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SPLITTING CRITERIA FOR VECTOR BUNDLES
ON THE SYMPLECTIC ISOTROPIC GRASSMANNIAN

PEDRO MACIAS MARQUES - LUKE OEDING

We extend a theorem of Ottaviani on cohomological splitting criterion
for vector bundles over the Grassmannian to the case of the symplectic
isotropic Grassmanian. We find necessary and sufficient conditions for
the case of the Grassmanian of symplectic isotropic lines. For the general
case the generalization of Ottaviani’s conditions are sufficient for vector
bundles over the symplectic isotropic Grassmannian. By a calculation
in the program LiE, we find that Ottaviani’s conditions are necessary for
Lagrangian Grassmannian of isotropic k-planes for k ≤ 6, but they fail to
be necessary for the case of the Lagrangian Grassmannian of isotropic 7-
planes. Finally, we find a related set of necessary and sufficient splitting
criteria for the Lagrangian Grassmannian.
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1. Introduction

Splitting criteria for vector bundles dates from the sixties, when Horrocks pre-
sented the criterion for vector bundles over Pn [5]. It is a very important tool
to study classification of vector bundles, for instance. Some progress has been
done since then. In 1981 Evans and Griffiths gave a slightly simpler criterion
for vector bundles over Pn with rank r ≤ n [3]. Ottaviani made a contibution
to this problem in 1989 by presenting splitting criteria for vector bundles over
Grassmannians and quadrics [10]. In 2000 Kumar and Rao gave a different cri-
terion for rank 2 vector bundles over Pn, for n≥ 4. In 2003 an improvement
to Horrocks criteria was obtained by Kumar, Paterson and Rao [6] for vector
bundles of rank r < n, if n is even, and r < n−1, if n is odd. In 2005 Costa and
Miró-Roig extended Horrocks criterion to multiprojective spaces and to smooth
projective varieties with the weak CM property [2]. Malaspina recently gener-
alized these reusults [7] and improved Ottaviani’s result on quadrics [8].

In this paper we make a contibution to extend Ottaviani’s ideas to the sym-
plectic isotropic Grassmannian IG(k,n) (i.e. the Grassmannian of projective
k-planes in projective n-dimensional space which are isotropic for a non-degen-
erate symplectic form, herein called the isotropic Grassmannian or Lagrangian
Grassmannian when n = 2k + 1). In particular, we answer Question 2.6, a
version of which was posed at P.R.A.G.MAT.I.C. 2009, which, in short, was
to attempt to generalize Ottaviani’s splitting conditions [10] to the case of the
isotropic Grassmannian. Specifically, we give sufficient splitting conditions for
a vector bundle over IG(k,n) (Proposition 2.4). For the case of lines, we show
that these sufficient conditions on IG(1,n) are also necessary. For LG(k) :=
IG(k,2k + 1) and for the first instances of k, i.e. for 1≤ k ≤ 6, we show that
these conditions are necessary as well (Theorem 2.7). However, we show by a
counter-example that they fail to be necessary for k = 7. This suggests that a
different set of conditions must be explored, which is what we do in section 4,
finding a splitting criterion for LG(k).

In more detail, in Proposition 2.4 we use a slight modification of Ottaviani’s
proof [10, Theorem 2.1], explained in Remark 2.1. Ottaviani states that a vector
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bundle on the Grassmannian G(k,n) splits if and only if

H i (G(k,n),Λ jk Q∗⊗·· ·⊗Λ
j1Q∗⊗E(t)

)
= 0,

for all t ∈ Z, 0 < i < (k +1)(n− k) = dim
(
G(k,n)

)
and 0≤ j1, . . . , jk ≤ n− k,

where Q is the quotient bundle on the Grassmannian. A naı̈ve conjecture of a
set of splitting conditions for the Lagrangian Grassmannian would be

H i (LG(k),Λ jk Q∗⊗·· ·⊗Λ
j1Q∗⊗E(t)

)
= 0,

for all t ∈ Z, 0 < i < dim
(
LG(k)

)
and 0≤ j1, . . . , jk ≤ n− k, where Q is the

quotient bundle on the Lagrangian Grassmannian. These conditions fail for
LG(2), because H1(LG(2),Q∗⊗Q∗) contains H1(LG(2),Ω1) which is nonzero,
and therefore a different set of conditions must be considered. The idea to im-
prove these condition is to relate ∑ jk with the order i of the cohomology groups.

The proof of Proposition 2.4 goes by induction on k and uses a global sec-
tion of the quotient bundle Q over IG(k,n) and its Koszul complex to relate
splitting conditions on IG(k,n) to the ones on IG(k−1,n−2). For the converse
(with 1≤ k ≤ 6), we decompose the bundle using the Pieri formula and then
for each irreducible summand, we use Bott’s algorithm and the Borel-Weyl-
-Bott theorem for computing cohomology of irreducible homogeneous vector
bundles over homogeneous varieties. We used the computer program LiE to
perform both algorithms (see Section 3). Finally, in section 4, working with
a different set of conditions, and using the methods of Proposition 2.4 and of
Section 3, we find a splitting criterion for LG(k).

2. Splitting criterion on the isotropic Grassmannian

Let V be a complex vector space of dimension n+1, with n odd, and let ω be a
non-degenerate symplectic form on V . For each subspace F of V define

F⊥ := {v ∈V : ω(v,w) = 0 for all w ∈ F}.

Let Pn := P(V ) and let Gr(k,n) be the Grassmannian of k-planes in Pn. Consider
the isotropic Grassmannian

IG(k,n) :=
{

F ∈ Gr(k,n) : F ⊆ F⊥
}

.

For every k≥ 0 and for every odd n > 2k, this variety is non-empty and we have

dim IG(k,n) = 1
2(k +1)(2n−3k).

When n = 2k +1, k-planes in Pn correspond to half-dimensional vector sub-
spaces of V , and isotropic subspaces are Lagrangian, so we call IG(k,2k +1)
the Lagrangian Grassmannian and denote it by LG(k).



158 PEDRO MACIAS MARQUES - LUKE OEDING

Remark 2.1. Let Q be the quotient bundle on IG(k,n) and let s be a non-zero
global section of Q. Then there is a vector v ∈V such that s(F) = (F,v) for
all F ∈ IG(k,n), where v is the class of v in the fibre V

F . Therefore we get
s(F) = 0 if and only if v ∈ F . Since ω is non-degenerate, there is a vector v′ ∈V
such that ω (v,v′) 6= 0. Now dim〈v〉⊥ = dimV − 1 = n. Therefore V admits a
base v,v1, . . . ,vn−1,v′, with 〈v〉⊥ = 〈v,v1, . . . ,vn−1〉. Note that since ω is skew-
-symmetric, ω(v,v) = 0, and therefore v ∈ 〈v〉⊥. If F is in the zero locus of s,
there is a subspace F ′ of V such that F = 〈v〉⊕F ′. Furthermore, since F ⊆ F⊥,
we get that F ′ can be chosen as a subspace of 〈v1, . . . ,vn−1〉, and this gives us an
isomorphism between IG(k−1,n−2) and the zero locus Z of s.

Finally, observe that a fiber of Q in a point F ∈ Z admits a decomposition

V
F

=
〈v〉⊥⊕〈v′〉
〈v〉⊕F ′

∼=
〈v〉⊥

〈v〉⊕F ′
⊕〈v′〉,

where F ′ and v′ are as above. From here, we get that

Q|Z ∼= Q̃⊕OZ,

where Q̃ is the quotient bundle on IG(k−1,n−2).

The following lemma is a consequence from the previous remark.

Lemma 2.2. Let Q (respectively Q̃) be the quotient bundle on IG(k,n) (respec-
tively Z = IG(k−1,n−2)) as above. Then(

p∧
Q

)
|Z

∼=

(
p∧

Q̃

)
⊕

(
p−1∧

Q̃

)
,

for all 1≤ p≤ n− k.

Because we will use it several times, we include for reference the following
lemma which appears in [10]

Lemma 2.3 (Lemma 1.1(i) [10]). Let

0 // An // . . . // A0 // B // 0

be an exact sequence of sheaves on a variety X, let r be an integer ≥ 0. If
Hr+i(X ,Ai) = 0 for i = 0, . . . ,n then Hr(X ,B) = 0.

In order to strengthen our splitting conditions, we will require the following.
Let Qq denote the quotient bundle on IG(k,n), for each 1≤ q≤ k. There is only
one quotient bundle on IG(k,n), but we use the parameter q as a placeholder so
that we know when each bundle occurs in our proof.
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Let
∧ jq Qq denote the exterior power for 0 ≤ jq ≤ n− 2k + q− 1. For no-

tational convenience we will write
∧ jq Qq only as a placeholder in the case

jq = n− 2k + q, but in this case, we actually replace
∧n−2k+q Qq with a line

bundle. The reason for this notation is that in our proof, at the qth step of in-
duction we will use the fact that when rank(Qq) = n− 2k + q,

∧n−2k+q Qq is a
line bundle on IG(q,n−2k + 2q). With this notation, our conditions are easier
to state because the degree i of cohomology always depends on the jq’s by the
same expression. If we were to not use this notational convenience, we would
have several different expressions for the ranges of the index i, each depending
on the values of the jq.

Proposition 2.4 (Sufficient splitting criterion). Let n≥ 3 be an odd number and
let E be a vector bundle on the isotropic Grassmannian IG(k,n) such that

H i

(
IG(k,n),

jk∧
Qk
∗⊗·· ·⊗

j1∧
Q1
∗⊗E(t)

)
= 0,

for all t ∈ Z, i > 0 and j1, . . . , jk such that 0≤ jq ≤ n−2k +q, (with the con-
vention that

∧n−2k+q Qq is replaced by a line bundle for each q) and

k

∑
q=1

jq ≤ i <
k

∑
q=1

jq +n−2k.

Then E splits as a sum of line bundles.

Proof. This proof is analogous to Ottaviani’s proof for the regular Grassman-
nian case [10]. We proceed by induction on k. For k = 0, we have

IG(0,n)∼= G(0,n)∼= Pn.

Therefore the condition in the theorem amounts to saying that E(t) has no in-
termediate cohomology for all t ∈ Z. By Horrocks criterion [9, chapter I, Theo-
rem 2.3.1], E splits.

Let k > 0 and assume the proposition holds for k−1. Let E be a vector
bundle on IG(k,n) satisfying the conditions of the proposition. Let s be a global
section of Qk. By Remark 2.1, its zero locus Z is isomorphic to IG(k−1,n−2).
We wish to use the hypothesis of induction on E|Z , and for that we will prove
the vanishing

H i

(
Z,

jk−1∧
Q̃∗k−1⊗·· ·⊗

j1∧
Q̃∗1⊗E|Z(t)

)
= 0,
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for the corresponding values of i, j1, . . . , jk−1, where Q̃ denotes the quotient
bundle on IG(k−1,n−2).

Let t ∈ Z and let j1, . . . , jk−1 be such that

0≤ jq ≤ n−2k +q,

for 1≤ q≤ k−1. Denote

A j :=
j−1∧

Qk
∗⊗

jk−1∧
Qk−1

∗⊗·· ·⊗
j1∧

Q1
∗⊗E(t),

for 1≤ j ≤ n− k +1. Consider the Koszul complex of s

0 // ∧n−k Qk
∗ // ∧n−k−1 Qk

∗ // · · ·

· · · // ∧2 Qk
∗ // Qk

∗ // OIG(k,n) // OZ // 0.

and tensor it by
∧ jk−1 Qk−1

∗⊗·· ·⊗
∧ j1 Q1

∗⊗E(t):

0 // An−k+1 // An−k // · · · // A2 //

// A1 // ∧ jk−1 Qk−1
∗⊗·· ·⊗

∧ j1 Q1
∗⊗E(t)|Z // 0

Let i be such that
k−1

∑
q=1

jq ≤ i <
k−1

∑
q=1

jq +(n−2)−2(k−1).

Note that (n−2)−2(k−1) = n−2k. We will apply Lemma 1.1 in [10] to this
exact sequence. Assume 1≤ j ≤ n− k +1, and denote jk = j− 1. By our hy-
pothesis on E, we get

H i+ j−1(IG(k,n),A j
)

=

= H i+ jk

(
IG(k,n),

jk∧
Qk
∗⊗

jk−1∧
Qk−1

∗⊗·· ·⊗
j1∧

Q1
∗⊗E(t)

)
= 0,

and since we have 0≤ jk ≤ n− k the bound on i is

k

∑
q=1

jq ≤ i+ jk <
k

∑
q=1

jq +n−2k.

Therefore we get

H i

(
Z,

jk−1∧
Qk−1

∗⊗·· ·⊗
j1∧

Q1
∗⊗E(t)|Z

)
= 0. (1)
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By Lemma 2.2, we know that if Q is the quotient bundle on IG(k,n) and Q̃ is a
quotient bundle on IG(k−1,n−2), then

jk−1∧
Q̃∗k−1⊗·· ·⊗

j1∧
Q̃∗1⊗E|Z(t)

is a summand of
jk−1∧

Qk−1
∗⊗·· ·⊗

j1∧
Q1
∗⊗E(t)|Z

and hence the vanishing of the cohomology above implies

H i

(
Z,

jk−1∧
Q̃∗k−1⊗·· ·⊗

j1∧
Q̃∗1⊗E|Z(t)

)
= 0.

By the induction hypothesis, E|Z splits. We can therefore consider a splitting
bundle F on IG(k,n) and an isomorphism α0 : F|Z //E|Z , with

α0 ∈ H0(Z,(F∗⊗E)|Z
)
.

We wish to extend this isomorphism to a morphism α ∈ H0
(
IG(k,n),F∗⊗E

)
.

Now tensor the exact sequence

0 // IZ // OIG(k,n) // OZ // 0

by F∗⊗E to get

0 // IZ⊗F∗⊗E // F∗⊗E // (F∗⊗E)|Z // 0.

By our hypothesis on E and F , the large cohomology sequence gives us

0 // H0 (IZ⊗F∗⊗E) //

H0 (F∗⊗E) // H0
(
(F∗⊗E)|Z

)
// H1 (IZ⊗F∗⊗E) // 0.

To show that α0 lifts to a morphism α ∈ H0
(
IG(k,n),F∗⊗E

)
, we will show

that the map H0 (F∗⊗E) //H0
(
(F∗⊗E)|Z

)
is surjective by showing

H1 (IZ⊗F∗⊗E) = 0.

Consider again the Koszul complex of s, this time ending in IZ ,

0 // ∧n−k Qk
∗ // ∧n−k−1 Qk

∗ // · · ·

· · · // ∧2 Qk
∗ // Qk

∗ // IZ // 0.
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and tensor it by F∗⊗E:

0 // ∧n−k Qk
∗⊗F∗⊗E // ∧n−k−1 Qk

∗⊗F∗⊗E // · · ·

· · · // Qk
∗⊗F∗⊗E // IZ⊗F∗⊗E // 0.

Our hypotheses on E include the condition that

H jk

(
jk∧

Qk
∗⊗E(t)

)
= 0

so again using Lemma 1.1 in [10] we have

H1 (IZ⊗F∗⊗E) = 0

Therefore the morphism H0 (F∗⊗E) //H0
(
(F∗⊗E)|Z

)
is surjective, and

we have α ∈ H0
(
IG(k,n),F∗⊗E

)
such that α|Z = α0.

Now consider detα : detF // detE , where

detα ∈ H0((detF)∗⊗detE
)∼=

∼= H0(OIG(k,n)(c1E− c1F)
)

= H0 (OIG(k,n)
)∼= C.

We conclude that α is a constant. Since it is non-zero on Z, it is non-zero on all
IG(k,n), and hence an isomorphism.

Proposition 2.5 (Splitting criterion on IG(1,n).). Let n≥ 3 be an odd number
and let E be a vector bundle on the isotropic Grassmannian IG(1,n). Then E
splits as a sum of line bundles if and only if

H i

(
IG(k,n),

j∧
Q∗⊗E(t)

)
= 0,

for all t ∈ Z and all i, j such that 0 < i < dim IG(1,n) and 0≤ j < n−1.

Proof. Note that since
∧n−1 Q∗ ∼= O(t ′) for some t ′ ∈ Z, the vanishing required

in Proposition 2.4 is guaranteed. Therefore every vector bundle E on IG(1,n)
satisfying the conditions of this proposition splits.

For the converse, note that IG(1,n) is a hyperplane section of Gr(1,n).
Specifically, it is the hyperplane section given by ω = 0. Therefore, we can
consider the exact sequence

0 // OGr(1,n)(−1) // OGr(1,n) // OIG(1,n) // 0
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and twist it by
∧ j Q∗(t) to get

0 // ∧ j Q∗(t−1) // ∧ j Q∗(t) //
(∧ j Q∗(t)

)
|IG(1,n)

// 0.

For any 0 < i < dim IG(1,n), the long cohomology sequence associated to this
small exact sequence has the following terms

· · · // H i
(∧ j Q∗(t)

)
// H i
((∧ j Q∗(t)

)
|IG(1,n)

)
//

// H i+1
(∧ j Q∗(t−1)

)
// · · ·

Since all intermediate cohomology of
∧ j Q∗(t) on the Grassmannian vanishes

[10], we get H i
(∧ j Q∗(t)

)
= H i+1

(∧ j Q∗(t−1)
)

= 0, we get

H i

( j∧
Q∗(t)

)
|IG(1,n)

= 0

Now we focus our attention on the Lagrangian Grassmannian, where n =
2k + 1. The index ranges for the sufficient conditions in Theorem 2.4 are all
i, j1, . . . , jk such that 0≤ jq ≤ n−2k +q and

k

∑
q=1

jq ≤ i <
k

∑
q=1

jq +n−2k.

When n = 2k +1 we only have 0≤ jq ≤ q+1 and

k

∑
q=1

jq ≤ i <
k

∑
q=1

jq +1,⇒ i =
k

∑
q=1

jq

We ask if these sufficient conditions are also necessary:

Question 2.6. Prove or disprove: Let k ≥ 1 and let E be a vector bundle on the
Lagrangian Grassmanian LG(k). Let Qq denote the quotient bundle on LG(k),
for each 1≤ q≤ k, and let

∧ jq Qq denote the exterior power for 0≤ jq ≤ q. For
notational convenience we use

∧ jq Qq as a placeholder in the case jq = q + 1,
but in this case, we replace

∧q+1 Qq with a line bundle.
Then E splits as a sum of line bundles if and only if

H i

(
jk∧

Qk
∗⊗·· ·⊗

j1∧
Q1
∗⊗E(t)

)
= 0,
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for all t ∈ Z and all i, j1, . . . , jk such that 0≤ jq ≤ q+1 and

i =
k

∑
q=1

jq.

In order to verify cases of Question 2.6, we assume E splits and we need
to calculate cohomology of the bundles

∧ j1 Q∗⊗·· ·⊗
∧ jk Q∗. For this we need

to do two standard calculations. First we decompose the bundle using the Pieri
formula (see [4] for a detailed account). Then for each decomposable sum-
mand, we use Bott’s algorithm and the Borel-Weil-Bott Theorem (see [1] or [4]
for a detailed account) for computing cohomology of irreducible homogeneous
vector bundles over homogeneous varieties. These algorithms are both straight-
forward to perform in the computer program LiE. Our code may be obtained by
contacting the authors. Here we state the results of these computations, while a
more detailed account can be found in Section 3

We found that Question 2.6 is valid for k = 1 . . .6, but found several coun-
terexamples for k = 7. One such counterexample is

H24

(
L(7),

6∧
Q∗⊗

5∧
Q∗⊗

4∧
Q∗⊗

3∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗Q∗(−9)

)
= C

thus violating the conditions of Question 2.6. We believe that Theorem 2.4 may
be improved so that a finer version of Question 2.6 could be valid, and leave this
for further study.

For completeness, we state the following

Theorem 2.7. Let 1 ≤ k ≤ 6 and let E be a vector bundle on the Lagrangian
Grassmanian LG(k). Let Qq denote the quotient bundle on LG(k), for each 1≤
q ≤ k, and let

∧ jq Qq denote the exterior power for 0 ≤ jq ≤ q. For notational
convenience we use

∧ jq Qq as a placeholder in the case jq = q + 1, but in this
case, we replace

∧q+1 Qq with a line bundle.
Then E splits as a sum of line bundles if and only if

H i

(
jk∧

Qk
∗⊗·· ·⊗

j1∧
Q1
∗⊗E(t)

)
= 0,

for all t ∈ Z and all i, j1, . . . , jk such that 0≤ jq ≤ q+1 and

i =
k

∑
q=1

jq.
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3. Cohomology of the isotropic Grassmannian
This section is aimed at the reader who may not be familiar with the program
LiE and its use for Lie algebra calculations. Our goal is to give an idea of how
we carried out our calculations which verify the cases of Question 2.6 leading
to Theorem 2.7. These same calculations showed that in the case k = 7 there is
a counterexample to Question 2.6.

Having determined sufficient splitting conditions for vector bundles over
the isotropic Grassmannian in Proposition 2.4, we need to check whether the
required vanishing of cohomology actually occurs. In this case we assume that
E → IG(k,n) splits as a direct sum of line bundles. Because cohomology is
additive, we may assume that E is a line bundle and (by changing the twist by t
if necessary) that the vector bundle

jk∧
Q∗⊗·· ·⊗

j1∧
Q∗⊗E(t)

is isomorphic to the homogeneous (non-reduced) vector bundle
jk∧

Q∗⊗·· ·⊗
j1∧

Q∗(t).

A variety X is said to be a homogeneous variety if it is of the form X = G/P
for G a simply connected complex semisimple Lie group and P a parabolic sub-
group. The isotropic Grassmannian IG(k,n) is a homogeneous variety for the
symplectic group Sp(n+1). As mentioned above, the vector bundles we are
reduced to studying are homogeneous vector bundles. The main tool available
to calculate cohomology of irreducible homogeneous vector bundles over ho-
mogeneous varieties is the theorem of Borel-Weil and the algorithm given by
Bott’s theorem. In order to state this theorem (see Section 3.1), we need to re-
call a bit of representation theory, which can be found in [4, 10] for example.
But before we can even use the Borel-Weil-Bott theorem, we need to decom-
pose each vector bundle into its irreducible components. In general we would
use the Littlewood-Richardson formula, but because we are only dealing with
wedge powers of the dual of the quotient bundle, we can use the simpler Pieri
formula. We discuss this computation in Section 3.3.

For small examples, both the Bott algorithm and Pieri formula are easy to
execute by hand, but in order to gather evidence for Question 2.6, we automated
our calculations in the (free) computational package LiE. We discuss this com-
putation in Section 3.4.

3.1. A sketch of Bott’s algorithm

Instead of trying to repeat a course on representation theory, we record the prac-
tical definitions of the objects we use, and refer the reader to the literature for
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the general case, see for example [1]. Let G be a simply connected complex
semisimple Lie group and let P be a parabolic subgroup so that G/P is a ratio-
nal homogeneous variety. A key point is the following fact: The category of
homogeneous vector bundles E over a homogeneous variety G/P is equivalent
to the category of P-modules. Irreducible P-modules are indexed by discrete
data, and this is the set of data we use for our computations.

Here is a sketch of Bott’s algorithm. Start with the data of a fixed semi-
simple Lie group G and parabolic subgroup P. The input is a string of integers
w called a weight representing an irreducible vector bundle over G/P. Bott’s
algorithm outputs either a weight representing the cohomology and the degree
in which that cohomology occurs (note that the Borel-Weil theorem implies
that cohomology of irreducible vector bundles only occurs in one degree) or it
outputs 0 if the cohomology is singular, i.e. if the cohomology vanishes in all
degrees.

The execution of Bott’s algorithm goes as follows. The data of G and P
has attached to it a set of integer vectors R+ called positive roots and an inner
product 〈,〉 that allows one to pair the roots with weights as well as a group of
reflections WG called the Weyl group which acts on the weights by reflection.

The statement of the Borel-Weil-Bott theorem uses the affine action of the
Weyl group: First consider the distinguished weight vector ρ = (1, . . . ,1). Then
the affine action is defined as w.λ := w(λ +ρ)−ρ .

Step 1: Compute the pairing 〈w,α〉 for all α ∈ R+. If 〈w,α〉 = 0 for any
α ∈ R+, the cohomology is singular. Otherwise, the number d of α’s in R+
such that 〈w,α〉 is negative is the degree in which the (non-zero) cohomology
occurs.

Step 2: In the non-singualr case, there is an element ω ∈ WG (determined
by Bott’s algorithm) which is the product of d simple reflections (generators of
WG) and the output ω.w is the output cohomology.

For our purposes we only need the information from Step 1, however the
way that we implemented Bott’s algorithm in LiE it actually computes Step 2
and as a result also outputs the information for Step 1. When working by hand,
Step 1 is often easier to execute.

3.2. The Borel-Weil-Bott Theorem

Following is more detail about the specific objects we use in our computations.
The Lagrangian Grassmanninan LG(k) is a homogeneous variety of the form
G/Pk+1, with G = Sp(2(k + 1)) and Pk+1 a maximal parabolic. One reason to
focus on the Lagrangian case is because the reductive part of Pk+1 is SL(k +
1) so we can decompose the Pk+1-modules using the representation theory of
SL(k + 1)-modules and the representation theory of SL(k + 1) is easier to deal



SPLITTING CRITERIA ON THE ISOTROPIC GRASSMANNIAN 167

with.
The irreducible homogeneous vector bundles over LG(k) and hence the irre-

ducible Pk+1-modules are indexed by strings of integers (called weights) of the
form λ = (λ1, . . . ,λk+1), where only λk+1 is allowed to be negative.

A weight is called G-dominant if λi ≥ 0 for all i. In the case of LG(k),
a weight is called Pk+1-dominant if λk+1 is any integer, and the rest of λi for
i 6= k + 1 are non-negative integers. Bott’s algorithm takes an input of a P-
dominant weight and (if the cohomology is non-singular) outputs a G-dominant
weight.

The simple roots of Sp(2(k+1)) are associated to the following length k+1
strings of integers

α1 = (1,0 . . . ,0) α2 = (0,1, . . . ,0) . . . αk+1 = (0,0 . . . ,1)

Let 1≤ i≤ k +1. The positive roots of Sp(2(k +1)) are

αi 2αk +αk+1
αi +αi+1 αk−1 +2αk +αk+1
αi +αi+1 +αi+2 2αk−1 +2αk +αk+1

αk−2 +2αk−1 +2αk +αk+1
...

...
α1 + · · ·+αk+1 2α1 + · · ·+2αk +αk+1

The positive roots of Sp(2(k +1)) whose associated reflections can move a
P-dominant weight closer to being G-dominant are those with a positive integer
in the (k + 1)st spot. A weight λ = (λ1, . . . ,λk+1) and a root a = (a1, . . . ,ak+1)
pair as

〈λ ,a〉=
k

∑
i=1

λiai +2λk+1ak+1

A weight λ is called singular if 〈λ ,α〉= 0, for some positive root α , otherwise
λ is called non-singular.

The reflections in the hyperplanes perpendicular to the roots of the Lie al-
gebra form the Weyl group W . The Weyl group is generated by the simple
reflections (reflections perpendicular to the simple roots). For a given element
w∈W , the length of w, l(w), is the minimum number of simple reflections over
all expressions of w.

In the case that λ is non-singular, one checks that a shortest w ∈ W such
that w(λ ) is G-dominant is such that λ (w) is also the number of positive roots
which pair with λ to give a negative value.

Theorem 3.1 (Borel-Weil-Bott). Let G be a simply connected complex semi-
simple Lie group and P ⊂ G a parabolic subgroup. Let Qλ be a homogeneous
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vector bundle over G/P associated to the P-module of highest weight λ . If λ is
singular, then

H i(G/P,Qλ ) = 0 for all i

If λ is non-singular, let w be a shortest word in the Weyl group W so that w.λ
is G-dominant. Then

H l(w)(G/P,Qλ ) = Γ
w.λ

H i(G/P,Qλ ) = 0 for all i 6= l(w),

where Γw.λ is the G-module of highest weight w.λ , and w.λ is the affine action
of w ∈W on λ .

This theorem is implemented via Bott’s algorithm in the program LiE. In
light of Proposition 2.4, we need to consider the case that the vector bundle E
splits and it remains to show the vanishing of

H i

(
jk∧

Qk
∗⊗·· ·⊗

j1∧
Q1
∗(t)

)
,

for the appropriate index ranges stated in the theorem.

3.3. Pieri’s decomposition formula

Bott’s algorithm deals with irreducible vector bundles, but the vector bundles in
Question 2.6 are not in general irreducible. We need to decompose each bundle
into its irreducible pieces and apply the Bott algorithm to those pieces.

In the case of the Lagrangian Grassmannian LG(k), the reductive part of the
parabolic Pk+1 is SL(k +1). Therefore the quotient bundle and its exterior pow-
ers can be associated to representations of SL(k + 1), so from a representation
theory standpoint, they are easier to deal with.

The vector bundles in the statement of Question 2.6 are all of the form∧ jk Q∗⊗ ·· ·⊗
∧ j1 Q∗⊗E(t). Since we are doing calculations in the case that

the vector bundle E splits, we can just consider the vector bundle
∧ jk Q∗⊗·· ·⊗∧ j1 Q∗(t) – note that this vector bundle is homogeneous and (in general) decom-

posable.
As mentioned in the beginning of this section, we need to decompose the

vector bundles of the form
∧ jk Q∗⊗·· ·⊗

∧ j1 Q∗(t) into irreducible components.
We can accomplish this by decomposing the associated P-modules. And (as
mentioned above) because we are specializing to the Lagrangian Grassmannian
case, we can work with representations of SL(k + 1). Let F be the P-module
associated to Q∗.



SPLITTING CRITERIA ON THE ISOTROPIC GRASSMANNIAN 169

Recall the Pieri formula for decomposing the tensor product of a represen-
tation Fπ indexed by the partition π and

∧ j F ,

Fπ ⊗
j∧

F =
⊕
λ∼

Fλ ,

where λ ∼ is to indicate that the partitions λ are constructed as Young diagrams
from the Young diagram of π by adding j boxes, no two in the same row. We
can apply the Pieri formula iteratively to decompose the tensor product:

(
k+1∧

F)⊗t ⊗
jk∧

F⊗·· ·⊗
j1∧

F =
⊕
λ∈B

Fλ1,...,λk+1 ,

where the condition λ ∈B means that λ = (λ1, . . . ,λk+1) is a partition which can
be constructed iteratively (via the Pieri formula) from the partitions 1 j1 , . . . ,1 jk

and t copies of the partition (1k+1), where the notation 1p indicates the partition
(1, . . . ,1) with 1 repeated p times. In particular, the representation F( j1,..., jk)′

occurs in the decomposition, where λ ′ is the conjugate partition to λ . This
immediately implies that the cohomology

Hd(IG(k,2k +1),
jk∧

Q∗⊗·· ·⊗
j1∧

Q∗(t))

does not vanish if

Hd(IG(k,2k +1),(Q( j1,..., jk)′)∗(t))

does not vanish, where (Q( j1,..., jk)′)∗ is the irreducible vector bundle associated
to the irreducible P-module F( j1,..., jk)′ .

Notice that since F has dimension k + 1, we have an isomorphism Fλ (t)⊗∧k+1 F ' Fλ (t + 1). Since we are going to require vanishing for all twists by
line bundles, we can just focus on the irreducible modules that occur in the
decomposition up to isomorphism, and then consider all twists afterwards.

The index ranges that we need to consider are all j1, . . . , jk such that 0 ≤
jq ≤ k− q + 2, and we need to consider cohomology which occurs in degree
d = ∑

k
q=1 jq. However, we also need to consider two possible alternatives which

could force us to consider cohomology in degree d where d 6= ∑
k
q=1 jq. One,

that the decomposition of
∧ jk Q∗⊗·· ·⊗

∧1 Q contains a representation indexed
by a partition λ that has at least k + 1 parts. Two, that the bundle

∧ jk Q∗⊗
·· ·⊗

∧ j1 Q∗(t) has least one jq = q +1, in which case we would have replaced∧ jq Q∗(t) by O(t ′) for some other integer t ′.
The first case is already handled by our script because of the following: LiE

accepts the partition λ and converts it to a weight vector wt(λ ). If λ has k + 1
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parts, then the k +1st entry in the vector wt(λ ) will be nonzero. When we twist
the bundle Qλ by O(t), this is adds t to the k +1st entry in wt(λ ), and this is no
different if the k +1st entry in wt(λ ) is zero or nonzero.

In the second case, suppose we want to verify the vanishing of

Hd

(
LG(k),

jk∧
Q∗⊗·· ·⊗

j1∧
Q∗(t)

)

with d = ∑
k
q=1 jq in the case that jq = q + 1 for some q. This means that we

need to verify for the same d, the vanishing of

Hd

LG(k),
jk∧

Q∗⊗·· ·⊗
ĵq∧

Q∗⊗·· ·⊗
j1∧

Q∗(t)

 ,

where
∧̂ jq Q∗ indicates omission. We handle this case with an “if” statement at

the last step of each loop in our script.
In the next subsection we describe our LiE scripts which test Question 2.6

leading to Theorem 2.7 in the cases k = 1 . . .6 and provide our counter examples
in the case k = 7.

3.4. LiE implementations

LiE [11, 12] is a computational package that allows us to compute the coho-
mology of the vector bundles in which we are interested. In particular, we im-
plement Bott’s Algorithm to compute cohomology on vector bundles we con-
structed via iterative uses the Littlewood-Richardson or Pieri rule. Herein we
describe the scripts we wrote to accomplish these tasks.

The “test” script takes a partition and outputs the possible cohomology for
each possible twist that could yield cohomology, printing a warning if there is
any cohomology in the forbidden degree. For each new k, we have to change
k and the group that LiE uses as default by hand. The script tests each parti-
tion for intermediate cohomology and outputs the possible degrees for non-zero
cohomology.

Here is our script for the case k = 3, and the Lagrangian Grassmannian
LG(3).

test(vec w){
v = from_part(w);
k=3;
degrees=null(0);
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setdefault(C4);
rho = all_one(k+1);
anything = 0;
for t=-2 to 3*(k+1) do
CH=dominant(v+null(k)^[-t]+rho)-rho;
myword = W_word(v+null(k)^[-t]+rho);
ll = length(myword);
mybool=0;
for j = 1 to k+1 do
if CH[j] == -1 then mybool = 1; fi;

od;
if mybool ==0 && ll !=0 && ll != (k+1)*(k+2)/2 then
degrees = degrees^[ll];
fi;
od;
degrees
}

Next we have a script that decomposes each vector bundle and feeds the
script “test” each irreducible component. This uses the Littlewood-Richardson
rule implemented in LiE. We have included the case that whenever an index
jq = q+1 then we set the corresponding representation equal to the trivial rep-
resentation - this is equivalent to removing that factor and replacing it with a
line bundle. Below is the example when k = 3.

m=5
sum(vec v) = v*all_one(size(v))
for j1=0 to 2 do for j2=0 to 3 do for j3 =0 to 4 do
v1 = all_one(j1)^null(m-j1); if j1==2 then v1 = null(m) fi;
v2 = all_one(j2)^null(m-j2); if j2==3 then v2 = null(m) fi;
v3 = all_one(j3)^null(m-j3); if j3==4 then v3 = null(m) fi;
t = LR_tensor(X v2,X v1);
t = LR_tensor(X v3,t);
for i=1 to length(t) do
degs = test(expon(t,i));
for j = 1 to size(degs) do
if degs[j] == sum([j3,j2,j1]) then
print("WE HAVE A PROBLEM"); print(t[i]);
print("has cohomology in degree(s)");print(degs[j]);

else
print("ALL CLEAR"); fi;

od;
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od;
od;od;od

We ran the same script, modified for the next cases, and found cohomology in a
degree forbidden by the sufficient conditions of Question 2.6 for the first time at
k = 7. The following vector bundles have non-zero cohomology in degree 24,
which was required to be zero in the question.

6∧
Q∗⊗

5∧
Q∗⊗

4∧
Q∗⊗

3∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗

1∧
Q∗ ⊇ Q7,6,5,3,2,1,0

5∧
Q∗⊗

5∧
Q∗⊗

5∧
Q∗⊗

3∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗

1∧
Q∗ ⊇ Q6,6,6,3,3,0,0

5∧
Q∗⊗

5∧
Q∗⊗

5∧
Q∗⊗

3∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗

1∧
Q∗ ⊇ Q7,6,5,3,2,1,0

6∧
Q∗⊗

4∧
Q∗⊗

4∧
Q∗⊗

4∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗

1∧
Q∗ ⊇ Q7,5,5,5,1,1,0

6∧
Q∗⊗

4∧
Q∗⊗

4∧
Q∗⊗

4∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗

1∧
Q∗ ⊇ Q7,6,5,3,2,1,0

5∧
Q∗⊗

5∧
Q∗⊗

4∧
Q∗⊗

4∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗

1∧
Q∗ ⊇ Q6,6,5,5,2,0,0

5∧
Q∗⊗

5∧
Q∗⊗

4∧
Q∗⊗

4∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗

1∧
Q∗ ⊇ Q6,6,6,3,3,0,0

5∧
Q∗⊗

5∧
Q∗⊗

4∧
Q∗⊗

4∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗

1∧
Q∗ ⊇ Q7,5,5,5,1,1,0

5∧
Q∗⊗

5∧
Q∗⊗

4∧
Q∗⊗

4∧
Q∗⊗

3∧
Q∗⊗

2∧
Q∗⊗

1∧
Q∗ ⊇ Q7,6,5,3,2,1,0

4. Another set of splitting conditions

Instead of trying to prove splitting conditions by verifying complicated coho-
mology conditions at each stage, suppose we restrict our given bundle to P1 in
every case. We use this idea to arrive at the following set of equivalent con-
ditions for a vector bundle over the Lagrangian Grassmannian to be a splitting
bundle.

Theorem 4.1. Let E be a vector bundle on the Lagrangian Grassmanian LG(k)
with k ≥ 1, Let Q(k) denote the quotient bundle on LG(k), and let ILG(k−1)
denote the ideal sheaf associated to the tautological sequence

0 // ILG(k−1) // OLG(k) // OLG(k−1) // 0

The following are equivalent:
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1. E splits as a sum of line bundles.

2. There exists a a chain of smooth subvarieties LG(0) ⊂ LG(1) ⊂ . . . ⊂
LG(k) such that

H j

(
L(i),

j∧
(Q(i))∗⊗E|LG(i)(t)

)
= 0,

for all t ∈ Z and all 1≤ i≤ k and for all 1≤ j ≤ i+1.

3. For every chain of smooth subvarieties LG(0)⊂ LG(1)⊂ . . .⊂ LG(k) we
have

H j

(
L(i),

j∧
(Q(i))∗⊗E|LG(i)(t)

)
= 0,

for all t ∈ Z and all 1≤ i≤ k and for all 1≤ j ≤ i+1.

Proof. (1) =⇒ (3): Suppose E splits and consider one such chain of subvari-
eties. To prove vanishing of cohomology, we apply Bott’s theorem.

We must calculate the cohomology
∧i Q∗(t). This means we need to pair the

weight λi + tλk+1ρ with all the positive roots, and count the number of pairings
that are negative and we must show that there cannot be i such positive roots.
Because only the parameter t is allowed to be negative, the only positive roots
which have the possibility to pair negatively with λi +tλk+1ρ are those including
αk+1.

For the first examples, suppose that i < k. When i = k the pairings will be
slightly different, but the essential argument is the same. We compute the first
pairings in non-decreasing order as follows:

α 〈α,λi + tλk+1 +ρ〉
αk+1 2t +2

αk +αk+1 2t +3
αk−1 +αk +αk+1 2t +4

2αk +αk+1 2t +4
αk−2 +αk−1 +αk +αk+1 2t +5

αk−1 +2αk +αk+1 2t +5
αk−3 +αk−2 +αk−1 +αk +αk+1 2t +6

αk−2 +αk−1 +2αk +αk+1 2t +6
2αk−1 +2αk +αk+1 2t +6

...
...

So, to have H1(
∧1 Q∗(t)) 6= 0 we would need to have precisely one negative

pairing and no zero pairings. The pairing with αk+1 yields 2t +2 < 0 implying
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that t <−1. But if t ≤−2 then the pairing with αk +αk+1 yields 2t +3 ≤−1,
so H1(

∧1 Q∗(t)) = 0, and the nonzero cohomology can only occur in degree at
least 2.

Similarly, to have H2(
∧2 Q∗(t)) 6= 0 we need precisely two negative pair-

ings, and no zero pairings. So we must have 2t + 3 < 0 or t ≤ −2. If t = −2
then we get a zero pairing. If t <−2 then we would have more than two negative
pairings.

In general, one checks that for each integer i ≤ k + 1, there is at least one
positive root α such that 〈α,λi +tλk+1 +ρ〉= 2t + j for all 2≤ j≤ 2k+2. So to
require at least i negative pairings would also imply either that the cohomology
is singular, or that there are strictly more than i negative pairings. Therefore
the cohomology of

∧i Q∗(t) is either singular, or occurs in degree greater than i.
Since Q has rank k +1 we conclude more than we needed to show, namely that
Hd(

∧i Q∗(t)) = 0 in the range 1≤ d ≤ 2k +2.
(3) =⇒ (2): The existence of such a chain of subvarieties is constructed as

in the proof of Theorem 2.4: Consider a generic section s of the quotient bundle
Q(k) on LG(k). Then we showed that zeros(s) = LG(k−1). Iterate.

(2) =⇒ (1): Consider the restriction E|L(k−1). We do not know if this vector
bundle splits or not. If E|L(k−1) splits it is isomorphic to a bundle

⊕
j OL(k−1)(a j)

for some constants a j. Let F =
⊕

j OLG(k)(a j) so that F|L(k−1)
∼= E|L(k−1). By the

same argument as in the proof of Theorem 2.4, we know that the isomorphism
between E and F on L(k− 1) lifts if H1(IL(k−1)⊗F∗⊗E) = 0. By applying
the Koszul resolution and Lemma 1.1 of [10], this vanishing can be guaranteed
if H j(L(k−1),

∧ j Q(k)⊗ELG(k−1)(t)) = 0 for all t ∈ Z and for all 1≤ j≤ k+1.
In a similar manner, we can consider the restriction (E|L(k−1))|L(k−2). If

this bundle splits, then we will need to ask for the vanishing of H j(L(k−
2),
∧ j Q(k−1) ⊗ ELG(k−2)(t)) = 0, t ∈ Z and for all j ≤ k in order to guaran-

tee that the isomorphism between the splitting bundle and E at the level of
LG(k− 2) lifts. We continue to descend until we get to LG(0) = P1. At this
base level, we know that every vector bundle splits over P1, so we require
H j(P1,

∧ j Q(0)⊗EP1(t)) = 0, t ∈ Z and for all 1≤ j ≤ 2.
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