we permute in all the possible ways
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the lines of type (0,1), and/or (1,0), we never obtain an ACM scheme according
with the previous arguments (See Section 3).

Definition 4.2. Let Z =Y \ X. Z is said the set of gaps of X.

Definition 4.3. Let X =Y \U{P;}. Let (i1, j1) € & = UA, with i; = min{i | P;
is a gap of X} and, fixed i1, let j; = min{;j | B, ; is a gap of X}. We define Min
Gap G™™ the point P, ;, €Y. (i.e. among the higher gaps the Min Gap is the
one on the left side). Let (iy, jm) € <, with i, = max{i | P;j is a gap } and,
jm =max{j | P, is a gap }. We define Max Gap G™3* the point P,, ;, €Y.
(i.e. among the lower gaps the Max Gap is the one on the right side).

Notation. As it has been seen in remark 3.6, each of the gaps GMIN and
G™MaX are associated to at least two couples of .<7’, the set of the vertices.
In particular to the gap GMIN of X we associate the couple (ag,bs) where
as = min{a, |A,is a rectangle containing

Gmin}; in similar way we have the couple (a, b, ) associated to the gap G13X

of X.

Definition 4.4. The couples (as,bs),(ay,b;) € &' related to the gaps G
and.Gmax of X are called special couples respectively associated to the gaps
G™™ and GM3X . Moreover the point P = R;,0 MRy, of X with R; ¢ is the (1,0)-
line of equation u — iju’ = 0 and Ry, the (0,1)-line of equation bsv —v' =0 is
called special point of the scheme X.

See the following figure.

h Cﬂnﬂl F
(as,bs)
[O)
O
Gmax
O D

(al7bl)
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5. Some results

Let X C Q be a 0-dimensional scheme and let Y be a minimal ACM scheme
containing X described by &7 = [JA,.

Definition 5.1. The element (a,f) of s.degx P maximal with respect to the
first component is called max — couple for X of the point P. In similar way, the
smallest element (@', ") of s.degyx P with respect to the second component is
called min — couple for X of the point P.

Remark 5.2. If the scheme X C Q is ACM, then (¢, ) = (a/,B').

Remark 5.3. Given X C X a reduced subscheme let P € X. Note that a separator
of P in X is also a separator of P in X. Then each couple of the set s.degy P not
belonging to s.deggz P must be comparable with at least one couple of the set
s.degg P.

It follows that if (a, E ) € s.degx P then it is comparable with at least one couple
in s.degg P: let (7, 8) be such couple. Hence

a>y
{32

Lemma 5.4. If the max-couple for X of the point P, (@, ), doesn’t belong to
s.degx P and if there exists a separator for P € X having bi-degree (¢, 3) with
o > o then,

Ja| (o) €s.degxP, witha <o

( Similarly, if (o', B') ¢ s.degx P and if there exists a separator for P € X having
bi-degree (o, ") with B’ > B then,

3B’ | (o, B) € s.degxP, with B’ < B)

Proof. 1f (&, ) is a minimal bi-degree of separator for P then o = . If (@, )
is not a minimal bi-degree of separator then there exists a minimal bi-degree
(a, B) € s.degx P where either

L jo<a . o
case (i) {~ or case (ii) {B

ANRVAN

a
B<B B
If we prove B = f3, the case (ii) is impossible.
Let (7, 8) be the couple of the set s.degg P comparable with the couple (a, B) €
s.degx P . Now since (a,f) and (¥,0) are in s.degg P these couples must be
either equals or not comparable. If these couples are equals, i.e. y= o, 0 = j3,
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it follows that B = & < B; moreover, if the case (i) is true we have § < . Thus
B=B8. N

Conversely, if the case (ii) is true, thatis < 8, with y= a, § = 3 is impossible
because f =6 < .

If the couples (a, ) and (¥, ) are not comparable, since by hypothesis (a, )
is the max-couple for P in X then & > 7. Consequently, f < 8. By (1), § < E :
For both cases (i) and (ii) we have B < f. It is impossible. The proof of the
second result is similar to the proof given above and it is left to the reader. [

Corollary 5.5. Let (o, B), (o', B') be the max-couple and the min-couple for X
of the point P non belonging to s.degx P. If there exists a separator for P € X
having bi-degree (o,3) € s.degx P with @ > « and if there exists a separator
for P € X having bi-degree (o', B’) € s.degy P with B’ > B’ then, |s.deggx P| > 2.

Proof. 1t is a obvious consequence of Lemma 5.4 OJ

6. The set of separating degrees for points in a 0-dimensional scheme on

Q
Let X C Q be a 0-dimensional scheme; with the above notation X =Y \ U{P,;}
where Y is a ACM scheme of minimal degree containing X.

Definition 6.1. Let X C Q be a 0-dimensional scheme, and let (a,,b; ) be the
special couple associated to the gap GM@X (see definition 4.4). Let <7’ be the set
of vertices of X and let «'(") = {(ai,bi),i=1,...,A} C &/'. The subscheme
XM ¢ X, having 27" as set of its vertices is said subscheme of order one.

Let Z(1) be the ACM subscheme of X such that Z(1) = X\ X(!

il Gmln F
(as,bs)
[O)
O
Gmax
O D

stop for X()

7(1) (ax,by)
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The number of gaps of X(!) is less than the number of gaps of X. In fact
in X() permuting the (0,1)-line containing G™3X with the (0,1)-line containing
P,, », and if it necessary permuting the (1,0)-line containing GMaX with the
(1,0)-line containing F,, 5, we obtain a new configuration of xM having G
in the position (ay,b;) i.e. the gap GM3X of X has been eliminated in X
Moreover if permuting the lines we obtain a scheme where all gaps have been
eliminated, then X is a ACM 0-dimensional subscheme of X, otherwise x(®)
is not-ACM.

Definition 6.2. Let X(!) ¢ Q be the 0-dimensional subscheme of X of order
one. We say permutation scheme Xl(,l) related to XV a particular description of
X1 with one gap of X in (ay,by,).

.
(as,bs)
q
x\)
(alabl)

Remark 6.3. The subschemes X(!) and Xg) of X don’t have the same be-
haviour. In fact Xg) UZW is not equal to X and X!V UZ() = X. Observe
that to reconstruct the scheme X it is necessary to make inverse permutations on

XE,I) to obtain X(1) and X() UZ(1) = X. Thus at first we reconstruct X(!) then
we add Z(!) to obtain X.

If X() ¢ X is the 0-dimensional subscheme of order one, then we permute
the lines to obtain Xf,,l). Going on it is possible to define the 0-dimensional
subscheme of X1 of order one, called X(2) c Q, which will be of order 2 for
X, etc. In conclusion, there exists a O-dimensional subscheme of X of maximal
order n for some n € N which will be a ACM 0-dimensional subscheme of X,
called X, We assume X(©) = X.

Note that if X C Q is a ACM 0-dimensional scheme then the derived scheme
from X doesn’t exists, because X has no gaps.
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Proposition 6.4. Let X C Q be a O-dimensional scheme and XV be the 0-
dimensional subscheme of X of order one . Then if the special point P of the
subscheme X" has | s.degs ) P| > 2 then |s.degy P| > 2.

Proof. Consider the special point P € X(I), having |s.degxq ﬁ] > 2. (see Defi-
nition 4.4). Let (@, ) be the max-couple for the point P in X( and (o, B’) be
the min-couple for the point P in X(1),

It is obvious that if the max and min-couple for P in X(!) belong to the set
s.degx P then the proof is ended.

If (o, B), (o, B’) ¢ s.degx P we note that there always exist two separators
for the special point P in X of bi-degrees (@, ), (a’,B/) with @ > «, B/ > it
is sufficient to consider the form of bi-degree (a, ) and to add to it (1,0)- lines
until to cover the ACM 0-dimensional sbscheme Z(!) of X so that we obtain the
bi-degree (&, B) of a separator for P in X. (In similar way we consider the form
of bi-degree (', ) and adding (0,1)-lines until to cover Z{!) we have (o/, F)
Thus applying 5.4 there exist at least two couples of bi-degrees belonging to the
set s.degx P, i.e. (a,f), (o ﬁ)ESdegXPW1thoc<Oc<Oc [3’<ﬁ’<[3

If (o,B) € s.degx P, (o, B’ ) &s. degx P then similarly we obtaln two not
comparable couples (¢, 3), (o, B ) € s.degx P, with B’ < ﬁ’ < B (The proof is
similar if (a0, B) ¢ s.degx P, (o, B') € s.degx P ). O

The above proposition can be generalized

Proposition 6.5. Let XU~V C Q be a 0-dimensional subscheme of order r — 1
of X and X the subcheme 0 dimensional of X of order r . Then if the special
point P of the subscheme X") has | s.degy ) P| > 2 then | s.degy 1) P| > 2,V r =
1,...,n, where n is the max order of X.

Proof. Use the same argument as in Proposition 6.4. O

Corollary 6.6. With the above notation,
if | s.degx() P| > 2 then |s.degx P| > 2.

Proof. By the Proposition 6.5 if | s.degx P| > 2 = |s.degg(—n P| >2= ... =
|s.degy/ P| > 2 = |s.degx P| > 2. O

Theorem 6.7. Let X C Q be a 0-dimensional scheme.

If |s.degxP| =1 forallP € XthenX is ACM.

Proof. Let X C Q be a 0-dimensional scheme not ACM and X" C X be the
subscheme of order max n so that

XoxWo5x® 5 oxq,
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Consider the special point P = R;,0 N Rop, of X, defined in 4.4.

Call Z(") the ACM 0-dimensional scheme such that X(") UZz(") = Xg,ril) JF=

1,...,n.

By the above construction X(p") is as in the following figure

a5 ———@566666660
P

Now, X(p") is evidently ACM. By Proposition 3.8 it is known that the set of
separating degree of the point P is exactly

s.degX(p,gF: {(a5 — 1,]95 —§5— 1)}

where s is the number of the gaps in the (1,0)-line of Gmin,
Since X is ACM (by Corollary 3.11) there exists one and one only separator
F for the special point P in X(*) having bi-degree (a5 — 1,b5 —s— 1)

F:Rio- R0 .. Rag—10"Ro1-Ro2--.. Rops—s—1

By Remark 6.3 to reconstruct the subscheme X(*~1) it is necessary to make
inverse permutations on Xg,") to obtain X and X" Uz = Xl(,"fl) (see the
following figure in which the gaps on the right of P have moved in the left).
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bs—s bs
x (™)
a5 O——OPO—6—@ _
P
7(n)
X yzm = xiY

Observe that each of s lines of type (0,1) containing the gaps of X® contain
points of Z" and moreover these points are not contained in . Some of these
points have been black marked in the above figure . It follows that F' for the
special point P is the separator in X(*) but it is not a separator for P in X"~
By Corollary 3.12, then we have

(a5 - 1,b5 —5— 1) ¢ S.degx(n—l)F

but easily we can construct a separator for P in X("~1) having bi-degree (c,bs —
s— 1) with ¢ > ag — 1 (to consider the form F and to add to it (1,0)-lines until
to cover the entire scheme ).

Thus by Lemma 5.4

(¢,bs —s—1) € s.degxunP

where as — 1 <c <c.
(Similarly, there exists the couple (a5 — 1,d) € s.degy(-1)P where bs —s—1 <
d <d.) Then

]S.degx(nq)ﬂ >2.

Then by Corollary 6.6 |s.degx P| > 2.
O

This result gives a new characterization of ACM sets of points in the quadric
Q. Precisely,

X isACM & [s.degxP|=1 forallPeX.

This result also provides another perspective on the problem of classify-
ing ACM sets of points in P! x P!, and perhaps this result will provide insight
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into more general problem of classifying ACM sets of points in multi-projective

spaces.

Acknowledgements. 1 would like to thank Salvatore Giuffrida for his comments
on this article. The computer program CoCoA [3] was used during the prelimi-
nary steps to this article.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

REFERENCES

S. Abrescia - L. Bazzotti - L. Marino, Conductor degree and Socle Degree, Le
Matematiche 56 (1) (2001), 129-148.

L. Bazzotti, Sets of Points and their Conductor, J. Algebra 283 (2005), 799-
820.

CoCoATeam, CoCoA: a system for doing Computations in Commutative Al-
gebra. Available at http://cocoa.dima.unige.it

S. Giuffrida - R. Maggioni, Curves on a smooth quadric, Collect. Math. 54 (3)
(2003), 309-325.

S. Giuffrida - R. Maggioni - A. Ragusa, On the postulation of 0-dimensional
subschemes on a smooth quadric, Pacific J. of Mathematics 155 (1992), 251—
282.

E. Guardo, Fat points schemes on a smooth quadric, J. Pure Appl. Alg. 162
(2001), 183-208.

L. Marino, On O-dimensional schemes with all permissible conductor degrees,
Tesi di Dottorato, ciclo XIII Universita di Catania.

L. Marino, On 0-dimensional schemes with all permissible conductor degrees,
Rendiconti del Circolo Matematico di Palermo, Serie II (lii) (2003), 263-280.

L. Marino, Conductor and separating degrees for sets of points in P" and in
P! x P! Bollettino Unione Matematica Italiana 9 (8) B (2006), 397—421.

F. Orecchia, Points in generic positon and conductors of curves with ordinary
singularities, J. Lond. Math. Soc. 24 (2) (1981), 85-96.

A. Van Tuyl, The Hilbert function of ACM set of points in P" x...xP". Journal
of Algebra 264 (2003), 420-441.

LUCIA MARINO

Dipartimento di Matematica e Informatica
Viale A. Doria, 6 - 95100 - Catania, Italy
e-mail: lmarino@dmi.unict.it



