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A CHARACTERIZATION OF ACM 0-DIMENSIONAL
SCHEMES IN Q

LUCIA MARINO

Let X ⊂ Q = P1×P1 be a reduced 0-dimensional subscheme of the
quadric Q and let P∈X be any point. Using the separating degree of P for
X we give a sufficient condition so that X is ACM. This result, together
with the previous ones (see [9]) gives a new characterization of ACM
0-dimensional schemes of Q by using separators.

1. Introduction

Let Q = P1×P1 be the smooth (abstract) quadric and let X ⊂ Q be a reduced
0-dimensional scheme. A form f is a separator for P ∈ X if f (P) 6= 0 and
f (Q) = 0 for all Q ∈X\{P}. The set of minimal bi-degrees of separators for P
is called the set of separating degrees of P in X; we denote it by

s.degXP.

The ordering we are using is the natural partial order on N2, i.e., (a,b)≤ (c,d)
if and only if a ≤ c and b ≤ d. Compared with the conductor degree of a point
of a 0-dimensional scheme in the projective space Pr, ([1], [2], [6], [7], [8], [9])
the separating degrees of a point of the reduced 0-dimensional schemes on the
smooth quadric Q is a new investigation that justifies the use of this name.
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Presently, characterizations of ACM 0-dimensional schemes of multi pro-
jective spaces Pn1× ...×Pnk are not known. Precisely, a geometrical classifica-
tion of ACM 0-dimensional schemes of Q using the Hilbert Function of the con-
sidered scheme is given in [5], and combinatorial classifications are presented
by [11] and [6].

In this paper we give a new characterization of ACM 0-dimensional schemes
of Q = P1×P1 using the separating degree s.degX P, for P ∈ X. In particular,

X is ACM⇔ |s.degXP|= 1 for all P ∈ X.

The necessary condition (⇒) was proved by the author in a previous paper (see
[9])and shortly presented in Section 3; the sufficient condition (⇐) is proved in
Section 6, Proposition 6.7.

Results on ACM reduced 0-dimensional schemes of Pn1 × ...×Pnk can be
found in [11]. Probably, the main result of this paper could be generalized
in order to give a characterization of ACM reduced 0-dimensional schemes of
multi-projective spaces.

2. Preliminaries and notation

Here we collect some terminology (see [5] for details). Let X⊂Q = P1×P1 be
the quadric and let OQ be its structure sheaf.

If D ⊂ Q is any divisor of type (a,b) we denote by OQ(a,b) the associated
sheaf. We use the ring S =

⊕
a,b H0OQ(a,b). S is, in a natural way, a k-algebra

using product of sections. It is easy to check that S is generated, as a bi-graded
k-algebra, by H0OQ(1,0) and H0OQ(0,1) (both vector spaces of dimension 2)
since for every a,b ≥ 0 the map H0OQ(a,b)⊗H0OQ(1,0)⊗H0OQ(0,1) →
H0OQ(a + 1,b + 1) given by the product, is surjective. Let u,u′ and v,v′ be
bases for H0OQ(1,0) and H0OQ(0,1); then we have a bi-graded ring isomor-
phism S∼= k[u,u′;v,v′]. We use the above isomorphism to identify elements of S
and elements of k[u,u′;v,v′]; of course we deal only with bi-homogeneous ideals
of S.

When s∈H0OQ(a,b) its zero locus (s)0 will be called a curve of type (a,b).
We mention as lines of type (1,0) or (1,0)-lines, and lines of type (0,1) or
(0,1)-lines respectively, L = (l)0 and L′ = (l′)0, with l ∈ H0OQ(1,0) and l′ ∈
H0OQ(0,1). Every point P ∈ Q is the intersection of two lines l ∈ H0OQ(1,0),
l′ ∈ H0OQ(0,1). If l and l′ have equations a′u−au′ = 0, b′v−bv′ = 0 respec-
tively, then the 4-tuple (a,a′;b,b′) gives the coordinates of P.

When no confusion can arise we will not distinguish between curves and
their defining forms. A saturated ideal of S of height 2 is a complete intersection
iff it is generated by 2 elements of type h(u,u′)⊗ 1, 1⊗ h′(v,v′), where h and
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h′ are any forms. From now on we shall mean by complete intersection on Q
(c.i. for short) a subscheme whose saturated ideal has just 2 generators. (more
details see in [5]. )

Thus a zero-dimensional scheme X ⊂ Q is a complete intersection on Q
only when IX is generated by a curve of the type (a,0) and a curve of type
(0,b). We can associate to X the bi-graded S-algebra SX = S/IX, where IX is the
homogeneous saturated ideal of X in S and IX ⊂OQ its ideal sheaf.

By analogy with the definition of Hilbert functions for graded modules,
we can define the function MX : Z×Z −→ N by MX(i, j) = dim k(S)(i, j) −
dim k(IX)(i, j) = dim kSX(i, j) where for every bi-graded S-module N we denote
by (N)(i, j) the component of N of degree (i, j). The function MX is the bigraded
Hilbert function of X. The function MX can be represented as a matrix with
infinitive integer entries,

MX = (MX(i, j)) = (mi j)

which will be called the Hilbert matrix of X. Note that MX(i, j) = 0 for i < 0 or
j < 0. So, from now on we restrict ourselves to the range i≥ 0, j ≥ 0.

It is well known that not every 0-dimensional scheme X ⊂ Q is ACM; see
for instance two ”non-collinear” points on Q. The ACM 0-dimensional schemes
of Q were classified in terms of their Hilbert function in [5].

3. The set of separating degrees: the ACM case.

We recall the following definition, given in [9].

Definition 3.1. Let X ⊂ Q be a reduced 0-dimensional scheme. We say that a
form f ∈ S is a separator for P∈X if f (P) 6= 0 and f (Q) = 0 for all Q∈X\{P}.
The set of minimal bi-degrees of separators for P is called the set of separating
degrees of P in X; we denote it by

s.degXP.

We observe that the cardinality of this set is not necessarily one for any
point P ∈ X. This is a very great difference with the conductor degree of P in
a reduced 0-dimensional scheme of Pn (for more details on the the conductor
degree of P see [9]).

Example 3.2. Let X = {P1,P2} two non-collinear points on Q. Each point of X
has s.degX P = {(0,1),(1,0)}
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Theorem 3.3. (Cayley-Bacharach on Q). Let

Y = C.I.((a,0),(0,b))⊂ Q

be a complete intersection on Q, let P ∈ Y and Y′ = Y\{P}. Then MY′(i, j) ={
MY(i, j)−1 ∀(i, j)≥ (a−1,b−1)
MY(i, j) otherwise

Proof. The proof is trivial.

Corollary 3.4. Let
Y = C.I.((a,0),(0,b))⊂ Q

be a complete intersection on Q and let P be a point of Y. Then s.degY P =
{(a−1,b−1)}.

Proof. The proof is a direct consequence of Theorem 3.3

We need some terminology to give a geometrical description of an ACM
0-dimensional scheme of Q (see [5], in [6] and [11]).

Definition 3.5. Let a1 < a2 < ... < an and b1 > b2 > ... > bn be integers. The
set A ′ = {(a1,b1), . . . ,(an,bn)} is said a set of vertices.

For any 0-dimensional ACM scheme X⊆ Q the set of vertices of ∆MX (see
[5], section 4) can be assumed to be of this type and conversely, given a set A ′

there exists an ACM 0-dimensional scheme of Q whose vertices are the elements
of A ′. From now on we suppose that the points of any 0-dimensional scheme
X⊆ Q have integers coordinates.

For any couple (aq,bq) ∈A ′ we denote by ∆q the rectangle the set

∆q = {(r,s) ∈ Z2| (1,1)≤ (r,s)≤ (aq,bq)}.

For a fixed A ′ we set
A = ∪1≤q≤|A ′|∆q

For any couple (i,1) ∈A we call Ri0 the (1,0)−line of equation u− iu′ = 0 and
for any (1, j) ∈A we call R0 j the line of equation jv− v′ = 0.

Setting Pi j = Ri0∩R0 j the set

X = {Pi j| (i, j) ∈A }

is an ACM 0-dimensional subscheme of Q whose vertices are the couples of
A ′. We say that X has support in A .

It is known, by [4], [6] and [11], that every ACM 0-dimensional scheme of Q
can be described, after a suitable permutation of lines, as a ACM 0-dimensional
subcheme with support on A . This construction is equivalent to the Ferrer’s
diagram approach.
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Remark 3.6. Every couple (i, j) ∈ A will determine two elements (ah,bh),
(ak,bk) ∈ A ′ such that ah−1 < i ≤ ah and bk ≥ j > bk+1. Considering the
corresponding Pi j ∈ X, we can translate this notation with the existence of two
rectangles ∆h and ∆k, where ∆h is the “higher”rectangle containing the point
Pi j and ∆k is the “lowest”rectangle containing the point Pi j. Thus the couple
(i, j) ∈A determines two couples

(ah,bh), (ak,bk).

s(1,1)

s

s
(ah,bh)

(ak,bk)

sPi j

With the above notation, note that h≤ k.
Let

Di j = {(m,n) | (m,n)≥ (i, j)}.

It has the property that |Di j ∩A ′| ≥ 2 (i.e. it contains at least two vertices) if
and only if the point Pi j belongs to at least two rectangles ∆q defined in 3.5.

Lemma 3.7. With the above notation, if |Di j ∩A ′|= 1 then X\{Pi j} is ACM .

Proof. By hypothesis, X⊂ Q, is a reduced 0-dimensional scheme, the point Pi j

in one of parts marked in the following figure:
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We recall the following result of [9]:

Proposition 3.8. Let X ⊂ Q be an ACM reduced 0-dimensional scheme. Then
for all (i, j) ∈A , the set of separating degrees of the point Pi j is given by

s.degXPi j = {(ak−1,bh−1)}.

Corollary 3.9. Let X⊂ Q be an ACM 0-dimensional scheme
then for each point P ∈ X, |s.degX P|= 1.

This shows that the ACM 0-dimensional subschemes of Q have the same be-
haviour on the 0-dimensional subschemes of a projective space Pr with respect
to the set of separating degrees.

Let us proceed to the general analysis of the unicity of the separator degrees
of the point P belonging to a scheme X⊂ Q.

Proposition 3.10. Let X ⊂ Q be a reduced 0-dimensional scheme. Let F be a
separator of minimal bi-degree (α,β ) for the point P ∈ X. Then F is unique
modulo IX(α,β ) up to a scalar.

Proof. Let X′ = X \ {P}. If h0(IX′(α,β )) = p > 1 then imposing to pass
through the point P, we have a family of dimension p− 1. Since these are
elements of IX we have dimk(IX′(α,β )/IX(α,β )) = 1.

Lemma 3.11. Let X⊂Q be a reduced 0-dimensional scheme. Given P∈X with
(α,β ) ∈ s.degX P, let X′ = X\{P}. If h0(IX(α,β )) = r then h0(IX′(α,β )) =
r +1.



A CHARACTERIZATION OF ACM 0-DIMENSIONAL SCHEMES IN Q 47

Proof. It is sufficient to prove that two indipendent separators for the point P ∈
X , f ,g ∈ H0(IX′(α,β )), differ for an element of H0(IX(α,β )). In the pencil
λ f + µg there exists an element passing through the point, thus

∃ h ∈ H0(IX(α,β )) | h = λ f + µg→ g = k f +h′

with h′ ∈ H0(IX(α,β )).
It follows that if H0(IX(α,β )) =< f1, f2, ..., fr > and g∈H0(IX′(α,β )) is

a separator for the point P ∈X, then H0(IX′(α,β )) =< g,g+ f1,g+ f2, ...,g+
fr > . In particular, if r = 0 in degree (α,β ) then there exists just one separator
for the point P in X.

Let X ⊂ Q be a reduced ACM 0-dimensional scheme. Using the notation
introduced in this section, it is known by [5] that the generators of IX are forms
having minimal degrees corresponding to the corners of A :

{(1,b+1),(a1 +1,b2 +1), ...,(ai +1,bi+1 +1), ...,(an−1,bn +1),(an +1,1)}.

Let A ′ be the set of vertices of X, (ai,bi) ∈A ′ and let Pi be the corresponding
point. By [9],

s.degXPi = {(ai−1,bi−1)}

Note that the couple (ai−1,bi−1) is a minimal degree of a generator of X′ =
X \ {P} but it is not a minimal degree of a generator of X, thus IX(ai− 1,bi−
1) = 0→ r = 0. Hence we have the corollary

Corollary 3.12. Let X ⊂ Q be a ACM reduced 0-dimensional scheme. Given
P ∈ X a vertex, there exists only one separator for the point P in X.

4. Gaps

In this section we show that a reduced 0-dimensional scheme X ⊂ Q can be
seen as a reduced ACM 0-dimensional scheme minus some points which lie in
at least two rectangles ∆q, (see Definition 3.5) as we see in the following figure
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For any reduced 0-dimensional scheme X we consider a reduced ACM 0-
dimensional scheme containing X having minimal degree. Such scheme always
exists.

Remark 4.1. Let X ⊂ Q be a reduced 0-dimensional scheme and let Y ⊇ X a
minimal 0-dimensional reduced ACM scheme. Let T = Y \X. If X is ACM
then T = /0, otherwise for every P ∈ T , P belongs to two different rectangles of
the type ∆q.

It is enough to note that erasing from Y a point P contained in just a rectangle
(marked in black in the following picture) Y \ {P} is still ACM, against the
minimality of Y .

y
y

y
y

y
y

Moreover if X = Y \∪{Pi j} where each Pi j belongs to two different rect-
angles of type ∆q it is easy to see that if we permute in all the possible ways
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the lines of type (0,1), and/or (1,0), we never obtain an ACM scheme according
with the previous arguments (See Section 3).

Definition 4.2. Let Z = Y \X. Z is said the set of gaps of X.

Definition 4.3. Let X =Y \∪{Pi j}. Let (i1, j1)∈A =∪∆q with i1 = min{i | Pi j

is a gap of X} and, fixed i1, let j1 = min{ j | Pi1 j is a gap of X}. We define Min
Gap Gmin the point Pi1, j1 ∈ Y. (i.e. among the higher gaps the Min Gap is the
one on the left side). Let (im, jm) ∈ A , with im = max{i | Pi j is a gap } and,
jm = max{ j | Pi1 j is a gap }. We define Max Gap Gmax the point Pim, jm ∈ Y.
(i.e. among the lower gaps the Max Gap is the one on the right side).

Notation. As it has been seen in remark 3.6, each of the gaps Gmin and
Gmax are associated to at least two couples of A ′, the set of the vertices.
In particular to the gap Gmin of X we associate the couple (aδ ,bδ ) where
aδ = min{ap |∆pis a rectangle containing
Gmin}; in similar way we have the couple (aλ ,bλ ) associated to the gap Gmax

of X.

Definition 4.4. The couples (aδ ,bδ ),(aλ ,bλ ) ∈ A ′ related to the gaps Gmin

and Gmax of X are called special couples respectively associated to the gaps
Gmin and Gmax. Moreover the point P = Ri10∩R0bδ

of X with Ri10 is the (1,0)-
line of equation u− i1u′ = 0 and R0bδ

the (0,1)-line of equation bδ v− v′ = 0 is
called special point of the scheme X.

See the following figure.

i1

s

ss

s

(aδ ,bδ )

s

(aλ ,bλ )

eGmine P

ee e
e eGmax
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5. Some results

Let X ⊂ Q be a 0-dimensional scheme and let Y be a minimal ACM scheme
containing X described by A =

⋃
∆q.

Definition 5.1. The element (α,β ) of s.degX P maximal with respect to the
first component is called max− couple for X of the point P. In similar way, the
smallest element (α ′,β ′) of s.degX P with respect to the second component is
called min− couple for X of the point P.

Remark 5.2. If the scheme X⊂ Q is ACM, then (α,β ) = (α ′,β ′).

Remark 5.3. Given X̃⊂X a reduced subscheme let P∈ X̃. Note that a separator
of P in X is also a separator of P in X̃. Then each couple of the set s.degX P not
belonging to s.degX̃ P must be comparable with at least one couple of the set
s.degX̃ P.
It follows that if (α̃, β̃ )∈ s.degX P then it is comparable with at least one couple
in s.degX̃ P: let (γ,δ ) be such couple. Hence

(1)

{
α̃ ≥ γ

β̃ ≥ δ

Lemma 5.4. If the max-couple for X̃ of the point P, (α,β ), doesn’t belong to
s.degX P and if there exists a separator for P ∈ X having bi-degree (α,β ) with
α > α then,

∃ α̃ | (α̃,β ) ∈ s.degXP, with α̃ ≤ α

( Similarly, if (α ′,β ′) /∈ s.degX P and if there exists a separator for P∈X having
bi-degree (α ′,β ′) with β ′ > β ′ then,

∃ β̃ ′ | (α ′, β̃ ′) ∈ s.degXP, with β̃ ′ ≤ β ′)

Proof. If (α,β ) is a minimal bi-degree of separator for P then α̃ = α . If (α,β )
is not a minimal bi-degree of separator then there exists a minimal bi-degree
(α̃, β̃ ) ∈ s.degX P where either

case (i)

{
α̃ < α

β̃ ≤ β
or case (ii)

{
α̃ ≤ α

β̃ < β

If we prove β̃ = β , the case (ii) is impossible.
Let (γ,δ ) be the couple of the set s.degX̃ P comparable with the couple (α̃, β̃ ) ∈
s.degX P . Now since (α,β ) and (γ,δ ) are in s.degX̃ P these couples must be
either equals or not comparable. If these couples are equals, i.e. γ = α , δ = β ,
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it follows that β = δ ≤ β̃ ; moreover, if the case (i) is true we have β̃ ≤ β . Thus
β̃ = β .

Conversely, if the case (ii) is true, that is β̃ < β , with γ = α , δ = β is impossible
because β = δ ≤ β̃ .
If the couples (α,β ) and (γ,δ ) are not comparable, since by hypothesis (α,β )
is the max-couple for P in X̃ then α ≥ γ . Consequently, β < δ . By (1), δ ≤ β̃ .
For both cases (i) and (ii) we have β < β . It is impossible. The proof of the
second result is similar to the proof given above and it is left to the reader.

Corollary 5.5. Let (α,β ),(α ′,β ′) be the max-couple and the min-couple for X̃
of the point P non belonging to s.degX P. If there exists a separator for P ∈ X
having bi-degree (α,β ) ∈ s.degX P with α > α and if there exists a separator
for P∈X having bi-degree (α ′,β ′)∈ s.degX P with β ′> β ′ then, |s.degX P| ≥ 2.

Proof. It is a obvious consequence of Lemma 5.4

6. The set of separating degrees for points in a 0-dimensional scheme on
Q

Let X⊂ Q be a 0-dimensional scheme; with the above notation X = Y \∪{Pi j}
where Y is a ACM scheme of minimal degree containing X.

Definition 6.1. Let X ⊂ Q be a 0-dimensional scheme, and let (aλ ,bλ ) be the
special couple associated to the gap Gmax(see definition 4.4). Let A ′ be the set
of vertices of X and let A ′(1) = {(ai,bi), i = 1, . . . ,λ} ⊂ A ′. The subscheme
X(1) ⊂ X, having A ′(1) as set of its vertices is said subscheme of order one.

Let Z(1) be the ACM subscheme of X such that Z(1) = X\X(1)

i1

stop for X(1)

Z(1)
s

ss
(aδ ,bδ )

s

(aλ ,bλ )

eGmine P

ee e
e eGmax
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The number of gaps of X(1) is less than the number of gaps of X. In fact
in X(1) permuting the (0,1)-line containing Gmax with the (0,1)-line containing
Paλ ,bλ

and if it necessary permuting the (1,0)-line containing Gmax with the
(1,0)-line containing Paλ ,bλ

we obtain a new configuration of X(1) having Gm

in the position (aλ ,bλ ) i.e. the gap Gmax of X has been eliminated in X(1).
Moreover if permuting the lines we obtain a scheme where all gaps have been
eliminated, then X(1) is a ACM 0-dimensional subscheme of X, otherwise X(1)

is not-ACM.

Definition 6.2. Let X(1) ⊂ Q be the 0-dimensional subscheme of X of order
one. We say permutation scheme X(1)

p related to X(1) a particular description of
X(1) with one gap of X in (aλ ,bλ ).

i1

X(1)
p

ss
(aδ ,bδ )

s

(aλ ,bλ )

eGmine

e
e

P

ee

e

Remark 6.3. The subschemes X(1) and X(1)
p of X don’t have the same be-

haviour. In fact X(1)
p ∪ Z(1) is not equal to X and X(1) ∪ Z(1) = X. Observe

that to reconstruct the scheme X it is necessary to make inverse permutations on
X(1)

p to obtain X(1) and X(1) ∪Z(1) = X. Thus at first we reconstruct X(1) then
we add Z(1) to obtain X.

If X(1) ⊂ X is the 0-dimensional subscheme of order one, then we permute
the lines to obtain X(1)

p . Going on it is possible to define the 0-dimensional
subscheme of X(1) of order one, called X(2) ⊂ Q, which will be of order 2 for
X, etc. In conclusion, there exists a 0-dimensional subscheme of X of maximal
order n for some n ∈ N which will be a ACM 0-dimensional subscheme of X,
called X(n). We assume X(0) = X.

Note that if X⊂Q is a ACM 0-dimensional scheme then the derived scheme
from X doesn’t exists, because X has no gaps.
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Proposition 6.4. Let X ⊂ Q be a 0-dimensional scheme and X(1) be the 0-
dimensional subscheme of X of order one . Then if the special point P of the
subscheme X(1) has |s.degX(1) P| ≥ 2 then |s.degX P| ≥ 2.

Proof. Consider the special point P ∈ X(1), having |s.degX(1) P| ≥ 2. (see Defi-
nition 4.4). Let (α,β ) be the max-couple for the point P in X(1) and (α ′,β ′) be
the min-couple for the point P in X(1).

It is obvious that if the max and min-couple for P in X(1) belong to the set
s.degX P then the proof is ended.

If (α,β ),(α ′,β ′) /∈ s.degX P we note that there always exist two separators
for the special point P in X of bi-degrees (α,β ), (α ′,β

′
) with α > α , β

′
> β ′: it

is sufficient to consider the form of bi-degree (α,β ) and to add to it (1,0)- lines
until to cover the ACM 0-dimensional sbscheme Z(1) of X so that we obtain the
bi-degree (α,β ) of a separator for P in X. (In similar way we consider the form
of bi-degree (α ′,β ′) and adding (0,1)-lines until to cover Z(1) we have (α ′,β

′
)).

Thus applying 5.4 there exist at least two couples of bi-degrees belonging to the
set s.degX P, i.e. (α̃,β ),(α ′, β̃ ′) ∈ s.degX P,with α < α̃ ≤ α,β ′ < β̃ ′ ≤ β

′
.

If (α,β ) ∈ s.degX P,(α ′,β ′) /∈ s.degX P then similarly we obtain two not
comparable couples (α,β ),(α ′, β̃ ′) ∈ s.degX P,with β ′ < β̃ ′ ≤ β

′
. (The proof is

similar if (α,β ) /∈ s.degX P,(α ′,β ′) ∈ s.degX P ).

The above proposition can be generalized

Proposition 6.5. Let X(r−1) ⊂ Q be a 0-dimensional subscheme of order r−1
of X and X(r) the subcheme 0-dimensional of X of order r . Then if the special
point P of the subscheme X(r) has |s.degX(r) P| ≥ 2 then |s.degX(r−1) P| ≥ 2,∀ r =
1, . . . ,n, where n is the max order of X.

Proof. Use the same argument as in Proposition 6.4.

Corollary 6.6. With the above notation,
if |s.degX(r) P| ≥ 2 then |s.degX P| ≥ 2.

Proof. By the Proposition 6.5 if |s.degX(r) P| ≥ 2⇒ |s.degX(r−1) P| ≥ 2⇒ . . .⇒
|s.degX′ P| ≥ 2⇒ |s.degX P| ≥ 2.

Theorem 6.7. Let X⊂ Q be a 0-dimensional scheme.

If |s.degXP|= 1 for all P ∈ X then X is ACM.

Proof. Let X ⊂ Q be a 0-dimensional scheme not ACM and X(n) ⊂ X be the
subscheme of order max n so that

X⊃ X(1) ⊃ X(2) ⊃ . . .⊃ X(n).
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Consider the special point P = Ri10∩R0bδ
of X, defined in 4.4.

Call Z(r) the ACM 0-dimensional scheme such that X(r)∪Z(r) = X(r−1)
p ,r =

1, . . . ,n.

By the above construction X(n)
p is as in the following figure

aδ

X(n)
p

bδbδ − s

v
P Gmin

eeeeeeeee

Now, X(n)
p is evidently ACM. By Proposition 3.8 it is known that the set of

separating degree of the point P is exactly

s.degX(n)
p

P = {(aδ −1,bδ − s−1)}

where s is the number of the gaps in the (1,0)-line of Gmin.
Since X(n) is ACM (by Corollary 3.11) there exists one and one only separator
F for the special point P in X(n) having bi-degree (aδ −1,bδ − s−1)

F : R1,0 ·R2,0 · . . . ·Raδ−1,0 ·R0,1 ·R0,2 · . . . ·R0,bδ−s−1

By Remark 6.3 to reconstruct the subscheme X(n−1) it is necessary to make
inverse permutations on X(n)

p to obtain X(n) and X(n) ∪ Z(n) = X(n−1)
p (see the

following figure in which the gaps on the right of P have moved in the left).
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aδ

X(n)

Z(n)

bδbδ − s

e
P

ee e ueee
uuu
uuu
u

X(n)∪Z(n) = X(n−1)
p

Observe that each of s lines of type (0,1) containing the gaps of X(n) contain
points of Zn and moreover these points are not contained in F . Some of these
points have been black marked in the above figure . It follows that F for the
special point P is the separator in X(n) but it is not a separator for P in X(n−1).
By Corollary 3.12, then we have

(aδ −1,bδ − s−1) /∈ s.degX(n−1)P

but easily we can construct a separator for P in X(n−1) having bi-degree (c,bδ −
s− 1) with c > aδ − 1 (to consider the form F and to add to it (1,0)-lines until
to cover the entire scheme ).

Thus by Lemma 5.4

(c,bδ − s−1) ∈ s.degX(n−1)P

where aδ −1 < c≤ c.
(Similarly, there exists the couple (aδ −1,d) ∈ s.degX(n−1)P where bδ − s−1 <
d ≤ d.) Then

|s.degX(n−1)P| ≥ 2.

Then by Corollary 6.6 |s.degX P| ≥ 2.

This result gives a new characterization of ACM sets of points in the quadric
Q. Precisely,

X is ACM⇔ |s.degXP|= 1 for all P ∈ X.

This result also provides another perspective on the problem of classify-
ing ACM sets of points in P1×P1, and perhaps this result will provide insight



56 LUCIA MARINO

into more general problem of classifying ACM sets of points in multi-projective
spaces.
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