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ENHANCEMENT OF HIGH-ENERGY DISTRIBUTION TAIL IN
MONTE CARLO SEMICONDUCTOR SIMULATIONS

USING A VARIANCE REDUCTION SCHEME

VINCENZA DI STEFANO

The Multicomb variance reduction technique has been introduced in
the Direct Monte Carlo Simulation for submicrometric semiconductor de-
vices. The method has been implemented in bulk silicon. The simulations
show that the statistical variance of hot electrons is reduced with some
computational cost. The method is efficient and easy to implement in
existing device simulators.

1. Introduction

The use of the Monte Carlo (MC) technique for simulation of semiconductor
devices allows a high degree of flexibility and accuracy in the modeling of hot-
carrier and non-local effects. The main drawback of the MC method is the
high cost in terms of computational resources. This is mainly due to the large
statistical fluctuations, i.e. the high variance of some estimated quantities. Sta-
tistical enhancement (also called variance reduction) was introduced in Monte
Carlo simulation partly to compensate for a smaller number of simulated parti-
cles as compared to a larger number of actual particles in a device, especially in
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sparsely populated regions of phase space. Numerical techniques have been in-
troduced to improve the computational efficiency by reducing the variance of the
estimators, while conserving the same expected values. Three main approaches
have been proposed in the literature. The simplest methods are based on the
concept of repetition of individual particle trajectories, and are inherently suita-
ble for one-particle simulations [7] . In the second approach the scattering and
the particle weights are modified [5]. The third class of variance-reduction me-
thods, called population control, includes the variable-weight techniques, where
a statistical weight factor is assigned to each particle, while the MC simulation
remains unchanged [1, 6, 9]. The goal of such method is the manipulation of
the weights, in order to improve the sampling of phase space. For example,
a large number of particles with small weight can be used in regions of phase
space where accurate results are desired. One of the main advantages of the
variable-weight technique is the ease of implementation and integration with
existing simulation codes. In this paper we shall study this algorithm for the
bulk silicon, discussing its limitations.
The plan of the paper is the following: in section II we introduce the Direct
Simulation Monte Carlo. In section III the Multicomb algorithm is formulated
and simulation results are shown for bulk silicon in section IV. Conclusions are
drawn in section V.

2. The Direct Simulation Monte Carlo

The Monte Carlo method produces a statistical solution of the Boltzmann trans-
port equation, which is an integro-differential equation which describes the time
evolution and the variation in the phase space of the unknown distribution func-
tion f (t,x,k)[

∂

∂ t
+ v(k) ·∇x−

q
h̄

E(t,x) ·∇k

]
f (t,x,k) = (Q f )(t,x,k) . (2.1)

The solution f (t,x,k) represents the probability density of finding an electron at
time t, in the position x, with the wave-vector k .
In the quasi parabolic approximation the kinetic energy ε(k) of an electron
satisfies the relation

ε(k) [1+αε(k)] =
h̄2|k|2

2m?
, k ∈Ω , (2.2)

and the electron (group) velocity is given by

v(k) =
1
h̄

∇k ε(k) =
h̄k

m?[1+2αε(k)]
. (2.3)
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In the previous equations q is the absolute value of the electron charge, m? is the
effective electron mass and equals 0.32 me in silicon, α is the nonparabolicity
factor and h̄ denotes Planck’s constant divided by 2π . The domain Ω is called
first Brillouin zone, which is a characteristic of each material. In silicon this
zone is formed by six equivalent ellipsoidal valleys along the axis of the frame
of reference at about 0.85 (in the units 2π

a where a is the lattice constant) from
the zone center.
The electric field is defined as

E(t,x) =−∇xΦ(t,x) . (2.4)

The electric potential Φ is related to the solution f by the Poisson equation

ε ∆xΦ(t,x) = q [n(t,x)−ND(x)] , (2.5)

where the electron density is given by

n(t,x) =
∫

Ω

f (t,x,k)dk . (2.6)

Here ND denotes the donor density, and ε is the permittivity. The linear scatte-
ring collision operator has the form

(Q f )(t,x,k) =
∫

Ω

S(k′,k) f (t,x,k′)dk′−λ (k) f (t,x,k) ,

where

λ (k) =
∫

Ω

S(k,k′)dk′ (2.7)

is the total scattering rate.
The main scattering mechanisms in silicon, at room temperature, are due to
electron-phonon interactions (acoustic and optical). The transition rate from a
state k to a state k′ is modeled as [2]

S(k,k′) = K0 δ (ε(k′)− ε(k))+
6

∑
i=1

Ki× (2.8)[
δ (ε(k′)− ε(k)+ h̄ωi)(nqi +1)+ δ (ε(k′)− ε(k)− h̄ωi)nqi

]
,

where h̄ωi is a phonon energy. According to Bose-Einstein statistics, the phonon
equilibrium distribution is given by

nqi =
1

exp(h̄ωi/kBTL)−1
,
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where TL is the lattice temperature. The function

K0 =
kBTLΞ2

d
4π2h̄ρ v2

s

represents the intravalley elastic scattering transition rate, where Ξd is the acous-
tic-phonon deformation potential, ρ is the silicon mass density and vs denotes
the sound velocity of the longitudinal acoustic mode. The inelastic scattering
rates have the form

Ki =
Z f (DtKi)2

8π2ρ ωi
, i = 1, . . . ,6 ,

where DtKi is the deformation potential for the i-th optical phonon, and Z f is
the number of final equivalent valleys for the considered inter-valley scattering.
The Monte Carlo method for evolving a solution of the Boltzmann transport
equation consists in recreating the history evolution of electrons in time and
space inside the crystal, subject to the action of external and self-consistent
electric field and of the given scattering mechanisms [2, 8]. The simulation
starts with one or more electrons in given initial conditions with momentum h̄k
and position x. During the free flight (i.e. the time between two collisions)
particles move according to Newton’s equations of motion

dx
dt

=
1
h̄

∇kε(k) (2.9)

h̄
dk
dt

= −qE(t,x) (2.10)

The equations (2.9),(2.10),(2.5) are solved with a stable numerical scheme by
using an appropriate time step ∆t [4]. Then a scattering mechanism is chosen
randomly as responsible for the end of the free flight, according to the relative
probabilities of all possible scattering mechanisms. From the differential cross
section of this mechanism (eq. (2.7)) a new k state after scattering is randomly
chosen as initial state of the new free flight. After the collision the electron
can remain in the same valley (intravalley scattering) or be drawn in another
equivalent valley (intervalley scattering).
The electrons can scatter by themselves, with the impurities and the lattice. The
electron-electron interaction is considered in the framework of the mean field
approximation through the Poisson equation. This is reasonable since we con-
sider the case of low doping and therefore we can neglect the short range colli-
sions between electrons.
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3. The algorithm

In this paper we have chosen the population control technique because of its
simplicity and user-friendliness in the implementation. In particular, we have
used the so called Multicomb algorithm which has been introduced, in the be-
ginning, in the field of neutral particle transport.
Let us suppose to have N initial particles with momentum h̄ki, energy εi and
weight wi. At time zero we choose

wi =
1
N

.

Then we divide the energy space in K bins (or stat-boxes), whose extension is

∆ε =
εM

K
where εM is the estimated max energy reached by all particles during the run.
So, the energy space is partitioned into K +1 bins, i.e.

[0,∆ε[, ..., [(K−1)∆ε,K∆ε[, [K∆ε,+∞[.

For each j-th bin we can define :

• the number of particles N j in the bin, such that

N = ∑
j=1,K+1

N j

• the total weight, as the sum of the weights of the particles which are in
the j-th bin

Wj = ∑
i

wi , j = 1, ..,K +1 .

Let’s suppose the stationary regime is reached. Then we decide to run the en-
hancement algorithm each ∆tenh, which we shall call enhancement time step.
Let be Nb the number of non-empty bins. Then we define

M = int
[

N
Nb

]
, rest = N−M×Nb

where M is the target particle number in each bin (of course, by definition M
≤ N), and rest is the division rest. In order to have constant particle number N
during the simulation, we make this assumption :

M1 = M + rest, M2 = M, ...,MNb = M

where M1 is the target particle number in the first bin and so on.
The enhancement algorithm applied to each non-empty bin is called simple
comb. Let us consider the j-th non-empty bin: this is the simple comb algo-
rithm
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1. we construct a comb of length Wj with M equally spaced teeth. The posi-
tion of the m-th tooth is given by

tm = (ξ +m−1)
Wj

M j

where ξ is an uniform random number in [0, 1).

2. Place the weights wi consecutively on a line segment, obtaining N j bins

[0,w1], ]w1,w2], ]w2,w3], ..., ]wN j−1,wN j ]

3. Now we ”comb” this line segment with the previous one, obtained in 1).
do m = 1, ..,M j

if tm ∈]wi−1,wi] , for some i=1, ..,N j

a copy of the i-th particle from the old distribution is added to the new
distribution, with assigned weight

w′i =
Wj

M j

else no copy.

enddo

The algorithm maintains constant, in the j-th bin, the total weight Wj and particle
number N j. It is possible to prove that [1]: i) the simple comb preserves on
average the individual weights of the pre-combed particles; ii) the distribution of
particles with identical weights produced by the comb gives the smaller variance
than any distribution with unequal weights. The application of different simple
comb to all non-empty bins is called Multicomb method. Consequently, during
the simulation, the Multicomb maintains constant (by default) the total particles
number N, and the sum of the overall weights

W =
K+1

∑
j=1

Wj .

4. Results

We have tested the Multicomb algorithm in a bulk silicon semiconductor, doped
to a density of 1015cm−3, using a total target ensemble size of 11000 computa-
tional electrons, in which a constant electric field has been frozen. In this case
the particles are independent and we can apply the previous variance reduction
technique, developed under the hypothesis of independent particles.
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To determine the electron energy distribution (EED) function, we have dis-
cretized the whole energy space in a system of concentric shells with increasing
radius

ρi = ih, i = 1, ...,K, h =
εM

K

(in our case εM= 2 eV and K = 200) and by counting the number of particles
which are in the corresponding shells, i.e.

f1 = {#particles : ε < ρ1}
fi = {#particles : ρi−1 ≤ ε < ρi}

fNε+1 = {#particles : ε ≥ εM} .

The confidence interval for each point of the EED is obtained by means of the
Central Limit Theorem in the following way. Let us suppose to make Nr inde-
pendent runs (repetitions). Then we obtain fi j quantities (i=1,...,K , j=1,...,Nr).
For simplicity we shall call ξ j = fi j omitting the index i. The confidence interval
is evaluated as

ξ̄ ±Sξ

with

ξ̄ =
1
Nr

Nr

∑
j=1

ξ j

Sξ = 3

√√√√√ 1
Nr

 1
Nr

Nr

∑
j=1

ξ 2
j −

[
1
Nr

Nr

∑
j=1

ξ j

]2


where the factor 3 corresponds to a 99.7 % confidence level. In our case, each
repetition had a duration of 20 ps, but data were discarded during the 5 ps initial
transient.
In the figures 1,2 we plot the EED functions with the confidence interval, ob-
tained with the Multicomb algorithm and without (Unenhanced), where an elec-
tric field of 48.000 and 120.000 V/cm have been frozen. The accuracy of the
Multicomb method is verified by the fact that its errors fall within the error of
the unenhanced method (note that the error bars appear asymmetrical about the
mean because the vertical axis has a logarithmic scale).
In the figure 1 the maximum energy reached during the unenhanced simulation
is 0.44 eV, whereas that with the Multicomb is 0.52 eV, obtaining an enhance-
ment of the tail.
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The Relative Error

RE =
Sξ

ξ̄

is plotted in the figures 3,4 showing that the Multicomb method gives a lower
error at high energies (i.e. ≥ 0.2 eV for an electric field of 48.000 V/cm, ≥ 1.2
eV for an electric field of 120.000 V/cm). Although the relative error provides
useful information about the performance of the methods, it does not take into
account the CPU time used. In general, the variance reduced methods pay the
price of a greater CPU time consumption, with respect to the unehnanced ones
because more control instruction must be added in the code. For example, for
an electric field of 48.000 V/cm, the CPU time for Multicomb has been 12100
sec and that for the unenhanced 5200 sec. A useful parameter for comparing the
performance of the two methods is the Figure of Merit, that takes into account
the relative error as well as the CPU time.
We define the Figure of Merit (FoM), for the EED, as

FoM =
1

(RE)2 TCPU

where TCPU is the total CPU time. Since the Relative Error is proportional to
1/
√

Nr and the time TCPU , that takes to run Nr runs, is proportional to Nr, then
the FoM is independent of Nr. Because the FoM is inversely proportional to
the total CPU time, a method which approaches a given level of error faster will
have a higher figure of merit.
In the figures 5, 6 we plot the FoM. From these figures is evident that for low
energies there is an additional cost in the Variance Reduction, whereas at high
energies the Variance Reduction code is better than the normal code.
Another way to compare the efficiency is to run the unenhanced code for a
longer simulation time Tsim (i.e. with a longer CPU time), to have the same
maximum energy (or the same EED tail) of the Multicomb.
We have the following table, obtained with an electric field of 48.000 V/cm

CPU times

Method Unenh Unenh Multi
Tsim (ps) 20 140 20

Max ene (eV) 0.44 0.52 0.52
TCPU (sec) 5200 36400 12100

where Unenh and Multi indicate respectively the Unenhanced and Multicomb
methods, Max ene is the maximum energy reached during the run, and Tsim is
the total simulation time.
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In order to reach the same max energy, the unenhanced algorithm must run for
a longer simulation time (Tsim= 140 ps), consuming 36400 sec of CPU, which
means a factor 3 with respect to the Multicomb algorithm, whose CPU time is
12100 sec. Similar results have been obtained with a higher electric field. These
results have been obtained with opteron dual core processors.

5. Conclusions

We have presented a Variance Reduction method for Monte Carlo simulations
in bulk silicon, in the class of population control techniques. This algorithm
provides the population of high energy electrons and give better information
about the high energy distribution. The cost associated with Multicomb has
been estimated as a factor 3 respect to the normal algorithm.
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Figure 1: The energy distribution with error bar, for the unenhanced and multi-
comb methods, averaged over 100 simulations of 20 ps and using 11000 elec-
trons, obtained with an electric field of 48000 V/cm.
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Figure 2: The energy distribution with error bar, for the unenhanced and multi-
comb methods, averaged over 100 simulations of 20 ps and using 11000 elec-
trons, obtained with an electric field of 120000 V/cm.
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Figure 3: Relative error for the energy distribution versus energy for the unen-
hanced and multicomb methods, averaged over 100 simulations of 20 ps and
using 11000 electrons, obtained with an electric field of 48000 V/cm
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Figure 4: Relative error for the energy distribution versus energy for the unen-
hanced and multicomb methods, averaged over 100 simulations of 20 ps and
using 11000 electrons, obtained with an electric field of 120000 V/cm
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Figure 5: Figure of merit versus the energy for the unenhanced and multicomb
methods, using 11000 electrons, obtained with an electric field of 48000 V/cm
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Figure 6: Figure of merit versus the energy for the unenhanced and multicomb
methods, using 11000 electrons, obtained with an electric field of 120000 V/cm
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