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KOBER FRACTIONAL q-DERIVATIVE OPERATORS

MRIDULA GARG - LATA CHANCHLANI

In the present paper, we define right and left sided Kober fractional
g-derivative operators and show that these derivative operators are left in-
verse operators of Kober fractional g-integral operators. We obtain the
images of generalized basic hypergeometric function and basic analogue
of Fox H-function under these operators. We also deduce several interest-
ing results involving g-analogues of some classical functions as special
cases of our main findings.

1. Introduction

In the theory of g-calculus [4], 0 < |g| < 1 the g-shifted factorial (q-analogue of
the Pochhammer Symbol) is defined by

Ty (1 —ag’) itk>0
(a;q), = 1 ifk=0
1570 (1 —ag’) ifk—eo

or equivalently (a;q), = (l(la;?)w (ke NU {oo})

q"4q)..
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Its extension to the real o is

(a:q).,

(ag®q)_ (6 €R) (1)

(a:q)q =

Also, the g-analogue of the power function (a — b)%is
(a—b)¥ =q (b/a’ ) = a*T]
(b/a;q>

=a’————=<—,(a#0) 2
(a%/aca).
The g-gamma function is defined by
G(q* _ _ _
L@ = S0 g = (1)@ () xR/ {0,1,-2,.)
G(q)
1 3)
oy
where G (¢ )—m

Obviously I'; (a +1) = [a] I’y ()

The g-derivative of a function f (x) is defined in the book by Gasper and Rahman
[4]:

(Dof) () = =22, (x # 0) and (D, ) (0) = lim (D f) (x)

where Dy, — /4, as g — 1.

We have D x* = %x“*l = [,I,L]q,x“*1

The g-integral of a function is defined by in the book by Gasper and Rahman
[4]:

| r0d=x- Q)éq"f (") )
[ r0dp=x1-a) ¥ a5 () 5)
X k=1

The generalized basic hypergeometric series is given as follows [4]

Mz

I+s—r
n
(... riq), (—1)”q<2) wa. ©

el
blv ab o n=0 bl’ b q)n

with ( Z > =n(n—1)/2and (ay,...,a;;q), = (a1:9), --- (ar;q),
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If 0 < |g| < 1, series converges absolutely for all x if r < s and for |x| < 1
if r=s+41. Also if |g| > 1, then the series converges absolutely for |x| <
|b1,...,bs| /a1, ...,ar|.

The abnormal type of generalized basic hypergeometric series ,¢; (.) is defined
as

ap,...,d - (ll, - ar; ) an(n+1)/2 x!
rOs [ ; ] 9 T (7
by,... b ; (b1,..,bs39),, (4:9),
where & > 0 and 0 < \q[ < 1.
The g-binomial series is given by
o ox;q),,
1¢0[ ;q,x} - (oa) (®)
- ('x’ )oo
From (1) and (8), follows that
—a b
(a—b)'" =a® gy [ q_ 3q, aq“] ©)
The g-analogues of the exponential function are given by ( [3], [4]):
n
Ej=odo(——:q,%) = ) ———— = (xq). (10)
,,gb (g:9),
= X" 1
¢y =190(0;—¢,x) = ) = (11)

= (@9, (5q).

In 1905, Jackson introduced the following g-analogue of the Bessel function
([6]; see also [4]):

m,. @), Ly
JV ()C,q) = W (7> 2¢1 (070’q +

2

X

The basic analogue of Fox H-function is defined by Saxena, Modi and Kalla [9],

as follows
a,o
" {“" Eb ) ]
1 / H;n—l G( bj—Bjs )HVZL G( lfajJrajs) 5 i
2w Je T, 1 G (g™ “ﬁf) L1 G(q™%) G (g!=*) sinTs

- /C X ()% ds (13)
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where 0 <m; < B,0<n; <A; a}sand B;s are all positive, the contour C is a line
parallel to Re (ws) = 0, with indentations, if necessary, in such a manner that all
poles of G (qbi—ﬁf") ,1 < j <my,are to the right, and those of G (q1 _“-/'_“-f“) 1<
J < nj are to the left of C. The integral converges, if Re [slog (x) —logsinms] <0
for large values of |s|on the contour, that is, if ‘{arg (x) —waw, 'log |x| }’ <m,
where0 < |g| < 1,logg = —w = — (w; +iw2),w,wy,w; are definite quantities,
wiandw, being real.

We shall now express the generalized basic hypergeometric series 11 ¢, in terms
of basic analogue of Fox H-function. We start with the contour integral repre-
sentation of generalized basic hypergeometric series ,1@, as given in the book
by Gasper and Rahman [4].

q*,...,q"
r+1¢r b: ’ by 1q,X
(qal qzwrla"q‘)vq 1 (qHS qb|+5__,, q17r+s.q) 7'5(72)3 (14)
= o da) (_ﬁ) Je ==y

(4" .q"3q) (17 g1 o) sinTis

. ([ 1+s. _ _9°G(q")
Applyn‘lg the resul.t (q' i), = GG sily ¢
some simple manipulations and expressing all the g-factorials in terms of g-

gammas using (1), the ,; ¢, can be expressed as

qY,...,q%* :|
g, X
r+10r |: qbl,...,qb’ q,

, which can easily be obtained by

_ §1G(qbf)G(q)1/ LG )G =n <x>sds
- ITEG(gw)  2miJeITj- G (¢%7) G(¢°) G (g'~*) sinms

16 ()G
ng (47)6() 11 (1—-aj,1)

X
HlG(qaj)Hm,Hz [—q?q‘ (0,1),(1_bj,1)(1,1)] (1)
=1

J

The above result can be used to write the g-exponential function (11) and
the g-Bessel function (12), in terms of basic analogue of H-function as follows

e =G(q)Hy} H;q' o, 1)11’ 0 ] (16)

1 (a) =GP (5) HyS {f:];q‘ 0.1). (—v. 1) (L) ] (7

The remaining paper is organized as follows. In Section 2, we present defini-
tions and some properties of Kober fractional g-integral operators as these will
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be used in Section 3. In Section 3, we define right and left hand sided Kober
fractional g-derivative operators and show that these are left inverse of Kober
fractional g-integral operators. In Section 4, we obtain images of the power
function, the generalized basic hypergeometric series and the basic analogue of
H-function under right and left hand sided Kober fractional g-derivative opera-
tors. In the last Section 5, we obtain the images of g-analogues of some classical
functions as special cases of the results established in Section 4.

2. Kober fractional q-integral operators

W.A. Al-Salam [2] and R.P. Agarwal [1] introduced several types of fractional
g-integral operators and fractional g-derivative operators. Further study of vari-
ous fractional g-integral and derivative operators is done by Isogawa et al. [5],
Rajkovi et al. [8] and Saxena et al.( [10], [9], [11]). In the present paper, we
shall consider the following definition of the right and the left hand sided Kober
fractional g-integral operators

X —0  rx
(13’51‘) (x) = FqZS)/O (x—1q)5_117f (t)dyt (18)

( %6f>( )= ;:q@)/x (t=x)5 17 7% (tql_‘s) dyt (19)

where 0 is an arbitrary order of integration with R(8) > 0 and 7 being real or
complex.
For g — 1, these operators (18) and (19), reduce to Kober operators (I 7.8 f ) (x)
and (J 73 £) (x) respectively as defined in [7].
For y = 0, the operators (18) and (19), reduce to Riemann-Liouville fractional
g-integral operator with a power weight and Weyl fractional g-integral operator
respectively as

-6

(Ber) =2 (Br)W=5 7 |, C(x—1q)51 /(1) dyt,Re(8) >0 20)

(#77) 0= (487) 0 = 57 | =000 (0 %) s 0

The operators given in (18) and (19), in view of (4) and (5) can be written

as:
(7))

(o)

oo

qu 1+7) < k—H) ) f<qu) 22)
Z qky( k+1) f (xq—k—6> (23)




18 MRIDULA GARG - LATA CHANCHLANI

The following properties hold good for ooperator (18).

(Ig,sxl ) (x) = x* ( [+ f) ) o1
(13,6 1o f) (0 = ( 1o+ f> ®) 05)
(];/,SI;x,nf> (x) = (Iqa’nlg’af> (x) (26)

The above properties are also true for operator (19).

3. Kober fractional q-derivative operators

We define the right hand sided Kober fractional g-derivative operators of order
0, Re(8) > 0 as follows

n

(0726) ) =TT (Ir+ 71, +2a777D,) (722 f) (x) - @7)

j=t

where n=[R(8)]+1,nEN
The left hand sided Kober fractional g-derivative operator is defined by

n—1

(Pr2r) ) = [T (r+ 11y =20y) (7272 ) @) (28)

j=0

Here the operators I;/’S and Jq’6 are the right and the left hand sided Kober
fractional g-integral operators of order § defined by (18) and (19).

For g — 1, the operators (27) and (28) reduce to right and left hand sided ordi-
nary Kober fractional derivative operators as given in [7] respectively.

In this paper, we deal mainly with the right hand sided Kober fractional q-
derivative operator D}l/’s. The case of the left hand sided derivative operator
can be considered by analogy.

In the following theorem, we shall prove that, the Kober fractional g-derivative
operators (27) and (28) act as left inverses of the Kober fractional g-integral
operators (18) and (19) respectively.

Theorem 3.1. Ler 7,8 € C and Re(8) > 0, then following are valid
(D7) @ = £ () 29)

(P2 F) () = £ (%) (30)
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Proof. By using the definition (27) and properties (25) and (26), we obtain the
relation

n

(5212 r) @) =TT ([r-+ 7l #0770, ) (177521 ) (@)

J=1

n

=TT (174 7l +-xa77D4) (75) 0

j=1
Since n € N, the relation

[T (1r+41,+5a77D,) (1) (1) = £ (0 a1

J=1

can be proved by mathematical induction. For n = 1, we have

(Ir=+1],+x4"1D,) (11 £) ()
= ([H 1]q+qu“Dq) (1 —q);q"“”}f (xq">

w oyt
—q)l;oq"“”)(l(l_qu))f (xq ) (g7 - Zq () < q") +f (%)
=f(x)

Now, we have to prove the relation (31), for n = m+ 1 under the assumption that

it holds true for n = m. For which, we have to see that the following relation
holds.

(- mt 1], +xg7 "D, ) (1741 1) () = (11" F) 1) G2

By using (22), we can write the left side of (32) as

([y—i—m—I—l]q—qu”’”“D ) m+1 Z k(1+7) ( Hl)mf(qu)

(1-g) v Zq Hy( )

Ly (m+1) y+m+1 k(147) (] _ f(qu)_f(quﬂ)
rgl 0 (1mgh) R

_ m:oqk(lw) (1 qu)mqf <qu)

[( k+m) (1- q}/+l+m) gl Tt (1 _qk+m> " (1 _qkﬂ
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_ (quznf)) ]g)qk(lﬂf) (1 _qk+1)m71f (qu>= (I f) (x)

The result (30) , can be established on similar lines.

4. Applications

In this section, we obtain images of the power function, the generalized basic
hypergeometric series (6) and the basic analogue of Fox H-function (13) under

the fractional g-derivative operators (27) and (28).

Theorem 4.1. Ify,0,u € Cand Re(8) >0, Re(y+06—pu) >0,
Re(y+6+u+1) >0, then we have

prog_ Lart8+p+1)

33
A W CZTES) e
I o —
Ly(v—n)
Proof. We first find the fractional g-integral I,}/ 9 of x4,
1-¢q) ¢ u
TS M — ( k(y+1) (1 _ k+1> ( k)
S W E) ;ﬂ T )5 \M
oo 5.
(q ’q)k
=(1 _q)5x# gHru) 22 2 Uk
kg’o (4:9)
o+1.
= (1= (o757 = (-0
Ly(y+p+1)
ok = 1 . 35
S AN TR A (33)
Now to obtain DZ’ax", we use definition (27) and the result (35), to get
Dyt = [ (Iy+1l,+xg" 7D, ) IO HA L)
! =1 ! YV Ty(y+n+p+1)
Thus, to prove (33), it remains to show that
n , N, (y+8+p+1) C,(y+8+u+1)
v+ jl, +xq"D ) a = *(36)
,Hl([ ly )T (y+n+p+1) Oy(y+u+1)
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Since n € N, (36) can be proved by the mathematical induction. For n =1, we

have
Ly(y+8+p+1) ,

Ly(v+u+2)

L (y+8+pu+1) ((1=¢"") "' (1=g")) ,
L, (y+p+2) l—q l—q

<[}'+ 1], —|—xq7+1Dq)

Ty (y+8+u+1) ,
Ly(y+u+1)

Now, we have to prove (36), for n = m+ 1 under the assumption that it holds
for n = m, i.e. we have

m L, (y+8+u+1) L, (y+8+u+1)
+jl,+xq""Dy) =2 p_ 4 k(37
]Ul(y Ty +xq >Fq(}'+m+u+1)x r,or+psn ~ ©7
Now,
mil L, (y+8+up+1) o

+ "ip
1<[Y Jy x4 ) (y+m+1+u+1)

~.
Il

m

=11 ( Y+Jl,+x4""'D ) ([Y—i—m—i— 1]q+qu+’"HDq) [IromTI=oxm(38)
=1

Using (32) for f (x) = x*, the right side of (38) equal to

m
=11 ([H ik +quﬂDq> Iyromoxk
=1

" C,(y+6+u+1)
Y+Hip 4q u
]I_II(YH g >Fq(7+m+u+1)x

L, (y+8+u+1) , .
X, using (4.5
Lo(y+u+1) (using (4:)

Thus, we get that the result (36) is true for n = m+ 1. Hence the result (33).
Similar steps can be used to prove (34), for left hand sided derivative. O

Theorem 4.2. For y,u,A € C,R(8) >0and Re(y+ A +9) > 0, we have

.0 a,az
D?’, ya2,.--,a
Fq(Y+)L+5+1) ap,az,...,Ar,

g7+ (39)
= Eir Y 19 by ba..... by gV

»q,ax



22 MRIDULA GARG - LATA CHANCHLANI
and
5| —A a,az,...,d
P’Y7 X ;
‘ [ ¢[bhm, b, q’d]

l—‘q(7+l+5)x71 — ap,az,...,ar,q *

(40)
— oA .
T TT,(r+A) q r+1 ¢s+1 bl , bz, ’bs’qy+l g, a/xq5:|

Proof. In view of (6) and (33), the left side of (39) becomes

" 14+s—r
- (4159),(0239), (@5, | qyn (2)
,;0 by; qn 25q) - (b53q), =1)'q

L,(y+A+8+1+n) A
L,(y+A+1+n) (q:9),

14s—r
sy (a139),(a239), - (@), |y (2)
=00 L g (o), g, |V

(qy+/l+6+1 q) (qy+/l+1;q)oo A .
(qr*+lq), (qr*+9+hq)_ (4:9), (@)

T, (y+/l+6+1) N
L (y+A+1)

I4+s—r
n
(e} A 5 .
¥ (@30), (a230), - (arq), (47707 54), «4yq<2) (ax)"
= (b1:9),(b2:q), .. (bs:q), (QHAH;Q)H

which is equal to the right side of (39).
Result (40) can be proved on similar lines. O]

Theorem 4.3. For y,i,6 € C,A > 0andR(8) > 0, we have

Dy? [x“H/T,Enl [legq‘ Ezgg ”

ey st [ | (=83 (@)
SRUACC A e A i B

py? [x”HXfE"‘ [Px_l;q’ Ezgi H
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mi+1,n,

-8 A
=(1-gq) x#HA+l,B+1

px ;q‘((a,m(lww,k) ] 42)

1+y+6+u,1)b,B)

ez o] 53]

_ -0 mi+1,n, 1) k. (a’a) (’}/_‘u,l)
=(1—gq) x#q HA+IB+1 [p (xq) ’q‘ (y+06—u,A)(b,B) ] @)

b 5]

my,n, + -2 1—y—5+u,7t N0
(1 ) Sx.ll 6#HA+13+11 |:p (‘xq6> ’q‘ ( (Z,B)(l y )”Saa) ) :|

where 0 <m; < B,0 <n; <A,Relslog(x)—logsinms| < 0,0 < |q| < 1.

Proof. By using the definitions (13) and (33), the left side of (41) becomes

xH
D(Z’BTM- /Clq (s) (px*

1 () (1757455 09 (o) )

On interchanging the order of fractional g-integral and contour integral, we have
ﬁ ([Y+ Jl +x6]y+jD ) ﬁ / Xq (5) p“'IY+5’"_5x’l“'ds
= a 1)\ 2mi Je™? a

On using (35), it becomes

L . ; 1 T (y+06+As+u+1) 4,
I I Y Ytip / s” 4 As+U
=1 <[ J]q 4 q) (27‘51' qu (s)p I, (y+n+As+u —|—1)x ds

Y+5+/1s+u+1) st
2m y Jl /%q (Yt Astptntl) ds
1 cﬂﬂ/ Fq(y+6+/ls+u+1) st Ast
+— s s+u s+u d
2wil—qJc a(5) Ly(y+As+p+n+1) [x (xq) } s
:1/ (5) T(r+8+As+u+1)
2mi Jo ™! C,(y+As+u+n+1)

n

TT (i 71y + a7 s+ ), ) o ds

J=1
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I 1
1 / q(s) K q(7+5+ls+.u+ )xlSJruds

" 27 Je T, (y+As+u+1)
B (1 _q)—5xl»1 G(qY+5+)L‘Y+I'L+1) 0
B 27i /qu (5) G (qrhs+u1) (px ) ds

The above expression on being interpreted with (13) yields the right hand side
of (41). The result (42) can be proved similarly on changing A to —A.

The other two results (43) and (44), for left hand fractional g-derivative can
be established on similar lines. O]

5. Special cases

(1). In Theorem 4.2, if we take r = s = 0,A = 0,a = —1, the function , ¢ reduces
to E, (x) defined by (10) and we obtain the following results

I.(y+8+1 y+6+1
D}° (Eq(x)) = M X101 < qqy+1 »q, —X> (45)

PL;’,5< (1/x>) :’(“;)3) X 101 ( q:]f ;q’_1/xq5> (46)

(ii). On taking r = 1,5 = 0,a; = ¢~ in Theorem 4.2 and using the relation (9),
we get

D21’6< (1—axq™ V) )
1" (y+6+A+1) J/JrSJrlJrl7 —v
B qF (Yy+A+1) 20 ( ! qy+/l+1q ;q,ax) 47

qu,& (x_’l (1 _aq"’/x) (v)) -

CL(y+6+24) 4 s AR
PO S I X2 g 0% ) @48

(ii1). In Theorem 4.3, if we take
m=1m=0A=0B=2p=-1/ b =0p=1b=1p=11=1

the function ,¢; reduces to ¢, (x) defined by (11) and we obtain the following

results
D ey = Gla) (1=l (~2ia| (o S TTD )
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PI% (eq(®) = G(q) (1—q)"° x H}Y ("“15_1;"‘ (y+6,1()y(’01,)1>7(171> )

(iv).

(50)
In Theorem 4.3, if we take

pw=v,m=1n=0A=0B=3p="1/1 b =0p =1,b=-vp=
1,b5 = 1,63 = 1,A = 2 the basic H-function reduce into basic analogue of
Bessel function as given by (17) and we get the following results

Dy® (1 (:9)) = () (G @) (1 -4)
gl X (=y—0-v,1)
12 (5] 0. ST v ) GD
P (1 (wa)) = (%) (G (@) (1)
7 x2q26—1 _7(_,}/_5_‘/’ 1)
XHIZ*(‘)( 4 "<o,1><y+6+v,z>,<—v,1><1,1>) 2

On reducing the basic analogue of H-function occurring in Theorem 4.3 to

many more g-special functions as given in [10], we can obtain the corresponding
results for these functions. However, we omit the details here.
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