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ACM BUNDLES ON DEL PEZZO SURFACES

JOAN PONS-LLOPIS - FABIO TONINI

ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the
rational normal curves that they contain. A complete list of ACM line
bundles is provided. Moreover, for any del Pezzo surface X of degree less
or equal than six and for any n ≥ 2 we construct a family of dimension
≥ n−1 of non-isomorphic simple ACM bundles of rank n on X .

1. Introduction

Given a n-dimensional smooth projective variety X over an algebraically closed
field k and a very ample line bundle OX(1) on it, associated to any vector bundle
E on X we have the cohomology groups Hi(X ,E (l)) for i∈ {0, . . . ,n} and l ∈Z.
It’s well-known that for l big enough H0(X ,E (l)) 6= 0 and by Serre duality there
also exists l such that Hn(X ,E (l)) 6= 0. Therefore we have only freedom to ask
for the vanishing of the intermediate cohomology groups. The vector bundles
for which this vanishing is achieved are called Arithmetically Cohen-Macaulay
bundles (ACM for short).

It becomes a natural question to study the complexity of the structure of
ACM bundles on a given variety. The first result addressing this question was
Horrocks’ theorem which states that on Pn

k the only indecomposable ACM bun-
dle up to twist is the structure sheaf OPn

k
. Later on, Knörrer in [12] proved that
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on a smooth quadric hypersurface X the only indecomposable ACM bundles up
to twist are OX and the spinor bundles S (which are one or two according to the
parity of the dimension of the quadric).

A complete list of varieties that admit only a finite number of indecompos-
able ACM bundles (up to twist and isomorphism) was given in [1] and [7]: as-
suming that X has only finitely many indecomposable vector bundles, then X is
either a projective space Pn

k , a smooth quadric, a cubic scroll in P4
k , the Veronese

surface in P5
k or a rational normal curve. They have been called varieties of finite

representation type (see [5] and references herein).
On the other extreme there would lie those varieties of wild representa-

tion type, namely, varieties for which there exist n-dimensional families of non-
isomorphic indecomposable ACM bundles for arbitrary large n. In the one di-
mensional case, it’s known that curves of wild representation type are exactly
those of genus larger or equal than two. For varieties of larger dimension, in [2]
Casanellas and Hartshorne were able to construct on a smooth cubic surface in
P3

k for any n ≥ 2 a n2 + 1-dimensional family of rank n indecomposable ACM
vector bundles with Chern classes c1 = nH and c2 = 1

2(3n2− n). Moreover,
Faenzi in [8] was able to give a precise classification of rank 2 ACM bundles on
cubic surfaces. He proved that they fall in 12 classes according to their minimal
free resolution as coherent OP3

k
-sheaves.

In this paper we focus our attention on ACM bundles on a class of sur-
faces that contains the smooth cubic surfaces as a particular case. This class of
surfaces, known as del Pezzo surfaces, has a very nice description in terms of
blow-ups of general points in P2

k and has been broadly studied. Good sources
are [3] and [14] where arithmetic aspects of these surfaces are also studied. For
a pure geometrical introduction we recommend [4]. The first question that we
address in this paper is the geometrical characterization of ACM line bundles
L . Since we’re interested in bundles up to twist we’re only going to work with
initialized bundles, meaning that H0(X ,L ) 6= 0 but H0(X ,L (−1)) = 0. Our
result concerning these issues can be stated as follows (see Theorem 4.5):

Theorem 1.1. Let X ⊆ Pd
k be a del Pezzo surface of degree d embedded through

the very ample divisor −KX . Then a line bundle L on X is initialized and
ACM if and only if either L ∼= OX or L ∼= OX(D) for a rational normal curve
D⊆ X ⊆ Pd

k of degree less or equal than d.

This result was already known in the case of the cubic surface (cfr. [8]) and
in the case of the del Pezzo surface of degree 4 (cfr. [11]).

Next, we turn our attention to the construction of indecomposable ACM
bundles of higher rank for which we use a well-known method: extension of
bundles. Thanks to the iteration of this method we obtained the main contri-
bution of this paper, namely, del Pezzo surfaces of degree up to six are of wild
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representation type by constructing explicitly families of ACM sheaves with the
required properties (see Theorem 5.5):

Theorem 1.2. Let X be a del Pezzo surface of degree ≤ 6. Then for any integer
n≥ 2 there exists a family of dimension ≥ n−1 of non-isomorphic simple ACM
vector bundles of rank n.

Let’s recall briefly how this paper is organized: in the second section we in-
troduce the necessary background on ACM bundles and del Pezzo surfaces. In
section three we stress the properties of the lines that are contained in del Pezzo
surfaces and we develop a Bertini-like theorem that expresses which linear sys-
tems contain smooth curves in terms of the intersection product with exceptional
divisors. Most of the material from this section should be well-known, but we
gather it here for the reader’s convenience. In section four we classify ACM line
bundles on del Pezzo surfaces and give a numerical characterization. In the last
section we work out the construction of simple ACM bundles of higher rank.

This paper grows out of the problem that was posed to the authors during the
P.R.A.G.MAT.I.C school held at the University of Catania in September 2009.
This problem was proposed just in zero characteristic.

2. Preliminaries

We follow notation from [9]. We are going to work with integral (i.e., reduced
and irreducible) varieties over an algebraically closed field k (of arbitrary char-
acteristic). Given a smooth variety X equipped with a very ample line bundle
OX(1) that provides a closed embedding in some Pn

k , the line bundle OX(1)⊗l

will be denoted by OX(l) or OX(lH). For any coherent sheaf E on X we’re
going to denote the twisted sheaf E ⊗OX(l) by E (l). As usual, Hi(X ,E )
(or simply Hi(E )) stands for the cohomology groups and hi(X ,E ) (or simply
hi(E )) for their dimension. For a divisor D on X , Hi(D) and hi(D) abbreviate
Hi(X ,OX(D)) and hi(X ,OX(D)) respectively. We will use the notation Hi

∗(E )
for the graded k[X0, . . . ,Xn]-module

⊕
l∈ZHi(Pn

k ,E (l)). KX will stand for the
canonical class of X and, as usual, ωX := OX(KX) for the canonical bundle.

We’re going to say that E is initialized (with respect to OX(1)) if

H0(X ,E (−1)) = 0 but H0(X ,E ) 6= 0.

If Y ⊆ X is a subvariety we denote the ideal sheaf of Y in X by IY |X and the
saturated ideal by IY |X := H0

∗(X ,IY |X). Whenever we write a closed subvariety
X ⊆ Pn

k , we consider it equipped with the very ample line bundle OPn
k
(1)|X . We

denote by SX the homogeneous coordinate ring, defined as k[X0, . . . ,Xn]/IX .
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2.1. ACM varieties and sheaves

This subsection will be devoted to recall the definitions and main properties of
ACM varieties and sheaves.

Definition 2.1. (cfr. [16, Chapter I, Definition 1.2.2]). A closed subvariety
X ⊆ Pn

k is Arithmetically Cohen-Macaulay (ACM) if its homogeneous coordi-
nate ring SX is Cohen-Macaulay or, equivalently, dimSX = depth SX .

Notice that any zero-dimensional variety is ACM. For varieties of higher
dimension we have the following characterization that will be used in this paper:

Lemma 2.2. (cfr. [16, Chapter I, Lemma 1.2.3]). If dim X ≥ 1, then X ⊆ Pn
k is

ACM if and only if Hi
∗(IX) = 0 for 1≤ i≤ dimX.

Definition 2.3. Let X be an ACM variety. A coherent sheaf E on X is Arith-
metically Cohen Macaulay (ACM for short) if it is locally Cohen-Macaulay (i.e.,
depthEx = dimOX ,x for every point x∈X) and has no intermediate cohomology:

Hi
∗(X ,E ) = 0 for all i = 1, . . . ,dimX−1.

Notice that when X is a smooth variety, which is going to be mainly our
case, any coherent ACM sheaf on X is locally free; for this reason we’re going
to speak uniquely of ACM bundles.

Lemma 2.4. Let X ⊆ Pn
k be an ACM variety. Then OX is an ACM sheaf (seen

as an OX -sheaf).

Proof. The vanishing of Hi
∗(OX) is immediate from Lemma 2.2 and the short

exact sequence defining X . On the other hand, it’s a well-known fact that SX

being Cohen-Macaulay implies that OX ,x is Cohen-Macaulay for any x∈ X .

Once we work inside an ACM variety, the relation between ACM ideal
sheaves and ACM subvarieties is very close:

Lemma 2.5. Let X ⊆ Pn
k be an ACM smooth variety with dimX ≥ 1 and D be

an integral effective divisor on X. Then the coherent OX -sheaf OX(−D) is ACM
if and only if D⊆ Pn

k is an ACM variety.

Proof. Let’s consider the exact sequence of OPn
k
-sheaves

0−→IX |Pn
k
−→ID|Pn

k
−→ OX(−D)−→ 0.

If we tensor it with OPn
k
(t) and take cohomology we get

Hi(IX |Pn
k
(t))−→ Hi(ID|Pn

k
(t))−→ Hi(OX(−D)(t))−→ Hi+1(IX |Pn

k
(t)).



ACM BUNDLES ON DEL PEZZO SURFACES 181

Since X is ACM, both extremes are zero for any t and for 1≤ i≤ dim(X)−1.
Therefore we get isomorphisms

Hi(ID|Pn
k
(t))∼= Hi(OX(−D)(t))

for any t and for 1≤ i≤ dimD = dim(X)−1. Since OX ,x(−D)∼= OX ,x is Cohen-
Macaulay for any x ∈ X , this turns out to be enough to conclude.

2.2. Del Pezzo surfaces

In this paper we’re going to be interested in ACM bundles on del Pezzo surfaces.
This kind of surfaces were studied by P. del Pezzo in the nineteenth century and
ever since its presence has been pervasive in Algebraic Geometry. Let’s recall
their definition and main properties:

Definition 2.6. (cfr. [13, Chapter III, Definition 3.1]). A del Pezzo surface is
defined to be a smooth surface X whose anticanonical divisor−KX is ample. Its
degree is defined as K2

X .

Remark 2.7. It’s possible to see that del Pezzo surfaces are rational. Indeed,
according to Castelnuovo’s criterion (cfr. [13, Chapter III, Theorem 2.4]), a
smooth surface X is rational if and only if h0(OX(2KX)) = 0 and h1(OX) = 0.
In the case of del Pezzo surfaces, the former cohomology group is zero because
−2KX is ample and therefore clearly 2KX is not effective. In characteristic zero
the latter cohomology group is zero thanks to the Kodaira vanishing theorem.
In characteristic positive, the vanishing still holds (cfr. [13, Chapter III, Lemma
3.2.1]).

Remark 2.8 (Serre duality for del Pezzo surfaces). Let X be a del Pezzo surface
with very ample anticanonical divisor HX :=−KX . Given a locally free sheaf E
Serre duality takes the form:

Hi(X ,E )∼= H2−i(X ,E ∨(−HX))′.

This remark will be used without further mention throughout the paper.

Definition 2.9. Given a surface X , a curve C on X is called exceptional if C∼=P1
k

and the self-intersection C2 =−1.

Theorem 2.10. (cfr. [14, Chapter IV,Theorem 24.3]). Let X be a del Pezzo sur-
face of degree d. Then every irreducible curve with a negative self-intersection
number is exceptional.



182 JOAN PONS-LLOPIS - FABIO TONINI

Definition 2.11. A set of points {p1, . . . , pr} on P2
k with r ≤ 9 are in general

position if no three of them lie on a line and no six of them lie on a conic.

The following theorem characterizes all del Pezzo surfaces:

Theorem 2.12. (cfr. [14, Chapter IV, Theorems 24.3 and 24.4]). Let X be a del
Pezzo surface of degree d. Then 1≤ d ≤ 9 and

(i) If d = 9, then X is isomorphic to P2
k (and −KP2

k
= 3HP2

k
gives the usual

Veronese embedding in P9
k).

(ii) If d = 8, then X is isomorphic to either P1
k ×P1

k or to a blow-up of P2
k at

one point.

(iii) If 7≥ d ≥ 1, then X is isomorphic to a blow-up of 9−d closed points in
general position.

Conversely, any surface described under (i),(ii),(iii) for d ≥ 3 is a del Pezzo
surface of the corresponding degree.

We’re only going to deal with del Pezzo surfaces with very ample anticanon-
ical sheaf. We are going to call them strong del Pezzo surfaces. The following
theorem characterize them:

Theorem 2.13. (cfr. [14, Chapter IV, Theorem 24.5]). If the surface X is ob-
tained from P2

k by blowing up r≤ 6 closed points in general position, then −KX

is very ample and its global sections yield a closed embedding of X in a projec-
tive space of dimension

dimH0(X ,OX(−KX))−1 = K2
X = 9− r.

The set of exceptional curves is identified under this embedding with the set
of lines in the projective space which lie on X. The image of X has degree 9− r.

Corollary 2.14. Let X be a strong del Pezzo surface. Then X is isomorphic
either to P1

k ×P1
k or to the blow-up of r points in general position on P2

k for
r = 0, . . . ,6.

In the next theorem we’re going to recall the classical fact that del Pezzo
surfaces fall in the class of ACM varieties (cfr. [3, Exposé V, Théorème 1]), but
before let us recall an important definition that is going to be used through out
the paper:

Definition 2.15. (cfr. [16, Chapter I, Definition 1.1.4]). A coherent sheaf E on
Pn

k is said to be m-regular if Hi(Pn
k ,E (m− i)) = 0 for all i > 0.
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Theorem 2.16. (cfr. [3, Exposé V, Théorème 1]) Let X be a strong del Pezzo
surface of degree d and let’s consider its embedding in Pd

k through the very
ample divisor −KX . Then X ⊆ Pd

k is an ACM variety.

Proof. We’re going to prove that H1
∗(OX) = 0 and H1

∗(IX) = 0. Then the char-
acterization from Lemma 2.2 and the short exact sequence definining the ideal
of X will allow us to conclude. Let’s define H := −KX . Since H2 = d and H
is very ample, by the adjunction formula and by [9, Chapter II, Theorem 8.18]
we obtain that H is a smooth elliptic curve. In particular, since KH ∼ 0, from
duality we obtain

h1(OH(m)) = h0(OH(−m)) = 0 for m > 0.

Since X is rational, by Castelnuovo’s criterion we conclude that H1(OX) = 0.
Next, from the exact sequence

0−→ OX(−1)−→ OX −→ OH −→ 0

twisting by m≥ 1 and taking cohomology

H1(OX(m−1))−→ H1(OX(m))−→ H1(OH(m)) = 0,

we have H1(OX(m)) = 0 for any m≥ 0. Since H1(OX(m))∼= H1(OX(−m−1)),
the vanishing holds for all m.

It remains to prove that H1
∗(IX) = 0; let’s consider the exact sequence

0−→IX −→ OPd
k
−→ OX −→ 0.

Since H2(OX(2−2))∼= H0(OX(−1)) = 0, OX is 2-regular. Being OPd
k

3-regular,

we have that IX is 3-regular and so H1(IX(m)) = 0 for m ≥ 2. Clearly this
also holds for m≤ 0. Finally H1(IX(1)) = 0 since X is embedded through the
complete linear system |−KX |.

Since we’re going to accomplish some demonstrations by induction on the
degree of the del Pezzo surfaces, the following result will reveal very useful:

Remark 2.17. (cfr. [14, Chapter IV, Corollary 24.5.2]). If X is a strong del
Pezzo surface and π : X → Y is a blow-down of a line, then Y is a del Pezzo
surface with H2

Y = H2
X +1.

To finish this section, let’s state an important feature of the ACM bundles
on del Pezzo surfaces:

Remark 2.18. Let X be a strong del Pezzo surface and E be a bundle on it.
Then E is ACM if and only if E ∨ is ACM.
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3. Geometry on strong del Pezzo surfaces

We’re going to work uniquely with strong del Pezzo surfaces, i.e., those del
Pezzo surfaces with very ample anticanonical divisor −KX . The goal of this
section is to develop Bertini-like theorems for divisors on this kind of varieties.
In order to achieve it firstly we will need a good understanding of the excep-
tional divisors of such varieties. Most of the results presented on this section
should be well-known to the specialists but we gather them here for the reader’s
convenience.

3.1. Intersection theory

Let’s start stressing a fact that had already been mentioned in the previous sec-
tion:

Proposition 3.1. Let X be a del Pezzo surface and let C be any irreducible
smooth curve on X. The following conditions are equivalent:

(i) C is an exceptional curve (i.e., C2 =−1 and C ∼= P1
k).

(ii) C is a curve of arithmetic genus 0 such that C.KX =−1.

(iii) Let i : X ↪→Pd
k be be the embedding given by the very ample anticanonical

divisor −KX . Then i(C)⊆ Pd
k is (an usual) line.

Proof. It’s a direct computation from the adjunction formula.

Therefore, since we’re only going to deal with del Pezzo surfaces, we’re
going to use the following convention: we’re going to call a curve C in X an
exceptional divisor only when we will have fixed a blow-down morphism π :
X → P2

k such that C corresponds to the inverse image of one of the base points
of π . On the other hand, any curve C verifying the equivalents conditions of the
previous proposition will be called a (−1)-line.

In the following theorem we summarize the well-known results about the
Picard group and the intersection product of blow-ups:

Theorem 3.2. (cfr. [9, Chapter V, Prop. 4.8]). Let {p1, . . . , pr} be a set of points
in P2

k and let π : X → P2
k be the blow-up of P2

k at these points; let l ∈ Pic(X) be
the pull-back of a line in P2, let Ei be the exceptional curves (i.e., π(Ei) = pi)
and let ei ∈ Pic(X) be their linear equivalence classes. Then:

(i) Pic(X)∼= Zr+1, generated by l,e1, . . . ,er.

(ii) The intersection pairing on X is given by l2 = 1,e2
i = −1, l.ei = 0 and

ei.e j = 0 for i 6= j.
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(iii) The canonical class is KX =−3l +∑
r
i=1 ei.

Moreover, if 0 ≤ r ≤ 6 and the points are in general position, the following
holds:

(iv) The anticanonical divisor HX =−KX is very ample.

(v) If D is any effective divisor on X, D ∼ al−∑biei then the degree of D
as a curve embedded in P9−r

k by HX is deg(D) := 3a−∑bi and its self-
intersection is D2 = a2−∑b2

i .

(vi) The arithmetic genus of D is

pa(D) =
1
2
(D2−deg(D))+1 =

1
2
(a−1)(a−2)− 1

2 ∑bi(bi−1).

Remark 3.3. (cfr. [9, Chapter V, Remark 4.8.1]). Using the same notation
as in the previous Theorem, if C is any irreducible curve on X , other than the
exceptional ones Ei, then C0 := π(C) is an irreducible plane curve and C in turn
is the strict transform of C0. Let C0 have degree a and multiplicity bi at each pi.
Then π∗C0 = C + ∑biEi. Since C0 is linearly equivalent to a times the class of
a line on P2, we get C ∼ al−∑biei with a > 0 and bi ≥ 0.

Remark 3.4 (Riemann-Roch for divisors on a del Pezzo surface). Let X be a del
Pezzo surface. Since X is an ACM and connected surface we have χ(OX) = 1.
In particular Riemann-Roch formula for a divisor D has the form

χ(D) =
D(D+H)

2
+1.

Lemma 3.5. Let X be a del Pezzo surface and D be a divisor. If

D2 = D.H−2 and D.H > 0

then D is effective.

Proof. Suppose by contradiction that h0(D) = 0. We also have

(−D−H).H < 0 =⇒ h2(D) = h0(−D−H) = 0.

So we obtain the contradiction

D.H = D(D+H)/2+1 = χ(D) =−h1(D)≤ 0.
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The case of a del Pezzo surface which is the blow-up of one single point in
P2

k deserves a special study. The notation of the following remark will be used
through out the rest of the paper.

Remark 3.6. (cfr. [9, Chapter V, Proposition 2.3, Corollary 2.11]). The blow-
up of one single point in P2

k can also be interpreted as the rational ruled surface
π : X1 = P(OP1

k
⊕OP1

k
(−1))→ P1

k ; write C0 and f for a section and a fibre of
π , respectively. Then C0, f form a basis of PicX and the intersection theory on
X1 is given by the relation C2

0 = −1, C0. f = 1 and f 2 = 0, while the canonical
divisor is K := −2C0− 3 f . In particular K2 = 8. So C0 is a rational curve
with C2

0 = −1 and C0.H = 1. It’s going to be seen in Proposition 3.8 that it is
the unique (−1)-line on X1. By Remark 2.17 the contraction of C0 gives us a
blow-down morphism X1 −→ P2

k for which C0 = e1 is the exceptional divisor.
Moreover

HX1 = 2C0 +3 f = 3l− e1 =⇒ f = l− e1.

Write D = aC0 +b f = bl− (b−a)e1 for a divisor on X1. Then D is effective if
and only if a = D.(l−e1) = D. f ≥ 0 and b = D.l = D.( f +C0)≥ 0. Clearly the
inequalities imply that D is effective. Conversely if D is effective and D. f = a <
0, then a curve in |D| contains all the curves in | f |, which is impossible since the
union of these curves contains all the closed points of X . Finally if D.l = b < 0
then a curve in |D| contains all the curves in |l|, which is impossible since the
union of these curves contains all the closed points of X− e1.

In the following remark we deal with the quadric case and we introduce the
notation that will be use through out the rest of paper.

Remark 3.7. Let X = P1
k ×P1

k and h,m be the usual basis of PicX . Then a
divisor D = ah + bm is effective if and only if it’s generated by global sections
if and only if a,b ≥ 0. Clearly the inequalities imply that D is effective and
generated by global sections. Conversely, if for an effective divisor we had
D.m = a < 0 that would mean that a curve in |D| contains any curve of |m|,
which is impossible since the union of these curves contains any closed point of
X .

3.2. (−1)-lines on del Pezzo surfaces

In order to have a good understanding of the properties of the del Pezzo surfaces
it’s important to keep track of the (−1)-lines present on them. This subsection
collects some well-known results on their behavior. To start with, the following
proposition determines the number of (−1)-lines:

Proposition 3.8. (cfr. [9, Chapter V, Theorem 4.9] and [3, Exposé II, Table 3]).
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1. P1
k×P1

k and P2 have no (−1)-lines.

2. Let X be a strong del Pezzo surface which is a blow-up of r points of P2
k

in general position, with 1≤ r ≤ 6. The (−1)-lines of X are

• the r exceptional divisors e1, . . . ,er,

• for r ≥ 2, Fi, j = l−ei−e j with 1≤ i < j ≤ r, which are r(r−1)/2,

• for r = 5, G = 2l− e1− e2− e3− e4− e5,

• for r = 6, G j = 2l−∑i 6= j ei, which are 6.

So X has exactly r +
(r

2

)
+
(r

5

)
(−1)-lines.

Proposition 3.9. (cfr. [9, Chapter V, Proposition 4.10]). Let X be a del Pezzo
surface of degree d and set r = 9− d. If L1, . . . ,Lr are mutually disjoint (−1)-
lines of X then there exists a blow-up π : X −→ P2

k of r points in general position
such that L1, . . . ,Lr are the exceptional divisors.

Proof. Let π : X −→ Y be the blow-down of L1, . . . ,Lr. According to Remark
2.17, Y is a del Pezzo surface of degree d + r = 9 and so Y ∼= P2

k . Following
Theorem 3.2, if we put ei := Li we know that KX = −3l + ∑ei. We want now
to prove that the points {p1, . . . , pr} of P2

k image under π of L1, . . . ,Lr are in
general position, i.e. that no three of them are collinear and no six of them lie
on a conic. This can be done as in [3, Exposé II, Théorème 1]: if p1, . . . ps lay
on a line, for s ≥ 3 then its strict transform D := l− e1− . . .es would be an
effective divisor and −KX .D≤ 0 would contradict the fact that we’re supposing
that X is a del Pezzo surface and in particular −KX is very ample. Analogously,
if p1, . . . p6 lay on a conic, D := 2l− e1− . . .e6 would be an effective divisor
such that −KX .D≤ 0, a contradiction.

Corollary 3.10. Let X be a del Pezzo surface of degree d and L,L′ be skew
(−1)-lines of X. If r := 9− d ≥ 4, then L,L′ are exceptional divisors for some
blow-up X π−−→ P2

k of r points in general position.

Proof. Since we’re supposing that there exist two skew (−1)-lines, we know
that X is the blow-up of r points in general position on P2

k . Therefore it’s enough
to show that L,L′ are contained in a set of r mutually skew (−1)-lines of X . If L
and L′ are already part of the exceptional divisors of the blow-up morphism that
we’re considering, we’re done. If it’s not the case, with regard to the notation
of Proposition 3.8, up to permutation of the exceptional divisors, it’s straight-
forward to check that they form part of one of the following sets of skew (−1)-
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lines:

F1,2,F1,3,F2,3,e4 if r = 4,

F1,2,F1,3,F1,4,F1,5,G; F1,2,F1,3,F2,3,e4,e5 if r = 5,

F1,2,F1,3,F1,4,F1,5,G6,e6; F1,2,F1,3,F2,3,e4,e5,e6 if r = 6.

3.3. Very ample and smooth divisors

In this subsection we give criterions in terms of the intersection with (−1)-lines
for a linear system to be very ample or at least to contain smooth representatives.

Lemma 3.11. (cfr. [9, Chapter V, Lemma 4.12]). Let X be a del Pezzo surface
which is a blow-up of r points of P2

k in general position, for 2≤ r ≤ 6, and let’s
consider the divisors D0, . . . ,Dr defined as follows:

D0 = l,

D1 = l− e1,

D2 = 2l− e1− e2,

D3 = 2l− e1− e2− e3,

D4 = 2l− e1− e2− e3− e4,

D5 = 3l− e1− e2− e3− e4− e5,

D6 = 3l− e1− e2− e3− e4− e5− e6.

Then D0, . . . ,Dr are effective divisors without base points in X and form a basis
of PicX. If D = al−∑i biei is any divisor in X then

D = αD0 +
r−1

∑
i=1

(bi−bi+1)Di +brDr

where

α =
{

a−b1−b2 = D.F1,2 if 2≤ r ≤ 4
a−b1−b2−b5 = D.F1,2−D.e5 if 5≤ r ≤ 6.

Proof. D0, . . . ,Dr form a base of PicX because they are the image of the base
l,e1, . . . ,er with respect to an invertible matrix with determinant ±1. They are
without base points thanks to [9, Chapter V, Proposition 4.1 and Proposition
4.3]. A direct computation provides the last equality.
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Corollary 3.12. With the same notation and hypothesis of Lemma 3.11, for any
divisor D of X there’s a choice of exceptional divisors in X such that

D = α0D0 +
r−1

∑
i=1

αiDi +(D.er)Dr

where α1, . . . ,αr−1 ≥ 0 and

α0 is
{

= D.F1,2 if 2≤ r ≤ 4
≥ 0 if 5≤ r ≤ 6.

Proof. If 2≤ r ≤ 4 it’s enough to relabel the given exceptional divisors so that

D.e1 ≥ ·· · ≥ D.er.

If 5≤ r ≤ 6, we can proceed in this way. Choose a line L such that

D.L = min{D.L′ | L′ line of X}.

Note that no (−1)-line of X meets all the other (−1)-lines of X and so we can
choose a second (−1)-line L′ such that

D.L′ = min{D.L′′ | L′′ line of X such that L′.L′′ = 0}.

From Corollary 3.10 we can assume that L,L′ are exceptional divisors, namely
er = L and er−1 = L′. As above we can relabel e1, . . . ,er−2 so that D.e1 ≥ ·· · ≥
D.er. Finally, since F1,2.er = 0, we have

α0 = D.F1,2−D.e5 ≥ 0.

The next lemma gives a nice criterion in order to know when a divisor is
very ample:

Lemma 3.13. (cfr. [9, Chapter V, Theorem 4.11]). Let X be a del Pezzo surface
which is a blow-up of r points in general position of P2

k and D be a divisor on
X. If 2 ≤ r ≤ 6, D is very ample if and only if D.L > 0 for any (−1)-line L on
X. If r = 1 then D is very ample if and only if D.e1,D.(l− e1) > 0.

Proof. From the Nakai-Moishezon criterion the inequalities hold if D is very
ample. So we focus on the converse. If r = 1 and D = aC0 +b f the two condi-
tions say that D.C0 = D.e1 = b− a > 0 and D.(l− e1) = D. f = a > 0 and the
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result follows from [9, Chapter V, Corollary 2.18.]. If 2 ≤ r ≤ 6, according to
Corollary 3.12, we can write

D = α0D0 + · · ·αrDr with α1, . . . ,αr−1 ≥ 0 and αr = D.er > 0;

if 2 ≤ r ≤ 4, we have that α0 = D.F1,2 > 0 and therefore, since Dr + D0 = HX ,
D is HX plus a sum of divisors generated by global sections. On the other hand,
if 5 ≤ r ≤ 6 then α0 ≥ 0 and Dr = HX . In any case, since a very ample divisor
plus a divisor generated by global sections is very ample, we are done.

Remark 3.14. If X = X1 is the blow-up of one point of P2
k , then for a divisor

D = aC0 + b f the condition D.e1 = b−a > 0 (e1 = C0 is the unique line of X)
is not enough for ampleness. For example D = −C0 + f is not effective, while
D = f is effective but D. f = f 2 = 0 and so it’s not ample.

Theorem 3.15. Let X be a del Pezzo surface and D be a non zero effective
divisor. Then D.L ≥ 0 for any (−1)-line L of X if and only if the linear system
|D| contains an open non-empty subset of smooth curves with no (−1)-lines as
irreducible components. Such a divisor is always generated by global sections.

Proof. ⇐=) If D is smooth and D.L < 0 for some (−1)-line L then L is in the
base locus of |D| and therefore L is an irreducible component of any element of
this linear system.

=⇒ ) Clearly if we prove that |D| contains an open subset of smooth curves
C, the same argument used above shows that C doesn’t contain a line.

The cases X =P1
k×P1

k and X =P2
k don’t contain any (−1)-line and therefore

we would need to prove that the linear class of any non-zero effective divisor
contains an open non-empty set of smooth curves and it’s generated by global
sections, which is a very well-known fact.

X = X1, i.e. X is the blow-up of a point in P2
k . Write D = aC0 + b f , with

a,b ≥ 0. We have D.C0 = b− a ≥ 0. If a = 0, then D = b f is a disjoint union
of b distinct fibers of the usual projections X1 −→ P1

k and f is generated by
global sections. If a = D. f > 0 and D.C0 > 0 we know that D is very ample and
therefore we can apply Bertini’s theorem to get the conclusion. It remains the
case b = a > 0, i.e. D = a(C0 + f ) = al. Since l is generated by global sections
so is D. Finally |al| contains the inverse image of the open non-empty set of
curves of (usual) degree a in P2

k which don’t contain the point blown up.
In order to treat the remaining cases, we proceed by descent induction on the

degree of X and therefore we can suppose that X is a blow-up of r points of P2
k ,

with 2≤ r≤ 6. If D.L > 0 for any (−1)-line of X we know that D is very ample
(see Lemma 3.13) and therefore by Bertini’s theorem we get the conclusion.
So suppose that D.L = 0 for some (−1)-line L of X . From Corollary 3.12 we
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see that D is generated by global sections. So we can take C ∈ |D| such that
C∩L = /0, the blow-down X π−−→ Y with respect to L and consider the divisor
D′ := πC on Y . Thanks to Remark 2.17, we know that Y is a del Pezzo surface
of degree H2

Y = H2
X +1.

If it was the case that there exists a (−1)-line L′ on Y such that D′.L′ < 0
then L′ ⊆D′ and in particular L′ doesn’t contain the point π(L). Therefore π∗L′

is a (−1)-line of X and π∗L′.D = π∗L′.π∗D′ = L′.D′ < 0, which is a contra-
diction. Therefore D′.L′ ≥ 0, for any (−1)-line L′ in Y and we can apply the
hypothesis of induction to Y to get an open non-empty subset U of the linear
system |D′| composed of smooth curves with no (−1)-lines as irreducible com-
ponents. Since |D′| is generated by global sections, the point π(L) is not a fixed
point of this linear system and therefore we can suppose, restricting the open set
if necessary, that no curve of U passes through π(L). Then π∗ gives us the open
non-empty set of smooth curves without (−1)-lines as components on D.

4. Classification of ACM line bundles

In this section X will be a strong del Pezzo surface of degree d = 3, . . . ,9 em-
bedded in Pd

k by the very ample divisor −KX . In particular, when we will speak
of ACM bundles on X it will always be with respect to this divisor. We follow
notation from Theorem 3.2.

4.1. Geometrical characterization of ACM line bundles

The goal of this subsection will be characterize numerically ACM line bundles
on del Pezzo surfaces. Moreover we’re going to show that they correspond to
rational normal curves on the surface.

Remark 4.1. Let D be a non zero effective divisor on a del Pezzo surface X and
consider the exact sequence

0−→ OX(−D)−→ OX −→ OD −→ 0.

Since h0(OX(−D)) = h1(OX) = h2(OX) = 0, taking cohomology we obtain the
two exact sequences

0−→ H0(OX)−→ H0(OD)−→ H1(OX(−D))−→ 0,

and

0−→ H1(OD)−→ H2(OX(−D))−→ 0,
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and therefore the equalities

h0(OD) = 1+h1(OX(−D)), h1(OD) = h2(OX(−D)). (1)

Proposition 4.2. Let X ⊆ Pd
k be a del Pezzo surface of degree d and let OX(D)

be an initialized line bundle on X with D a rational smooth curve of degree c.
Then D is a non-degenerate curve on some Pm

k for m = c−h1(OX(D−2H)).

Proof. The statement reduces to compute the dimension of H0(ID|Pd
k
(1)) and

it’s performed as follows: let’s consider the exact sequence

0−→IX |Pd
k
−→ID|Pd

k
−→ID|X −→ 0.

Since X was non degenerate and ACM, applying the functor of global sections
to the previous sequence twisted by OPd

k
(1) we get that

H0(ID|Pd
k
(1))∼= H0(ID|X(1)) = H0(OX(−D+H)).

On the other hand, by Riemann-Roch,

χ(−D+H) =
1
2
(−D+H)(−D+2H)+1 = d− c,

using the fact that D is smooth and rational. Since OX(D) was initialized,
h2(−D+H) = h0(D−2H) = 0 and we can conclude that

h0(−D+H) = d− c+h1(−D+H).

Definition 4.3. A rational normal curve of degree d is a non-degenerate rational
smooth curve of degree d in some Pd

k .

Remark 4.4. If D is a rational normal curve of degree d then

H0(OPd
k
(1))−→ H0(OD(1))∼= H0(OP1

k
(d))

is injective and therefore an isomorphism. This means that D is embedded
through the complete linear system |OP1

k
(d)| and so, up to automorphism of

Pd
k , is unique. A classical result, which can be found in [6, Corollary 6.2], is

that D is ACM in Pd
k .

Theorem 4.5. Let X ⊆ Pd
k be a del Pezzo surface of degree d embedded through

the very ample divisor −KX and L be a line bundle on X. They are equivalent:

1. L is initialized and ACM.
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2. L is initialized and h1(L (−1)) = h1(L (−2)) = 0.

3. L ∼= OX or L ∼= OX(D), where D is a divisor such that D2 = D.H− 2
and 0 < D.H ≤ H2.

4. L ∼= OX or L ∼= OX(D), where D is a rational normal curve on X with
degD≤ d.

Proof. Before starting the prove, we want to give some general remarks. Let D
be a non zero effective divisor and L ∼= OX(D). First of all, from (1), we have

h0(OD) = 1 ⇐⇒ h1(L −1) = h1(L (−1)) = 0. (2)

Moreover if L is initialized then

h1(L (−1)) =
D.H−D2

2
−1 and h1(OD) = 0. (3)

Indeed, again by (1), h1(OD) = h2(L −1) = h0(L (−1)) = 0 and, since L −1 is
a proper sheaf of ideals of OX and so h2(L (−1)) = h0(L −1) = 0 we get

−h1(L (−1)) = χ(L −1) = χ(−D) =
D2−D.H

2
+1.

Now we can start proving the equivalences:
4) =⇒ 1). Since OX is ACM and initialized, we consider the case L ∼=

OX(D), where D is a rational normal curve of degree D.H = c≤ d. Clearly L
has global sections. Moreover from the adjunction formula we have D2 = c−2
and so by Riemann-Roch

χ(L (−1)) = χ(D−H) = (D−H)D/2+1 = 0.

L −1 := OX(−D), being the ideal sheaf of D, has no global sections, hence:
h2(L (−1)) = h0(L −1) = 0. Therefore, if we prove that L is ACM, we also
get that L is initialized. From Lemma 2.5 and Remark 2.18 this is equivalent
to prove that the rational normal curve D is ACM, which is a classical fact (see
Remark 4.4).

1) =⇒ 2) It’s clear.
2) =⇒ 3) Let D be an effective divisor such that L ∼= OX(D) and sup-

pose D � 0. By (3) we get the equality D2 = D.H − 2. Since h0(L (−2)) =
h1(L (−2)) = 0 we also have

0≤ h2(L (−2)) = χ(D−2H) = H2−D.H =⇒ D.H ≤ H2.

Finally, since D is a non zero effective divisor, we have D.H > 0.
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3) =⇒ 4) Let’s set L = OX(D), with D� 0. By Lemma 3.5 we know that
D is effective. So let’s also set c := D.H = degD.

We begin showing that L is initialized. Otherwise suppose that D−H is
effective. Since D2 = D.H−2 we know that D−H is non zero and so

0 < (D−H).H = D.H−H2 ≤ 0

would give us a contradiction. Therefore, from (3) and (2), we obtain

h1(L (−1)) = h1(OD) = 0 and h0(OD) = 1.

So if |D| contains a smooth curve C, C is connected, has genus 0, i.e. it’s
rational, and degC = D.H = c≤ H2.

Let’s prove that |D| contains a smooth curve: from Theorem 3.15 we know
that if D.L ≥ 0 for any line L of X , then D contains a smooth curve. So we
want to prove that if L is a line of X such that D.L < 0, then D = L. Write
M = D−L. M is an effective divisor and suppose, by contradiction, that M � 0.
Note that, since M2 = (D−L)2 = c−3−2D.L and M.H = c−1, we obtain by
Riemann-Roch

χ(−M) = 1+(−M)(−M +H)/2 = 1+(c−3−2D.L−c+1)/2 =−D.L > 0.

But, on the other hand, from the exact sequence

0−→IM|D −→ OD −→ OM −→ 0

we get
H1(OD) = 0−→ H1(OM)−→ H2(IM|D) = 0

where the last cohomology groups vanishes because IM|D is a sheaf on a one
dimensional variety. Therefore, from (1), we obtain h2(OX(−M)) = h1(OM) =
0. Moreover, since M � 0, we have h0(OX(−M)) = 0 and therefore

χ(−M) =−h1(OX(−M))≤ 0

which is obviously a contradiction.
Therefore we know that we can take C ∈ |D| a smooth rational curve. In

order to see that C is such a curve it is enough to prove that h0(IC|Pd
k
(1)) = d−c

because then C will be a non-degenerate rational curve on Pc
k of degree c. As in

Proposition 4.2, this number is h0(OX(−D + H)). So let’s consider the divisor
E =−D+H. It has the following invariants:

E.H = d− c≤ d,
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and
E2 = D2 +H2−2D.H = E.H−2.

If c = d, since D � H, E can not be effective and therefore h0(OX(E)) = 0.
Otherwise, if c < d, we have seen that under this conditions we can suppose
that E is a smooth rational curve. From the exact sequence

0−→ OX(−E)−→ OX −→ OE −→ 0

if we twist it by OX(E) and take cohomology we get

0−→ H0(OX)−→ H0(OX(E))−→ H0(OE(E))−→ H1(OX) = 0.

The degree of OE(E) is E2 = d− c−2 and therefore h0(OE(E)) = h0(OP1
k
(d−

c−2)) = d− c−1 and so h0(OX(E)) = d− c.

4.2. Explicit list of ACM divisors

Once we know how to characterize ACM line bundles on del Pezzo surfaces,
this subsection will be dedicated to list them: first in the case of the quadric and
then in the rest of cases consisting on blow-ups.

Lemma 4.6. There exist exactly (up to twist and isomorphism) 8 initialized
ACM line bundles on the del Pezzo P1

k×P1
k with respect to the very ample divisor

−KX . The initialized ones are given by OP1
k×P1

k
and, in terms of their associated

class of divisors,

D = h+bm or D = bh+m with 0≤ b≤ 3 (degD = 2+2b).

Proof. Let D = ah+bm be any divisor. So D is initialized and ACM if and only
if D∼ 0 or

0 < D.H ≤ 8 ⇐⇒ 0 < 2a+2b≤ 8,

D2 = D.H−2 ⇐⇒ 2ab = 2a+2b−2 ⇐⇒ (a−1)(b−1) = 0,

that gives exactly the divisors listed in the proposition.

Theorem 4.7. Let X be a del Pezzo surface which is a blow-up of r points on
P2

k , with 0 ≤ r ≤ 6. With respect to −KX , the initialized ACM divisors of X are
0, the exceptional divisors and, up to permutation of the exceptional divisors,
the ones listed below:
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degD D
3−m l− e1−·· ·− em 0≤ m≤min{2,r}
6−m 2l− e1−·· ·− em max{r−3,0} ≤ m≤min{5,r}
8−m 3l−2e1− e2 · · ·− em max{1,r−1} ≤ m≤ r
9− r 4l−2e1−2e2−2e3− e4 · · ·− er r ≥ 3

6 5l−2∑
6
i=1 ei r = 6

With respect to the degree d we have, up to permutation of the exceptional
divisors:

d = degD u(D,r) D r
0 1 0
1 r e1 r ≥ 1(r

2

)
l− e1− e2 r ≥ 2(r

5

)
2l− e1− e2− e3− e4− e5 r ≥ 5

2 r l− e1 r ≥ 1(r
4

)
2l− e1− e2− e3− e4 r ≥ 4

6 3l−2e1− e2− e3− e4− e5− e6 r = 6
3 1 l(r

3

)
2l− e1− e2− e3 r ≥ 3

r
(r−1

4

)
3l−2e1− e2− e3− e4− e5 r ≥ 5

20 4l−2e1−2e2−2e3− e4− e5− e6 r = 6
1 5l−2e1−2e2−2e3−2e4−2e5−2e6 r = 6

4
(r

2

)
2l− e1− e2 2≤ r ≤ 5

r
(r−1

3

)
3l−2e1− e2− e3− e4 4≤ r ≤ 5

10 4l−2e1−2e2−2e3− e4− e5 r = 5
5 r 2l− e1 1≤ r ≤ 4

r
(r−1

2

)
3l−2e1− e2− e3 3≤ r ≤ 4

4 4l−2e1−2e2−2e3− e4 r = 4
6 1 2l 1≤ r ≤ 3

r(r-1) 3l−2e1− e2 2≤ r ≤ 3
1 4l−2e1−2e2−2e3 r = 3

7 r 3l−2e1 1≤ r ≤ 2
8,9 0

where u(D,r) is the number of divisors obtained permuting the exceptional di-
visors in the writing of D.

Corollary 4.8. Write X r for a del Pezzo surface blow-up of r points of P2
k and

Q for the quadric P1
k×P1

k . The table below lists the number of initialized ACM
line bundles of a given degree d ≤H2

X r (resp. d ≤H2
Q) contained in X r (resp. in

Q).
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d X r X0 X1 X2 X3 X4 X5 X6 Q
0 1 1 1 1 1 1 1 1 1
1 r +

(r
2

)
+
(r

5

)
0 1 3 6 10 16 27 0

2 r +
(r

4

)
+ r
(r

6

)
0 1 2 3 5 10 27 2

3 1+
(r

3

)
+ r
(r−1

4

)
+
(r

3

)(r−3
3

)
+
(r

6

)
1 1 1 2 5 16 72 0

4
(r

2

)
+ r
(r−1

3

)
+
(r

2

)(r−2
3

)
0 0 1 3 10 40 1

5 r + r
(r−1

2

)
+ r
(r−1

3

)
0 1 2 6 20 0

6 1+ r(r−1)+
(r

3

)
1 1 3 8 2

7 r 0 1 2 0
8 0 0 0 2
9 0 0

Tot 3 7 15 29 51 83 127 8

The formula on the column of X r for the number of initialized ACM line bundles
of degree d makes sense only if d ≤ 9− r.

Proof of 4.7. We will look for ACM initialized line bundles applying condition
(3) from Theorem 4.5.

Let D be a divisor and suppose that D is not exceptional. Set also d = D.H.
Label the exceptional divisors e1, . . . ,er in such a way that D.e1 ≥ ·· · ≥ D.er,
i.e.

D = al−b1e1−·· ·−brer with b1 ≥ ·· · ≥ br.

Since we already know the (−1)-lines of X and since for an initialized ACM
divisor C with degC ≥ 2, C.L ≥ 0 for any (−1)-line L of X , we can assume
br ≥ 0.

Let m be such that b1, . . . ,bm > 0 and bm+1 = · · ·= br = 0. If π : X −→ P2
k is

the blow-up that defines X , let Y be the blow-up of π(e1), . . . ,π(em) and denote
by l′,e′1, . . . ,e

′
m the usual basis of Pic(Y ). Y is a del Pezzo surface and we have

a map X
f−−→ Y such that f ∗l′ = l, f ∗e′1 = e1, . . . f ∗e′m = em. If we set

D′ = al′−b1e′1−·· ·−bme′m ∈ PicY

then D is initialized and ACM if and only if D′ is so, thanks to Theorem 4.5. In
conclusion, we can assume m = r, i.e., br > 0. This means that if we find the
initialized ACM divisors in this case, the other ones can be obtained with the
same writing, only checking the condition degD≤ H2.

In the case r = 0, i.e. X ∼= P2
k , the initialized ACM line bundles are 0, l,2l.

Assume now r = 1 and following notation from Remark 3.6 write D =
αC0 +β f = β l− (β −α)e1. Since H = 2C0 +3 f we have

D2 =−α
2 +2αβ , d = 2β +α
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and
D2 = d−2 ⇐⇒ 2β (α−1) = (α−1)(α +2).

If α = 1 then D = β l− (β −1)e1 and we have

1≤ d = 2β +1≤ H2 = 8 ⇐⇒ 0≤ β ≤ 3.

In this way we obtain divisors e1, l,2l− e1,3l−2e1.
If α 6= 1, then α = 2β −2, D = β l− (2−β )e1 and

1≤ d = 4β −2≤ H2 = 8 ⇐⇒ 1≤ β ≤ 2.

So we obtain divisors l− e1,2l.
We can so assume r ≥ 2 and, since we have already treated the case d = 1

in Proposition 3.8, d ≥ 2. So suppose that D is ACM, initialized with degD =
d ≥ 2. The equations D2 = d−2 and D.H = d are

∑
i

b2
i = a2 +2−d, and (4)

∑
i

bi = 3a−d. (5)

The first step is to prove that b1 +b2 ≤ a≤ 5. The first inequality is

D.F1,2 = a−b1−b2 ≥ 0

which holds since D is a rational normal curve of degree d ≥ 2. From (4) and
(5) we obtain

(3a−d)2 = (∑
i

bi)2 ≤ r∑
i

b2
i = r(a2 +2−d)≤ (9−d)(a2 +2−d)

which is equivalent to

p(a) = da2−6ad +11d−18≤ 0.

But
p(0) = p(6) = 11d−18≥ 22−18 = 4 > 0 =⇒ 0 < a < 6.

In particular we have b1 < a≤ 5. The remaining part of the proof is divided
in the following cases: b1 = 4, b1 = 3 and b1 ≤ 2.
• b1 = 4. a≥ b1 +b2 ≥ 5 implies that a = 5 and b2 = · · ·= br = 1. So also

this case is impossible since otherwise from (5) we obtain

r−1 = 11−d =⇒ d = 12− r ≤ 9− r.
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• b1 = 3. Again a ≥ b1 + b2 tells us that b2 ≤ 2 and a = 4,5. We split it in
two parts: b2 = 1 and b2 = 2.

b2 = 1: In this case from (4) and (5) we obtain

r−1 = a2−7−d = 3a−3−d =⇒ a2−7 = 3a−3 =⇒ a = 4.

and the contradiction comes from

r−1 = 9−d =⇒ d = 10− r ≤ 9− r.

b2 = 2: We have a = 5 and (4) and (5) become

∑
i>2

b2
i = 14−d, ∑

i>2
bi = 10−d.

Since 14− d 6= 10− d we cannot have r = 2 or b3 = 1, so b3 = 2. Arguing in
this way we also obtain r ≥ 4, b4 = 2 and the contradiction

∑
i>4

b2
i = ∑

i>4
bi = 6−d =⇒ r−4 = 6−d =⇒ d = 10− r ≤ 9− r.

• b1 ≤ 2. Let s be such that b1 = · · · = bs = 2, bs+1 = · · · = br = 1 for
0≤ s≤ r. The equation (4) and (5) become

4s+(r− s) = a2 +2−d, 2s+(r− s) = 3a−d

which implies that
a2−3a+2−2s = 0.

The discriminant ∆ of this equation and the solutions are

∆ = 1+8s, a =
3±
√

∆

2
.

∆ is a square if and only if s = 0,1,3,6 and, respectively, we obtain
√

∆ =
1,3,5,7.

If s = 0, then a = 1,2 and we obtain the divisors

D = l− e1− e2, for r = 2, d = 1,
D = 2l− e1−·· ·− er, for r ≤ 5, d = 6− r.

If s = 1, then a = 3 and we obtain, for any r ≥ 2, the divisors

D = 3l−2e1− e2−·· ·− er, d = 8− r.

If s = 3, then a = 4 and we obtain, for r ≥ 3, the divisors

D = 4l−2e1−2e2−2e3− e4−·· ·− er, d = 9− r.

If s = 6, then a = 5 and we obtain, for r = 6, the divisor

D = 5l−2e1−2e2−2e3−2e4−2e5−2e6, d = 3.

Since, by construction, any divisor D above satisfies D2 = D.H−2 and d =
D.H > 0, we can conclude that they are all ACM initialized line bundles.
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4.3. Bounds for the intersection product of ACM divisors

We want to end this section giving a bound for the intersection product of two
ACM, initialized divisors. Let’s start with the upper bound. We need the fol-
lowing lemma:

Lemma 4.9. Let X ⊆ Pn
k be a del Pezzo surface of degree n and let C,D be

smooth rational curves on X of respective degree c,d. Then, if (m− 1)n <
c+d ≤ mn, where m≥ 1, we have

C.D≤ 2+(m−1)(c+d)−m(m−1)n/2 (6)

and the equality occurs if and only if C + D ∼ mH. In this case, if m > 1, we
also have c = d = mn/2, so that mn has to be even.

Proof. Set E := C + D−mH. We will use the fact that C2 = c− 2 and D2 =
d−2.

If E is effective, since E.H ≤ 0, we obtain C +D∼mH and therefore, mul-
tiplying mH by C and D,

C.D = (m−1)d +2 = (m−1)c+2.

If m = 1 the bound in (6) is reached. This also happens if m > 1, since in this
case we have c = d = mn/2.

Assume now that E is not effective, i.e. h0(E) = 0. We have

(m−1)n− c−d < 0 =⇒ h2(E) = h0((m−1)H−C−D) = 0.

So Riemann-Roch gives

−h1(E) = χ(E) = C.D−1− (m−1)(c+d)+m(m−1)n/2≤ 0

and so the desired formula.

By Theorem 4.5 we can conclude that:

Corollary 4.10. Let X ⊆ Pn
k be a del Pezzo surface of degree n and let C,D be

non zero ACM, initialized divisors of respective degree c,d. Then:

1. if c+d > n we have
C.D≤ 2+ c+d−n

and the equality occurs if and only if C +D∼ 2H. In this case c = d = n.

2. if c+d ≤ n we have
C.D≤ 2

and the equality occurs if and only if C +D∼ H. In this case c+d = n.
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Regarding the lower bound, we have the following:

Lemma 4.11. Let X ⊆ Pn
k be a del Pezzo surface of degree n and let C,D be non

zero ACM divisors on X of respective degree c,d. Then

C.D≥−2+min{c,d} (7)

and the equality occurs if and only if D∼C.

Proof. The proof is analogous to the previous lemma: by Theorem 4.5 we know
that C and D correspond to rational normal curves with 1 ≤ c,d ≤ n; let’s sup-
pose that d ≤ c and let’s define E := D−C. If E ∼ 0 then multiplying by D we
get D.C = d−2. Otherwise we have

h0(E) = 0 and h2(E) = h0(C−D−H) = 0

and therefore, by Riemann-Roch:

0≥−h1(E) = χ(E) =
(D−C)(D−C +H)

2
+1 =−1+d−C.D.

5. ACM bundles of higher rank

In the last section our aim is to construct ACM bundles of rank n for any n≥ 2.
In particular, we’re going to see that strong del Pezzo surfaces of degree ≤ 6
are of wild representation type. Notice that the bundles E that we’re going to
obtain are simple, i.e, Hom(E ,E )∼= k and, therefore, they are indecomposable.
So they represent new ACM bundles that don’t come from direct sums of the
known ACM line bundles.

5.1. Extensions of bundles

We remark the following property at the beginning since it will be very useful
in this section.

Proposition 5.1. Let X be a strong del Pezzo surface of degree n and let D
be an initialized, ACM divisor on X. Then OX(D) is 0-regular if and only if
degD = D.H = n.

Proof. Write d for the degree of D and set L = OX(D). If d = 0, i.e. L ∼= OX ,
since

h2(OX(−2)) = χ(−2H) = n+1 6= 0
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L is not 0-regular. So we assume d > 0. Since h0(L (−2)) = h1(L (−2)) = 0,
using Theorem 4.5, we have

h2(L (−2)) = χ(D−2H) = n−D.H.

Finally, being h1(L (−1)) = 0 by hypothesis, we can conclude that L is 0-
regular if and only if d = D.H = n, as required.

Given a projective variety X and coherent sheaves F ,G on it, we’re going
to be interested in extensions of the form

0−→F −→ E −→ G −→ 0.

Given another extension

0−→F −→ E ′ −→ G −→ 0

we are going to say that they are equivalent if there exists an isomorphism ψ :
E −→ E ′ such that the following diagram commutes:

0 // F // E //

ψ

��

G // 0

0 // F // E ′ // G // 0.

A weak equivalence of extensions is similarly defined, except that we don’t
require the morphisms F −→F and G −→ G to be the identity but only iso-
morphisms.

It’s a well-known result that equivalent classes of extensions of G by F
correspond bijectively to the elements of Ext1(G ,F ). If

0−→F −→ E −→ G −→ 0

is such an extension, the corresponding element [E ] ∈ Ext1(G ,F ) is the image
of idF under the morphism

Hom(F ,F ) δ−−→ Ext1(G ,F )

obtained applying Hom(−,F ) to the exact sequence above. We will use the
symbol δ for this morphism. The trivial extension F ⊕G corresponds to 0 ∈
Ext1(G ,F ). Inside Ext1(G ,F ) weak equivalence defines an equivalent relation
that will be denoted by ∼w.

Definition 5.2. Given a variety X , a coherent sheaf E on it is called simple if
Hom(E ,E )∼= k.
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Proposition 5.3. Let X be a projective variety over k and F1, . . . ,Fr+1, with
r ≥ 1, be simple coherent sheaves on X such that

Hom(Fi,F j) = 0 for i 6= j.

Denote also

U = Ext1(Fr+1,F1)−{0}×· · ·×Ext1(Fr+1,Fr)−{0}⊆Ext1(Fr+1,
r⊕

i=1

Fi).

Then a sheaf E that comes up from an extension of Fr+1 by
⊕r

i=1 Fi is simple
if and only if [E ] ∈U and given two extensions [E ], [E ′] ∈U we have that

Hom(E ,E ′) 6= 0 ⇐⇒ [E ]∼w [E ′].

To be more precise, the simple coherent sheaves E coming up from an extension
of Fr+1 by

⊕r
i=1 Fi

0−→
r⊕

i=1

Fi −→ E −→Fr+1 −→ 0

are parametrized, up to isomorphisms (of coherent sheaves), by

(U/∼w)∼= P(Ext1(Fr+1,F1))×·· ·×P(Ext1(Fr+1,Fr)).

Proof. Set F :=
⊕r

i=1 Fi and V :=
⊕r

i=1 Ext1(Fr+1,Fi) ∼= Ext1(Fr+1,F ).
Note that under the isomorphisms

Hom(F ,F )
r⊕

i=1

Hom(Fi,Fi) kr

idF (idF1 , . . . , idFr) (1, . . . ,1)

∼= ∼=

we can identify idFi with elements of Hom(F ,F ) such that idF = ∑
r
i=1 idFi .

Moreover we have

Hom(F ,Fr+1) = Hom(Fr+1,F ) = 0.

First Step. Let [E ] = (η1, . . . ,ηr) ∈ V and take the corresponding exact
sequence

0−→F
α−−→ E

β−−→Fr+1 −→ 0. (8)
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We claim that the map

kr ∼= Hom(F ,F ) δ−−→V

verifies that δ (idFi) = ηi for all i. In particular δ is injective if and only if
ηi 6= 0 for all i = 1, . . . ,r and therefore if and only if [E ] ∈U . Indeed, applying
Hom(−,F ) to (8), using the isomorphism Hom(−,F ) ∼=

⊕r
i=1 Hom(−,Fi)

and the fact that one can take as an injective resolution of F the direct sum of
injective resolutions of Fi, we have a commutative diagram (see [9, Chapter III,
Proposition 6.4])

Hom(Fi,Fi) Hom(F ,Fi) Ext1(Fr+1,Fi)

Hom(F ,F ) Ext1(Fr+1,F )
δ

∼=

which tells us that δ verifies δ (idFi)∈ Ext1(Fr+1,Fi). Finally, by linearity, we
have that

(η1, . . . ,ηr) = δ (idF ) =
r

∑
i=1

δ (idFi) = (δ (idF1), . . . ,δ (idFr)).

Second step. We claim that E is simple if and only if [E ] ∈U . Applying
Hom(−,F ) to (8) we have an exact sequence

0−→ Hom(E ,F )−→ Hom(F ,F ) δ−−→ Ext1(Fr+1,F )

and therefore Hom(E ,F ) = 0 if and only if δ is injective and so if and only if
[E ] ∈U . Applying now Hom(−,Fr+1) to the same sequence we get

0−→ Hom(Fr+1,Fr+1)−→ Hom(E ,Fr+1)−→ 0

which tells us that Hom(E ,Fr+1) ∼= k is generated by β (see (8)). Finally we
apply Hom(E ,−) again to (8) obtaining the exact sequence

0−→ Hom(E ,F )−→ Hom(E ,E )−→ Hom(E ,Fr+1)∼= k −→ 0

where the surjectivity of the second map follows from the fact that idE is sent to
β . So we can conclude that E is simple if and only if Hom(E ,F ) = 0 and so if
and only if [E ] ∈U .

Third step. We’re going to prove the following claim: let [E ] = (η1, . . . ,ηr),
[E ′] = (ξ1, . . . ,ξr) be extensions from U , the first one corresponding to the se-
quence (8), the second one to

0−→F
α ′−−→ E ′

β ′−−→Fr+1 −→ 0.
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Then
Hom(E ,E ′) 6= 0 ⇐⇒ ∀i ∃ωi ∈ k∗ s.t. ξi = ωiηi,

and in this case [E ]∼w [E ′].
⇐=) It’s enough to check that, if F

ψ−−→F is the isomorphism given by a
diagonal matrix with diagonal (ω1, . . . ,ωr), then the exact sequence on the first
row of

0 F E ′ Fr+1 0

0 F E ′ Fr+1 0

ψ

α ′ψ

id
α ′

id
β ′

β ′

corresponds to [E ]. In fact in this case we will obtain a weak equivalence [E ]∼w

[E ′]. So let’s apply the functor Hom(−,F ) to the above diagram; using the
properties of the derived functors, we get a commutative diagram

Hom(F ,F ) Ext1(Fr+1,F )

Hom(F ,F ) Ext1(Fr+1,F )

δ ′

ψ∗ id

δ ′′

where δ ′ (respectively δ ′′) is the connecting morphism corresponding to the
exact sequence on the second row (resp. on the first row). Using the usual
identification Hom(F ,F ) ∼= kr, the map ψ∗ has the same representation of ψ

as matrix, i.e. it is diagonal with entries (ω1, . . . ,ωr). So we get the relation

δ
′′(idF ) = δ

′(ψ∗−1(1, . . . ,1)) = δ
′(ω−1

1 , . . . ,ω−1
r ) =

= (ω−1
1 ξ1, . . . ,ω

−1
r ξr) = δ (idF ).

=⇒ ) Let E
u−−→ E ′ be a non zero map. We start defining the dashed arrows

in

0 F E Fr+1 0

0 F E ′ Fr+1 0

ψ

α

λ

α ′
u

β ′

β

.

Since β ′u ∈ Hom(E ,Fr+1) =< β >k there exists λ ∈ k such that β ′u = λβ .
Since λ is defined, also ψ is automatically defined. If λ = 0, then β ′u = 0 and so
u factorizes through a map E −→F . Since we have proved that Hom(E ,F ) =
0 we also obtain u = 0, a contradiction. So we get λ ∈ k∗.
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We can note that, since Hom(Fi,F j) = 0 for i 6= j and all the Fi are simple,
ψ has to be a diagonal matrix. Call (µ1, . . . ,µr) its diagonal. Applying now
Hom(−,F ) to the above diagram we have a commutative diagram

Hom(F ,F ) Ext1(Fr+1,F )

Hom(F ,F ) Ext1(Fr+1,F )

δ ′

ψ∗ λ

δ

and, as remarked above, ψ∗ is a diagonal matrix with entries (µ1, . . . ,µr). The
commutativity of the above diagram gives relations

λξi = µiηi.

Since we are assuming that ηi,ξi 6= 0, we obtain µi ∈ k∗ and the ωi = µi/λ

satisfy the requirements.

Remark 5.4. Let X be a strong del Pezzo surface of degree d and let C,D be
distinct initialized ACM divisors of maximal degree d. Then C−D and D−C
can not be equivalent to an effective divisor since otherwise, having C.H =
D.H = d, we must have C ∼ D. So

h0(C−D) = h2(C−D) = 0 =⇒ −h1(C−D) = χ(C−D) = d−C.D−1.

We can conclude that

Ext2(OX(C),OX(D)) = Hom(OX(C),OX(D)) = 0

and
dimk Ext1(OX(C),OX(D)) = 1+C.D−d.

Theorem 5.5. Let X ⊆ Pd be a strong del Pezzo surface of degree d less or
equal than six. Then for any integer n ≥ 2 there exists a family of dimension
≥ n− 1 of non-isomorphic initialized simple 0-regular ACM vector bundles of
rank n.

Proof. We know that X corresponds to the blow-up of r = 9−d points in general
position of P2

k . Let C,D be distinct initialized ACM divisors of maximal degree
d satisfying the condition

C.D = 1+d.

Before continuing we show that we can always find a couple (C,D) satisfying
the above condition. Below by X r we mean a del Pezzo surface blow-up of r
points of P2

k .
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X d
C
D

C.D = 1+d

X3 6
3l−2e1− e2
3l−2e2− e3

7

X4 5
3l−2e1− e2− e3
3l−2e2− e3− e4

6

X5 4
3l−2e1− e2− e3− e4
3l−2e2− e3− e4− e5

5

X6 3
3l−2e1− e2− e3− e4− e5
3l−2e2− e3− e4− e5− e6

4

Set E = 2H−C and F = 2H−D. Since E2 = E.H− 2 and E.H = d and
the same is true for F , we have that E,F also are initialized ACM divisors of
maximal degree. A direct computation gives the equalities:

1+C.E−d = 1+D.F−d = 3

1+C.D−d = 1+E.F−d = 2

1+D.E−d = 1+C.F−d = 0.

It’s clear from Lemma 4.11 that C,D,E,F are distinct as equivalence classes.
In what follows we make use of Proposition 5.3 and Remark 5.4. Moreover,
from Proposition 5.1, we have that the invertible sheaves associated to the di-
visors C,D,E,F are 0-regular. Since all the vector bundles obtained below are
subsequent extensions of ACM, initialized and 0-regular line bundles, the same
condition will be satisfied by those bundles.

Rank 2. It’s enough to take extensions of OX(C) by OX(E), which satisfy
the hypothesis of Proposition 5.3. In this way we obtain a family parametrized
by P2 of simple ACM vector bundles.

Rank 2m + 1. First consider extensions of OX(D) by OX(C). Again by 5.3
this gives a family parametrized by P1 of simple vector bundles without non-
zero morphisms among them. So we can take distinct elements E1, . . . ,Em ∈ P1,
i.e. satisfying the exact sequences

0−→ OX(C)−→ Ei −→ OX(D)−→ 0. (9)

Now let’s consider extensions of the form

0−→
m⊕

i=1

Ei −→H −→ OX(E)−→ 0. (10)

Applying Hom(−,OX(E)) and Hom(OX(E),−) to (9) we see that

Hom(Ei,OX(E)) = Hom(OX(E),Ei) = 0.
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Therefore we can deduce that the sheaves E1, . . . ,Em,OX(E) satisfy the hypoth-
esis of Proposition 5.3. We have to compute Ext1(OX(E),Ei). In general, if R is
any ACM, initialized divisors of maximal degree d, applying Hom(OX(R),−)
to (9), we obtain the exact sequences

0→ Ext1(OX(R),OX(C))−→ Ext1(OX(R),Ei)−→ Ext1(OX(R),OX(D))→ 0

and so

dimk Ext1(OX(R),Ei) = 2−2N +C.R+D.R. (11)

If we take R = E we find dimk Ext1(OX(E),Ei) = 3. So we have a family
parametrized by (P2)m of simple vector bundles of rank 2m+1.

Rank 2m + 2. Let H be one of the extensions of rank 2m + 1 obtained
above. We consider the extensions of the form

0−→H −→M −→ OX(F)−→ 0.

Applying Hom(OX(F),−) and Hom(−,OX(F)) to both (9) and (10) we get

Hom(H ,OX(F)) = Hom(OX(F),H ) = 0.

So we are again in the hypothesis of Proposition 5.3. We have to compute
Ext1(OX(F),H ). If we apply Hom(OX(F),−) to (10) we get an exact se-
quence

0→ Ext1(OX(F),
m⊕

i=1

Ei)−→ Ext1(OX(F),H )−→ Ext1(OX(F),OX(E))→ 0,

where the vanishing of Ext2(OX(F),Ei) follows applying Hom(OX(F),−) to
(9) and remembering that

Ext2(OX(F),OX(C)) = Ext2(OX(F),OX(D)) = 0.

So, using also (11), we have

dimk Ext1(OX(F),H ) = 2+3m.

In this way we obtain a family parametrized by P1+3m of simple ACM vector
bundles of rank 2m+2.

We will end this paper showing that bundles constructed on the previous the-
orem are semistable and unstable. Following [10], we recall that a vector bundle
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E on a smooth projective variety X ⊆ Pd is semistable if for every nonzero co-
herent subsheaf F of E we have the inequality

P(F )/ rk(F )≤ P(E )/ rk(E ),

where P(E ) is the Hilbert polynomial of the sheaf and the order is with respect to
their asymptotic behavior. If one has the strict inequality for any proper subsheaf
the bundle is called stable. There is another definition using the slope, which is
defined as µ(E ) := deg(E )/ rk(E ). We say that E is µ-(semi)stable if for every
subsheaf F of E with 0 < rkF < rkE , µ(F ) < µ(E ) (resp. µ(F )≤ µ(E )).
The four notions are related as follows:

µ− stable⇒ stable⇒ semistable⇒ µ− semistable.

In order to show the semistability of bundles constructed in 5.5, we are going
to use the following result (cfr. [15, Lemma 1.4]):

Lemma 5.6. Assume that

0−→ E ′ −→ E −→ E ′′ −→ 0

is a short exact sequence of coherent sheaves with P(E )
rk(E ) = P(E ′)

rk(E ′) = P(E ′′)
rk(E ′′) . Then

E is semistable if and only if E ′ and E ′′ are semistable.

Proposition 5.7. Let X ⊆ Pd be a strong del Pezzo surface of degree d less or
equal than six. Then the ACM bundles constructed in the proof of 5.5 are all
strictly semistable bundles of constant slope d.

Proof. Any line bundle is semistable; therefore the semistability of the vector
bundles from 5.5 is proved by induction just noticing that they verify the hy-
pothesis of Lemma 5.6. They can not be stable since the construction exhibits a
subbundle contradicting the definition.
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