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HENSTOCK INTEGRAL AND DINI-RIEMANN THEOREM

GIUSEPPE RAO - FRANCESCO TULONE

In [5] an analogue of the classical Dini-Riemann theorem related to
non-absolutely convergent series of real number is obtained for the Lebes-
gue improper integral. Here we are extending it to the case of the Hen-
stock integral.

1. Introduction

The classical Dini-Riemann theorem (see [2]) stating that if a series of real num-
bers is non-absolutely convergent, then it can be rearranged so that the new
series converges to any arbitrary assigned value, was extended in [5] for the
Lebesgue improper integral, using a measure preserving mapping instead of
permutation.

In the same paper we have noticed that this fact is not true for some non-
absolute integrals. An example is the Kolmogorov A-integral (see [1] and [7])
which being non-absolute is known to be invariant under measure preserving
mapping.

In this paper we extend the previous result to the case of Henstock integral.
Once again we present a direct construction of measure preserving mapping that
changes the value of the integral.
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2. Notations and results

All the functions we are considering here are real valued and defined in [0, 1]
and p, u* are understood as the Lebesgue measure and outer Lebesgue measure
respectively.

We remind that a map ¢ is called measure preserving if the image ¢ (A) of
any measurable set A is measurable and (@ (A)) = u(A)

The definition of the Henstock integral can be found for example in [3]. The
only property of Henstock integral we need is the following theorem.

Theorem 2.1. If a function f : [0,1] — R is Lebesgue improper integrable, then
it is Henstock integrable on [0, 1] with the same integral value.

Proof. This theorem is a special case of [3, Theorem 2.8.3] having in mind
that each Lebesgue integrable function is Henstock integrable with the same
value. 0

The result of this paper is the following theorem.

Theorem 2.2. For any Henstock integrable function f :[0,1] — R which is
not Lebesgue integrable and for any o € R there exists a measure preserving
mapping Yy : [0,1] — [0, 1] one-to-one up to a set of measure zero such that
f(wa(x)) is also Henstock integrable function with integral value equal to .

Proof. We start with a modification of a construction given in [4].

Consider the measurable sets A, = {x € [0,1] :n—1 < f(x) <n} and B, =
{xe€l0,1]: =n < f(x) < —n+1} forn=1,2,....

Putting

k—1 k k—1 k
k_ k
An —AnU |:nz’n2:| and Bl’l —Bn |:nz’nzj|
we have A, = UZ; AK and B, = UZZZI Bk, Tt is clear that
UanuUs,) =[0.1]. (1)
k,n k,n
By the definition of the above sets for each n and k we get

1 1 1 1

0< /) f<n-—5=-and 0> | f>—-n —=——,

Ak n n Bk n n

so that
lim f=lim f=0,
Bk

n—oo Ak n—oo
n
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independently of k.
We note that, since the function f is not Lebesgue integrable but Henstock
integrable, then (see [4])

As in the proof of classical Dini-Riemann theorem we can introduce a linear

numeration of the sequence
r f}
{ A% JBl nk,m,h

denoting it as {¢;};, in such a way that > ¢; = c.

We denote by C; the set AX or B, for which [, f or [5 f is equal to ¢;. We
note that on each C; the function f keeps the sign. ' !

By (1) we have U7 | C; = [0, 1] and since C; are non-overlapping the equality
Y=, u(Ci) =1 holds.

Let D; C C; be the subset of all density points of C; that belong to C;. We take
into account only those C; for which D; is nonempty. The sets D; are mutually
disjoint. We still have Y2 u(D;) = 1 and pu([0,1]\ (U;D;)) = 0.

We put 1p := 0 and ¢; := Y'/_, u(D;) for j > 1. Now we define the function
¢ : U;D; — [0, 1] so that

j—1
¢(x) = Y w(Di) +u(D;N[0,x]) =t 1 +pu(D;N[0,x]) for xeD;.  (2)
i=1
This function is strictly increasing on D; for each fixed j. Indeed if we take
two points x; and x, of the same D}, x; < x», then

@(x2) —@(x1) = w(D;N[0,x2]) — w(D;N[0,x1]) = w(D; N (x1,x2]) > 0.

Moreover if x; and x, belong to different sets x; € D; and x, € D; with
[ > j, then @(x1) # @(x2) because @(x2) — @(x1) > u(DjN (x1,1]) > 0. From
this follows that the sets ¢ (D;) are mutually disjoint. We note also that

@(Dj) C ltj-1,t)]- 3)

and @(U;(D;)) = Ui(@(D;)) C [0,1]. Therefore ¢ is one-to-one and we can
define (p71 : (P(U,'Di) — U;D;.
We prove that the function ¢ is measurable and preserves the measure. As
for measurability it is enough to note that for any 0 < ¢ < 1 there exist j and y
such that .
fr:o() <} = (WD) U(D;N[0,)
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where j is chosen in such a way that le:_ll u(D;) <c< Z{: L 1(Dy).

Because of o-additivity of the measure and because the sets D; are disjoint
together with their images, it is enough to prove that ¢ is measure preserving
mapping on each D, j = 1,2,.... So let j be fixed.

We shall use the following estimate (see [6], ch. VII, theorem 6.5): if a
measurable function F is differentiable on a measurable set A then

WF@) < [ IFWlan. @

We apply the above estimation for a function ¢; defined on [0, 1] by

i1 x
0,(0) = X (D) + [ 10, du.
i=1
The function @; is continuous being the indefinite Lebesgue integral. We obvi-
ously have ¢;([0,1]) = [tj_1,¢;] and so
@;(1) — 9;(0) = u(Dy). (5)

We note also that for x € D; we have ¢;(x) = ¢(x). Since each point x € D;
is a point of density of D; then (pj’~ (x) = 1 for such x. Now using (4) for any
measurable set M, M C D, we obtain

W (@) = 1 (M) < [ 7, du = (o). ©)
In particular we have
u (o(Dj)) < u(Dj). (7)
Let S; = {x €[0,1] : ¢}(x) =0} and
P;j={x€[0,1]:0 < ¢(x) < 1 or @;(x) does not exists}.
The Lebesgue density theorem implies that
u(S;) = u([0,1]\D;) and u(Pj) = 0.
Applying (4) to the function ¢; and the set §; we get
p(@;(S;)) =0. (8)

The function ¢; being the indefinite Lebesgue integral is absolutely continuous
and so has Lusin (N)-property, hence

1(e;(p;)) =0. 9)
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Now combining the (7), (8) and (9) we obtain

1 (;([0,1])) < ™ (@;(D)) +p(@;(Py) +1(9;(S))) =" (@(D;)) < (D). (10)

As ¢; is monotonic and continuous on [0, 1], so u(¢;([0,1])) = @;(1) — ¢;(0).
Combining this with (5) and (10) we get

u(D;) < u*(o(D;)) < u(Dyj).

Therefore we finally obtain

u (e(D;)) = u(Dy) =tj1 —tj. (11)

Moreover ¢@(D;) is measurable. Indeed

@(D;j) = ¢;i(D;) D @;([0, 1))\ (9;(P)) U@;(S;)) = [tj—1,4;]\ (@;(P;) U ;(S}))-

This together with (3) shows that ¢(D;) coincides with the interval [¢;_;,z;] up
to the set of measure zero and hence it is measurable. So we can rewrite (11) as

u(e(D;)) = u(Dj). (12)

To get the same equality for any measurable M, M C D; we rewrite (6) for
D;\ M obtaining u*(¢(D;\M)) < u(D;\ M). This together with (12) and the
subadditivity of outer measure gives

ui(eM)) = u(e(Dj)) —u*(@(Dj\M)) = u(D)) — u(Dj\ M) = u(M).

Comparing this with (6) we obtain that u*(¢@(M)) = u(M) for any M C D;.
From this, (12) and the fact that the mapping ¢ is one-to-one on D; we get

u(eDj)\oM))=u(@(Dj\M))=u(D;j\M)=u(D;j) — u(M)=

=u(@(D)) — u*(¢(M)).

Considering ¢ (M) as a subset of measurable set ¢(D;) we can interpret the
above equality as Lebe sgue criterium for measurability of ¢(M). So we have
proved that ¢ is a measure preserving mapping on D; and therefore on whole

U;D;.
We also have

p(o(UiD:)) = n(Ui(e(Dy))) = Zﬂ(‘P(Di)) = Z.U(Di) =1

So both functions ¢ and ¢! are mapping [0, 1] onto [0, 1], up to a set of measure
zero. We show now that W, := @~ ! is the function we are looking for.
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To prove that y, is also measure preserving mapping it is enough to check
that the pre-image of any measurable set under our mapping ¢ is measurable.
So, let ¢(E) be a measurable set then @(E) = AUB where A is a Borel set
and u(B) = 0. Then E = ¢~ '(A) U@~ !(B), with ¢~ '(A) measurable as pre-
image of a Borel set under measurable mapping. We can also find a Borel set
G such that B C G and u(G) = 0. Therefore ¢~!(B) C ¢! (G) with ¢~!(G)
measurable. Since we know that ¢ is measure preserving mapping on the class
of measurable sets we get 1t(G) = u*(¢(¢~'(G))) = u(¢~'(G)). This implies
w(@~'(B)) = 0 and then @' (B) is measurable. This proves the measurability
of E. As ¢ is one-to-one on [0, 1] up to the set of measure zero and is mea-
sure preserving mapping we obtain that W, = ¢! is also measure preserving
mapping.

The function f(yy(y)) is defined almost everywhere on [0, 1]. As the Lebes-
gue integral is invariant under measure preserving mapping we get

" P (W)t = / F(Wely))dpy = / F)dp, =c;.

tj—1

Therefore we get [i" f(y(y ))d/.ty =Yr_ | Ck
So, having in mind that ¥, ne1Cn = O, we obtain

lim ﬂ)ﬂ@:ngq:a
k=1

n——00

Considering now any ¢, 0 < ¢ < 1, there exists n such that 7,_; <t < t, and the
interval (f,,—1,1,) is the image of D;, up to a set of measure zero. As the function
f(y) keeps the sign on [t,_1,1,), then the value of [5 f(¢~'(y))du, is between
the values [;"~' f(¢~'(y))dpy, and [" (9~ (y))dLy, and we conclude

hq/f Y)du, = o
—

proving that improper Lebesgue integral of function f(y/(y)) on [0, 1] is equal
to . Now applying Theorem 2.1 we complete the proof of Theorem 2.2. [
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