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GOTZMANN LEXSEGMENT IDEALS

ANDA OLTEANU - OANA OLTEANU - LOREDANA SORRENTI

In this paper we characterize the componentwise lexsegment ideals
which are componentwise linear and the lexsegment ideals generated in
one degree which are Gotzmann.

1. Introduction

Let k be a field and S = k[x1, . . . ,xn] the ring of polynomials in n variables.
We consider S to be standard graded, that is deg(xi) = 1 for all i and endowed
with the graded lexicographical order with respect to x1 > .. . > xn. Namely,
if u = xa1

1 · · ·xan
n , v = xb1

1 · · ·xbn
n are two monomials in S, we have u >lex v if

deg(u) > deg(v) or deg(u) = deg(v) and there exists 1≤ s≤ n such that ai = bi

for all i ≤ s− 1 and as > bs. We denote by m the maximal graded ideal of
S. Let I ⊂ S be a graded ideal, I =

⊕
q≥0

Iq. We denote by H(I,−) its Hilbert

function, that is H(I,q) = dimk(Iq) for all q ≥ 0, and by I〈q〉 the homogeneous
ideal generated by the component of degree q of I.

In [7], J. Herzog and T. Hibi defined the componentwise linear ideals.
Namely, a graded ideal I of S is called componentwise linear if, for each degree
q, I〈q〉 has a linear resolution.
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Ideals with linear quotients are examples of componentwise linear ideals
[3]. They were defined by J. Herzog and Y. Takayama in [9]. A graded ideal
I of S has linear quotients if there exists a system of homogeneous generators
f1, . . . , fm of I such that the colon ideals ( f1, . . . , f j−1) : ( f j) are generated by
linear forms, for all 2 ≤ j ≤ m. A. Soleyman Jahan and X. Zheng generalized
the notion of ideals with linear quotients as follows: a graded ideal I has com-
ponentwise linear quotients if, for each degree q, I〈q〉 has linear quotients. They
proved that any graded ideal with linear quotients has componentwise linear
quotients [11, Theorem 2.7].

Since any ideal with linear quotients generated in one degree has a linear
resolution [3], looking at the above definitions, one may note that any graded
ideal with componentwise linear quotients is componentwise linear. In general,
the converse does not hold.

Along the above definitions, one may consider the lexsegment ideals. We
recall that a monomial ideal I ⊂ S is called a lexsegment ideal if for each degree
j, if I j 6= 0, then I j is generated by a lexsegment set of degree j, that is a set of
monomials of degree j of the form

L j(u,v) = {w ∈M j | u≥lex w≥lex v}.

for some monomials u,v of degree j, u ≥lex v. We prove that, for this class of
ideals, being componentwise linear is equivalent to having componentwise lin-
ear quotients. Next we consider a smaller class of lexsegment ideals that we call
componentwise lexsegment ideals. For this subclass we require that, if d is the
least degree of the minimal monomial generators, then, for any j≥ d +1, the j-
degree component I j is generated over k by the lexsegment set L j(x

j−d
1 u,x j−d

n v)
if Ld(u,v) generates Id . In other words, each higher component I j is generated
over k by the lexsegment set of degree j determined by the first and the last
monomials in the shadow of the lexsegment set which generates the previous
component I j−1.

For a componentwise lexsegment ideal I, we show that the property of be-
ing componentwise linear is equivalent to the condition that I〈d〉 has a linear
resolution, where Id is the first non-zero component of I.

Let d be a positive integer. Then any non-negative integer a has a unique
representation of the form

a =
(

ad

d

)
+ . . .+

(
a j

j

)
,

where ad > ad−1 > .. . > a j ≥ j ≥ 1. This is called the binomial or Macaulay
expansion of a with respect to d. For such an expansion of a with respect to d
one defines

a〈d〉 =
(

ad +1
d +1

)
+ . . .+

(
a j +1
j +1

)
.
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It is customary to put 0〈d〉 = 0 for any d > 0.
We recall the Gotzmann’s persistence theorem [6].

Theorem 1.1. Let I ⊂ S be a homogeneous ideal generated by elements of de-
gree at most d. If H(I,d + 1) = H(I,d)〈d〉, then H(I,q + 1) = H(I,q)〈q〉 for all
q≥ d.

Given a graded ideal I ⊂ S, there exists a unique lexicographic ideal Ilex

such that I and Ilex have the same Hilbert function. The lexicographic ideal Ilex

is constructed as follows. For each graded component I j of I, one consider Ilex
j

to be the k-vector space generated by the unique initial lexsegment L j such that
|L j|= dimk(I j). Let Ilex =

⊕
j

Ilex
j . It is known that Ilex constructed as before is

indeed an ideal.
A graded ideal I ⊂ S generated in degree d is called a Gotzmann ideal if the

number of generators of mI is the smallest possible, namely it is equal to the
number of generators of mIlex. Therefore, by Gotzmann’s persistence theorem,
a graded ideal I ⊂ S generated in degree d is Gotzmann if and only if I and
(Ilex)〈d〉 have the same Hilbert function.

J. Herzog and T. Hibi generalized this notion as follows: a graded ideal I of
S is a Gotzmann ideal if all ideals I〈 j〉 are Gotzmann ideals [7].

For graded Gotzmann ideals we have the following characterization in terms
of (graded) Betti numbers [7].

Theorem 1.2. Let I ⊂ S be a graded ideal. The following conditions are equiv-
alent:

(a) βi j(S/I) = βi j(S/Ilex) for all i, j;

(b) β1 j(S/I) = β1 j(S/Ilex) for all j;

(c) β1(S/I) = β1(S/Ilex);

(d) I is a Gotzmann ideal.

Let I be a Gotzmann monomial ideal generated in degree d. From the above
results it follows that Ilex is also generated in degree d and I has a linear resolu-
tion.

We aim at characterizing the lexsegment ideals generated in one degree
which are Gotzmann.

For an integer d ≥ 2, let Md be the set of all monomials of degree d in S
ordered lexicographically with x1 > x2 > .. . > xn.

A monomial ideal generated by an initial lexsegment of degree d, L i(v) =
{w ∈Md | w≥ v}, v ∈Md , is called an initial lexsegment ideal.
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Initial lexsegment ideals generated in one degree are obviously Gotzmann.
Arbitrary lexsegment ideals generated in one degree which have linear res-

olutions have been characterized in [1]. Their characterization distinguishes
between completely and non-completely lexsegment ideals. In order to char-
acterize the Gotzmann property of a lexsegment ideal generated in one degree,
we also need to distinguish between these two classes of ideals. In the last two
sections of this paper, we analyze these two classes.

Our paper gives a complete solution to a problem posed by Professor J.
Herzog at the School of Research PRAGMATIC 2008 in Catania, July 2008.

2. Componentwise lexsegment ideals

In [10], H. Hulett and H.M. Martin defined a more general class of lexsegment
ideals as follows: a monomial ideal I of S is called a lexsegment ideal if when-
ever u,v ∈ I are monomials of the same degree and u≥lex m≥lex v, then m ∈ I.

We prove that, for this class of monomial ideals, the two notions, compo-
nentwise linear and componentwise linear quotients, are equivalent.

Theorem 2.1. Let I be a lexsegment ideal. The ideal I is componentwise linear
if and only if I has componentwise linear quotients.

Proof. Firstly, let us assume that I has componentwise linear quotients. Since
any ideal with linear quotients generated in one degree has a linear resolution,
the statement follows by comparing the definitions.

Conversely, let I be a lexsegment ideal which is componentwise linear and
let d ≥ 1 be the lowest degree of the minimal monomial generators of I. For
each j ≥ d, the ideal I〈 j〉 is a lexsegment ideal generated in one degree with
a linear resolution. Therefore, for each j ≥ d, I〈 j〉 has linear quotients, by [5,
Theorem 1.1 and Theorem 2.1]. The statement follows.

We consider a smaller class of lexsegment ideals, namely componentwise
lexsegment ideals, and we characterize all the componentwise lexsegment ideals
which are componentwise linear.

Definition 2.2. Let I be a monomial ideal in S and d the least degree of the
minimal monomial generators. The ideal I is called componentwise lexsegment
if, for all j≥ d, its degree j component I j is generated, as k-vector space, by the
lexsegment set L (x j−d

1 u,vx j−d
n ).

Obviously, completely lexsegment ideals generated in one degree are com-
ponentwise lexsegment ideals as well.
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Example 2.3. The ideal I = (x1x2
3,x

3
2,x1x2

2x3) is a componentwise lexsegment
ideal. Indeed, one may note that I3 is the k-vector space spanned by L (x1x2

3,x
3
2)

and I4 is the k-vector space generated by L (x2
1x2

3,x
3
2x3). Since L (x2

1x2
3,x

3
2x3) is

a completely lexsegment set [12, Theorem 2.3], I j is generated by the lexseg-
ment set L (x j−2

1 x2
3,x

3
2x j−3

3 ) for all j ≥ 4.

One may easily find examples of lexsegment ideals which are not compo-
nentwise lexsegment.

Example 2.4. Let I = (x1x2
2,x1x2x3,x1x2

3,x
3
2,x

2
2x3,x3

1x2,x3
1x3) be a monomial

ideal in k[x1,x2,x3], where k is a field. We have that I3 is the k-vector space
spanned by the lexsegment set L3(x1x2

2,x
2
2x3), I4 is the k-vector space generated

by L4(x3
1x2,x2

2x2
3) and I〈4〉 is a completely lexsegment ideal. Therefore, I is a

lexsegment ideal. Since L (x2
1x2

2,x
2
2x2

3) ( L4(x3
1x2,x2

2x2
3), one gets that I is not

componentwise lexsegment.

We characterize all the componentwise lexsegment ideals which are compo-
nentwise linear. Since this class of ideals is contained in the class of lexsegment
ideals, it is clear that the notions componentwise linear and componentwise lin-
ear quotients are equivalent, by Theorem 2.1.

One may note that we always may assume x1 | u since otherwise we can
study the ideal in a polynomial ring in a smaller number of variables.

Theorem 2.5. Let I be a componentwise lexsegment ideal and d ≥ 1 the lowest
degree of the minimal monomial generators of I. Let u,v ∈Md , x1|u be such
that I〈d〉 = (L (u,v)). Then I is a componentwise linear ideal if and only if I〈d〉
has a linear resolution.

Proof. If I is componentwise linear, the statement is straightforward. Therefore,
we have to prove only that if I〈d〉 has a linear resolution then I is componentwise
linear.

We separately treat the case of completely and of non-completely lexseg-
ment ideals. Firstly, let us assume that I〈d〉 is a completely lexsegment ideal
generated in one degree with a linear resolution. Hence I = I〈d〉. Since I is a
completely lexsegment ideal generated in degree d with a linear resolution, the
ideals generated by the shadows of L (u,v) are completely lexsegment ideals
generated in one degree with linear resolutions. Therefore I is componentwise
linear.

If I〈d〉 = (L (u,v)) is a non-completely lexsegment ideal generated in one
degree with a linear resolution, then, by [1, Theorem 2.4], u and v must have the
form

u = x1xal+1
l+1 · · ·x

an
n and v = xlxd−1

n
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for some l, 2≤ l < n. Therefore, ν1(u) = 1 and ν1(v) = 0. Here, for a monomial
m = xa1

1 · · ·xan
n , we denoted by νi(m) the exponent of the variable xi, that is

νi(m) = ai.
If we look at the ends of the lexsegment L (x1u,vxn), we have ν1(x1u) = 2,

ν1(vxn) = 0 and one may easily see that (L (x1u,vxn)) is a completely lexseg-
ment ideal. By [1, Theorem 1.3], (L (x1u,vxn)) has a linear resolution. Since
(L (x1u,vxn)) is a completely lexsegment ideal with a linear resolution, the ide-
als generated by the shadows of L (x1u,vxn) are completely lexsegment ideals
with linear resolutions. Therefore, I is componentwise linear.

3. Gotzmann completely lexsegment ideals

In this section we are going to characterize the completely lexsegment ideals
generated in degree d which are Gotzmann.

Firstly we recall another operator connected with the binomial expansion of
an integer.

Let a =
(ad

d

)
+ . . . +

(a j
j

)
, ad > ad−1 > .. . > a j ≥ j ≥ 1, be the binomial

expansion of a with respect to d. Then

a(d) =
(

ad

d +1

)
+ . . .+

(
a j

j +1

)
.

We obviously have the following equality:

a〈d〉 = a+a(d).

Lemma 3.1. Let c > b > 0 be two integers. Let b =
(bd

d

)
+. . .+

(b j
j

)
, bd > bd−1 >

.. . > b j ≥ j ≥ 1, and c =
(cd

d

)
+ . . .+

(ci
i

)
, cd > cd−1 > .. . > ci ≥ i≥ 1, be the

d-binomial expansions of b and c. The following statements are equivalent:

(i) b(d) = c(d);

(ii) j ≥ 2 and c−b≤ j−1.

Proof. Let b(d) = c(d). Since c > b, by [2, Lemma 4.2.7], there exists s≤ d such
that cd = bd , . . . ,cs+1 = bs+1, and cs > bs. We obviously have s+1≥ j. Let us
suppose that s≥ j. Since cs ≥ bs +1, we get:(

cs

s+1

)
≥
(

bs +1
s+1

)
≥
(

bs

s+1

)
+
(

bs−1

s

)
+ . . .+

(
b j

j +1

)
+
(

b j

j

)
>

>

(
bs

s+1

)
+
(

bs−1

s

)
+ . . .+

(
b j

j +1

)
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This leads to the inequality c(d) > b(d), which contradicts our hypothesis. In-
deed, we have

c(d) ≥
(

cd

d +1

)
+ . . .+

(
cs+1

s+2

)
+
(

cs

s+1

)
>

>

(
bd

d +1

)
+ . . .+

(
bs+1

s+2

)
+
(

bs

s+1

)
+ . . .+

(
b j

j +1

)
= b(d).

Therefore we must have s = j−1. Hence j≥ 2 and c has the binomial expansion

c =
(

cd

d

)
+ . . .+

(
c j

j

)
+
(

c j−1

j−1

)
+ . . .+

(
ci

i

)
.

Using the equality c(d) = b(d) we get(
c j−1

j

)
+ . . .+

(
ci

i+1

)
= 0,

which implies that c j−1 = j−1, . . . ,ci = i. Therefore c = b+ j− i≤ b+ j−1,
which proves (ii).

Now, let j ≥ 2 and c ≤ b + j−1. As in the first part of the proof, let s ≤ d
be an integer such that cd = bd , . . . ,cs+1 = bs+1, and cs > bs. If s≥ j, we get the
following inequalities:

c =
(

cd

d

)
+ . . .+

(
cs+1

s+1

)
+
(

cs

s

)
+ . . .+

(
ci

i

)
≥

≥
(

bd

d

)
+ . . .+

(
bs+1

s+1

)
+
(

bs +1
s

)
+
(

cs−1

s−1

)
+ . . .+

(
ci

i

)
≥

≥
(

bd

d

)
+ . . .+

(
bs+1

s+1

)
+
(

bs

s

)
+ . . .+

(
b j

j

)
+
(

b j

j−1

)
+
(

cs−1

s−1

)
+ . . .

. . .+
(

ci

i

)
= b+

(
b j

j−1

)
+
(

cs−1

s−1

)
+ . . .+

(
ci

i

)
≥ b+ j− i+ s.

Since, by hypothesis, c−b ≤ j−1, we have j−1 ≥ j− i + s, thus s ≤ i−1, a
contradiction. Hence, s = j−1. Then we have:

c(d) =
(

cd

d +1

)
+ . . .+

(
cs+1

s+2

)
+
(

cs

s+1

)
+ . . .+

(
ci

i+1

)
=

=
(

bd

d +1

)
+ . . .+

(
b j

j +1

)
+
(

c j−1

s

)
+ . . .+

(
ci

i+1

)
=
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= b(d) +
(

c j−1

j

)
+ . . .+

(
ci

i+1

)
If we assume that c j−1 ≥ j, then it follows that

(c j−1
j−1

)
≥ j. Looking at the d-

binomial expansions of b and c, we get c−b≥ j, contradiction. Hence c j−1 =
j−1. This equality implies also the equalities ck = k, for all i≤ k ≤ j−2. We
obtain the following binomial expansion of c:

c =
(

cd

d

)
+ . . .+

(
c j

j

)
+
(

j−1
j−1

)
+ . . .+

(
i
i

)
.

Then

c(d) =
(

cd

d +1

)
+ . . .+

(
c j

j +1

)
=
(

bd

d +1

)
+ . . .+

(
b j

j +1

)
= b(d).

Lemma 3.2. Let c > 0 be an integer with the binomial expansion

c =
(

cd

d

)
+ . . .+

(
ci

i

)
, cd > .. . > ci ≥ i≥ 1.

The following statements are equivalent:

(a) c(d) = 0;

(b) c≤ d.

Proof. Let c≤ d. Then c has the following binomial expansion with respect to
d:

c =
(

d
d

)
+ . . .+

(
i
i

)
, for some i≥ 1.

Hence c(d) = 0.
Now let c(d) = 0. We get(

cd

d +1

)
+ . . .+

(
ci

i+1

)
= 0, which implies

cd = d, . . . , ci = i.

It follows c = d− (i−1)≤ d.

Theorem 3.3. Let u,v ∈Md , x1 | u such that I = (L (u,v)) is a completely
lexsegment ideal of S which is not an initial lexsegment ideal. Let j be the
exponent of the variable xn in v and a = |Md \L i(u)|. The following statements
are equivalent:
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(a) I is a Gotzmann ideal;

(b) a≥
(n+d−1

d

)
− ( j +1).

Proof. Let b = |Md \L i(v)| and w ∈Md such that |L (u,v)| = |L i(w)|. We
denote c = |Md \L i(w)|. Then |L i(w)|= |L i(v)|− |L i(u)|+1 = a−b+1,
which yields: (

n+d−1
d

)
− c = a−b+1,

that is

c =
(

n+d−1
d

)
− (a+1)+b. (1)

Since I is completely, I is Gotzmann if and only if

|L i(wxn)|= |L (ux1,vxn)|= |L i(vxn)|− |L i(ux1)|+1. (2)

Since x1 | u, we have |L i(ux1)|= |L i(u)|. Therefore, the equality (2) is equiv-
alent to

|L i(wxn)|= |L i(vxn)|− |L i(u)|+1

that is
|Md+1|− c〈d〉 = |Md+1|−b〈d〉− (|Md |−a)+1.

Here we used the well known formula

|Md+1 \ShadL |= r〈d〉,

where L ⊂Md is an initial lexsegment and r = |Md \L | [2]. Hence I is
Gotzmann if and only if

c〈d〉 = b〈d〉+
(

n+d−1
d

)
−a−1. (3)

By using (1), we obtain
c〈d〉 = b〈d〉+ c−b,

that is
c〈d〉− c = b〈d〉−b,

which is equivalent to

c(d) = b(d). (4)
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Let us firstly consider the case b = 0, that is v = xd
n and I is the final lexsegment

determined by u. The equation (4) becomes

c(d) = 0. (5)

By Lemma 3.2, c(d) = 0 if and only if c≤ d.
For the case b > 0, the monomial v has the form

v = xl1 · · ·xld− j x
j
n,

for some j ≥ 0 and 1≤ l1 ≤ . . .≤ ld− j ≤ n−1. The d-binomial expansion of b
is

b =
(

n− l1 +d−1
d

)
+ . . .+

(
n− ld− j + j

j +1

)
.

By Lemma 3.1, the equality (4) holds if and only if j ≥ 1 and c−b ≤ j. Then
we have obtained c−b≤ j for any b. By (1), this inequality holds if and only if(n+d−1

d

)
− (a+1)≤ j, that is

a≥
(

n+d−1
d

)
− ( j +1).

4. Gotzmann non-completely lexsegment ideals

Firstly, we recall the Taylor resolution. Let I be a monomial ideal of S with the
minimal monomial generating set G(I) = {u1, . . . ,ur}. The Taylor resolution
(T•(I),d•) of I is defined as follows. Let L be the free S-module with the basis

{e1, . . . ,er}. Then Tq(I) =
q+1∧

L for 0 ≤ q ≤ r−1 and dq : Tq(I)→ Tq−1(I) for
1≤ q≤ r−1 is defined as follows

dq(ei0 ∧ . . .∧ eiq) =
q

∑
s=0

(−1)s lcm(ui0 , . . . ,uiq)
lcm(ui0 , . . . , ǔis , . . . ,uiq)

ei0 ∧ . . .∧ ěis ∧ . . .∧ eiq .

The augmentation ε : T0 → I is defined by ε(ei) = ui for all 1 ≤ i ≤ q. It is
known that, in general, the Taylor resolution is not minimal. M. Okudaira and Y.
Takayama characterized all the monomial ideals with linear resolutions whose
Taylor resolutions are minimal.

Theorem 4.1 ([13]). Let I be a monomial ideal with linear resolution. The
following conditions are equivalent:

(i) The Taylor resolution of I is minimal;
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(ii) I = m · (xi1 , . . . ,xil ) for some 1≤ i1 < .. . < il ≤ n and for a monomial m.

In [8], the componentwise linear monomial ideals whose Taylor resolutions
are minimal are described.

Theorem 4.2 ([8]). Let I be a componentwise linear monomial ideal of S. The
following conditions are equivalent:

(i) The Taylor resolution of I is minimal;

(ii) max{m(u) : u ∈ G(I)}= |G(I)|;

(iii) I is a Gotzmann ideal with |G(I)| ≤ n.

Now we can complete the characterization of non-completely lexsegment
ideals which are Gotzmann.

Theorem 4.3. Let u = xat
t · · ·xan

n , v = xbt
t · · ·xbn

n be two monomials of degree d,
u >lex v, at 6= 0, t ≥ 1 and I = (L (u,v)) a non-completely lexsegment ideal.
Then I is a Gotzmann ideal in S if and only if I = m(xl,xl+1, . . . ,xl+p) for some
t ≤ l ≤ n, some 1≤ p≤ n− l and a monomial m.

Proof. If I = m(xl,xl+1, . . . ,xl+p) for some t ≤ l ≤ n, some 1 ≤ p ≤ n− l and
a monomial m, then the ideal I is isomorphic to the monomial prime ideal
(xl,xl+1, . . . ,xl+p) and the Koszul complex of the sequence xl,xl+1, . . . ,xl+p is
isomorphic to the minimal graded free resolution of I. Therefore I has a linear
resolution and, by Theorem 4.1, the Taylor resolution of I is minimal. Since any
ideal with a linear resolution is componentwise linear, it follows by Theorem
4.2 that I is a Gotzmann ideal.

Now it remains to prove that, if I is a Gotzmann ideal in S, then I has the
required form.

Firstly, we prove that projdim(S/I) < n. For this, we study the following
cases.

Case I: t = 1, b1 = 0,a1 = 1. Since I is a non-completely lexsegment ideal
which is Gotzmann, I has a linear resolution. Therefore, by [1, Theorem 2.4], u
and v have the form

u = x1xal+1
l+1 . . .xan

n and v = xlxd−1
n

for some l, 2≤ l ≤ n−1. Since xnu <lex x1v, using [5, Proposition 3.2] we get
depth(S/I) 6= 0. Hence projdim(S/I) < n.

Case II: t = 1, 0 < b1 < a1. Since I is a non-completely lexsegment ideal,
we must have b1 = a1− 1. Now, if I does not have a linear resolution, I is not
Gotzmann. The ideal I has a linear resolution if and only if J = (L (u′,v′)) has
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a linear resolution, where u′ = u/xb1
1 and v′ = v/xb1

1 . One may easy check that
J is a non-completely lexsegment ideal. Therefore J has a linear resolution if
and only if u′ and v′ have the form u′ = x1xal+1

l+1 . . .xan
n and v′ = xlxd−1

n for some
l, 2 ≤ l ≤ n− 1 [1, Theorem 2.4] and this implies u = xa1

1 xal+1
l+1 . . .xan

n and v′ =
xa1−1

1 xlxd−1
n . Since xnu <lex x1v, using [5, Proposition 3.2] we get depth(S/I) 6=

0. Hence projdim(S/I) < n.
Case III: t = 1, a1 = b1 > 0. Since xnu <lex x1v, we have that depth(S/I) 6= 0

by [5, Proposition 3.2]. Hence projdim(S/I) < n.
Case IV: t > 1. We obviously have xnu <lex x1v and, by [5, Proposition 3.2],

depth(S/I) 6= 0. Therefore projdim(S/I) < n.
We may conclude that projdim(S/I) < n in all the cases.
Let w ∈Md be a monomial such that |L (u,v)| = |L i(w)|. Since I is a

Gotzmann ideal, Ilex is generated in degree d, that is Ilex = (L i(w)). By [7,
Corollary 1.4], I and Ilex have the same Betti numbers. In particular, we have

projdim(I) = projdim(Ilex).

Since projdim(S/I) < n, we have projdim(S/Ilex) < n. The ideal Ilex is stable in
the sense of Eliahou and Kervaire, thus there exists j < n such that w = xd−1

1 x j.
Therefore, |L (u,v)| = j < n. By the hypothesis, I is a Gotzmann ideal and I
is componentwise linear since it has a linear resolution. By Theorem 4.2, the
Taylor resolution of I is minimal. The conclusion follows by Theorem 4.1 and
taking into account that I is a lexsegment ideal.
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