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WEAK CONVERGENCE OF JACOBIAN DETERMINANTS
UNDER ASYMMETRIC ASSUMPTIONS

TERESA ALBERICO - COSTANTINO CAPOZZOLI

Let Ω be an open subset of R2 and assume that fk = (uk,vk), k =

1,2, . . ., and f = (u,v) are mappings in the Sobolev space W 1,2
loc (Ω,R2).

We prove that if one allows different assumptions on the two components
of fk and f , e.g.

uk ⇀ u weakly in W 1,2
loc (Ω) vk ⇀ v weakly in W 1,q

loc (Ω)

for some q ∈ (1,2), then

J fk
∗
⇀ J f in M(Ω), (1)

i.e. ∫
Ω

J fk ϕ dz→
∫

Ω

J f ϕ dz, ∀ϕ ∈C0
0(Ω).

Moreover, we show that this result is optimal in the sense that conclusion
fails for q = 1.

On the other hand, we prove that (1) remains valid also if one consid-
ers the case q= 1, but it is necessary to require that uk weakly converges to
u in a Zygmund-Sobolev space with a slightly higher degree of regularity
than W 1,2

loc (Ω) and precisely

uk ⇀ u weakly in W 1,L2 logα L
loc (Ω)
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for some α > 1.
Finally we present an extension to Orlicz-Sobolev setting of the pre-

vious results.

1. Introduction and statement of the results

In [7] a general weak continuity result has been established for Jacobian deter-
minants of W 1,N(Ω,RN)-Sobolev mappings. We will state it here in the partic-
ular case N = 2 and in the local form.

Theorem 1.1 ([7]). Let Ω be an open subset of R2. If

{ fk} ⊂W 1,2
loc (Ω,R2),

fk ⇀ f weakly in W 1,1
loc (Ω,R2) (2)

and
J fk

∗
⇀ µ in M(Ω),

then
dµ = J f dz+dµ

s,

where µs is a singular measure with respect to the Lebesgue measure on Ω.

This is a generalization of the classical result (Reshetnyak [16], Ball [2])
that tells us that if

{ fk} ⊂W 1,2
loc (Ω,R2), f ∈W 1,2

loc (Ω,R2), (3)

then the stronger assumption than (2)

fk ⇀ f weakly in W 1,p
loc (Ω,R2) for some p > 4/3

implies the stronger conclusion

J fk

∗
⇀ J f in M(Ω). (4)

Moreover, Dacorogna-Murat (see [6]) show that this weak continuity result is
optimal in sense that it does not hold true when p = 4/3.

Our aim here is to prove that (3) together with an asymmetric assumption
on the two components of fk and f , guarantee that (4) holds true.

The first result in this direction is the following theorem, which may be
deduced from a very recent div-curl result contained in [4].
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Proposition 1.2. Let Ω be an open subset of R2. If

fk = (uk,vk)⇀ f = (u,v) weakly in W 1,2
loc (Ω)×W 1,q

loc (Ω) (5)

for some q ∈ (1,2), then

DetD fk ⇀ DetD f in D′(Ω), (6)

i.e.
〈DetD fk,ϕ〉 → 〈DetD f ,ϕ〉 ∀ϕ ∈C∞

0 (Ω).

In particular, under the assumptions (3) and (5) we have

J fk

∗
⇀ J f in M(Ω). (7)

Moreover, this result is optimal in sense that the conclusion fails for q = 1.

In Section 3 we give a simpler proof of the previous proposition.

Remark 1.3. We also consider the case q = 1, but to do this we need that uk
weakly converge to u in a Zygmund-Sobolev space with a slightly higher degree
of regularity than W 1,2

loc (Ω). Precisely we have the following result.

Proposition 1.4. Let Ω be an open subset of R2. If

fk = (uk,vk)⇀ f = (u,v) weakly in W 1,L2 logα L
loc (Ω)×W 1,1

loc (Ω) (8)

for some α > 1, then (6) holds true. In particular, under the assumptions (3)
and (8) we get (7).

Our main result is the next theorem, which represents an extension to Orlicz-
Sobolev setting.

Theorem 1.5. Let Ω be an open subset of R2. If

{ fk} ⊂W 1,1
loc (Ω,R2), f ∈W 1,1

loc (Ω,R2) (9)

and
fk = (uk,vk)⇀ f = (u,v) weakly in W 1,Φ

loc (Ω)×W 1,Ψ
loc (Ω), (10)

where Φ and Ψ are Young functions such that

Φ̃≺≺ Ψ̂ near infinity and Ψ̃� Φ̂ near infinity, (11)

then (6) holds true. In particular, under the assumptions (3), (10) and (11) we
obtain (7).

(Here Φ̃ and Ψ̃ are the Young conjugate functios of Φ and Ψ respectively,
while Φ̂ and Ψ̂ are suitable Young functions defined in terms of Φ̃ and Ψ̃, that
have been introduced by Cianchi ([5]).)

We will define the Orlicz-Sobolev spaces W 1,Φ, the particular Young func-
tions Φ̃, Φ̂, the symbols �, ≺≺ and the distributional Jacobian determinant
DetD f in Section 2. We will prove our results in Section 3.
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2. Notations, definitions and preliminary results

For the reader’s convenience we recall that a function Φ : [0,∞)→ [0,∞] is called
a Young function if it has the form

Φ(t) =
∫ t

0
φ(τ)dτ for t ≥ 0,

where φ : [0,∞)→ [0,∞] is an increasing, left-continuous function, which is
neither identically zero nor identically infinite on (0,∞). In particular, a Young
function is convex and vanishes at 0.

The Young conjugate Φ̃(t) of Φ is the Young function defined by

Φ̃(t) = sup{st−Φ(s) : s≥ 0} for t ≥ 0

and satisfies
Φ̃(t) =

∫ t

0
φ
−1(σ)dσ for t ≥ 0,

where φ−1 is the (generalized) left-continuous inverse of φ . Notice that ˜̃Φ = Φ.
Let Ω be a measurable subset of R2 and let Φ be a Young function. The

Orlicz space LΦ(Ω) is the set of all measurable functions u : Ω→ R such that∫
Ω

Φ

(
|u(z)|

λ

)
dz < ∞,

for some λ = λ (u)> 0 and it is equipped with the Luxemburg norm

‖u‖LΦ(Ω) = inf
{

λ > 0 :
∫

Ω

Φ

(
|u(z)|

λ

)
dz≤ 1

}
.

Note that, if Φ(t) = t p and 1 ≤ p < ∞, then LΦ(Ω) = Lp(Ω), the classical
Lebesgue space, and ‖u‖LΦ(Ω) = p−1/p‖u‖Lp(Ω); if Φ(t) ≡ 0 for 0 ≤ t ≤ 1 and
Φ(t)≡ ∞ for t > 1, then LΦ(Ω) = L∞(Ω) and ‖u‖LΦ(Ω) = ‖u‖L∞(Ω).

The following generalized version of Hölder’s inequality holds:∫
Ω

u(z)v(z)dz≤ 2‖u‖LΦ(Ω)‖v‖LΦ̃(Ω)
, (12)

for u ∈ LΦ(Ω) and v ∈ LΦ̃(Ω).
A function Φ is said to dominate another function Ψ near infinity, and we

write
Ψ�Φ near infinity,

if
∃c > 0 ∃ t∞ > 0 : Ψ(t)≤Φ(ct) ∀ t ≥ t∞.
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Two functions Φ and Ψ are called equivalent near infinity, and we write

Φ≈Ψ near infinity,

if
Ψ�Φ near infinity and Φ�Ψ near infinity.

A function Ψ is said to increase essentially more slowly than a function Φ,
and we write

Ψ≺≺Φ near infinity

if
∀c > 0 ∃ tc ≥ 0 : Ψ(t)≤Φ(ct) ∀ t ≥ tc.

Assume that |Ω|<+∞. Then the continuous embedding

LΦ(Ω) ↪→ LΨ(Ω) (13)

holds if and only if
Ψ�Φ near infinity.

In particular
LΦ(Ω) = LΨ(Ω)

if and only if
Φ≈Ψ near infinity.

The local Orlicz space LΦ
loc(Ω) (Ω any measurable subset of R2, Φ any

Young function) is defined as the set of all measurable functions u : Ω −→ R
that belong to LΦ(K) for every compact set K ⊆ Ω. It is a locally convex topo-
logical vector space with the family of seminorms

{|| ||LΦ(K) : K ⊆Ω, Kcompact}.

It follows from the above embeddings between LΦ spaces that the continuous
embedding

LΦ
loc(Ω) ↪→ LΨ

loc(Ω)

holds if and only if
Ψ�Ψ near infinity,

so, in particular,
LΦ

loc(Ω) = LΨ
loc(Ω)

if and only if
Φ≈Ψ near infinity.
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For more details and proofs of results about Young functions and Orlicz spaces,
we refer to [1], [3], [11] and [15].

Let Ω be an open subset of R2 and let Φ be a Young function. The Orlicz-
Sobolev space W 1,Φ(Ω) is defined as the space of functions u weakly differen-
tiable on Ω such that

u, |∇u| ∈ LΦ(Ω)

and it is equipped with the norm

‖u‖W 1,Φ(Ω) = ‖u‖LΦ(Ω)+‖|∇u|‖LΦ(Ω).

Clearly, if Φ(t) = t p and 1≤ p < ∞, then W 1,Φ(Ω) =W 1,p(Ω), the standard
Sobolev space.
The space W 1,Φ

loc (Ω) is defined as the space of functions belonging to W 1,Φ(Ω′)
for every Ω′ ⊂⊂ Ω, that is for every open set Ω′ such that Ω′ ⊆ Ω and Ω′

is compact. It is a locally convex topological vector space with the family of
seminorms

{|| ||W 1,Φ(Ω′) : Ω
′ ⊂⊂Ω}.

Properties of Orlicz-Sobolev spaces are presented in [1].
For any Young function Φ such that

∫
0 Φ̃(t)/t3 dt < ∞, we denote by Φ̂ the

Young function defined by

Φ̂(t) =
∫ t

0
(a−1(σ2))2

σ dσ , (14)

where a−1 is the (generalized right-continuous) inverse of

a(τ) =
∫

τ

0

Φ̃(t)
t3 dt.

Now, we are in a position to recall the following embedding results for
Orlicz-Sobolev spaces W 1,Φ due to Cianchi (see [5], Theorem 2 and Theorem
3).

We state them here with regard to the local spaces W 1,Φ
loc . These “local” state-

ments readily follow from the original ones by Cianchi by standard arguments.
In particular, we use the fact that for every open set Ω ⊆ R2 the topology of
W 1,Φ

loc (Ω) [resp. LΦ
loc(Ω)] is determined by any sequence of seminorms

|| ||W 1,Φ(Ωk) k = 1,2, . . .

[resp. || ||LΦ(Ωk) k = 1,2, . . . ],

where Ωk ⊂⊂Ωk+1 ⊂⊂Ω k = 1,2, . . .
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and
∞⋃

k=1

Ωk = Ω ;

moreover, the open sets Ωk, k = 1,2, . . . can be chosen to satisfy all smoothness
assumptions required by Cianchi’s theorems. This allows us to use a diagonal
process of taking subsequences in order to get the compact embedding result.

Theorem 2.1. Let Ω be an open subset of R2 and let Φ be any Young function
(which can be modified near zero, if necessary, so that

∫
0 Φ̃(t)/t3 dt < ∞). Then

we have the following continuous embedding

W 1,Φ
loc (Ω) ↪→ LΦ̄

loc(Ω), (15)

where

Φ̄(t) =
{

Φ(t) if 0≤ t ≤ t1
Φ̂(t) if t ≥ t2

(16)

for suitable 0 < t1 < t2. Moreover, we have the following compact embedding

W 1,Φ
loc (Ω) ↪→↪→ LΨ

loc(Ω), (17)

if
Ψ≺≺ Φ̂ near infinity.

We will denote by
Lp logγ L(Ω)

Lp logγ logL(Ω)

the Orlicz spaces LΦ(Ω) generated respectively by the following Young func-
tions

Φ(t)≈ t p logγ(e+ t) near infinity

Φ(t)≈ t p logγ log(e+ t) near infinity

where either p = 1 and γ ≥ 0 or p > 1 and γ ∈ R.
Moreover, we will denote by

W 1,Lp logγ L(Ω)

W 1,Lp logγ logL(Ω)

the Orlicz-Sobolev spaces of functions u weakly differentiable on Ω such that

u, |∇u| ∈ Lp logγ L(Ω)
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u, |∇u| ∈ Lp logγ logL(Ω)

respectively, where either p = 1 and γ ≥ 0 or p > 1 and γ ∈ R.
The local spaces

Lp
loclogγL(Ω), W 1,Lplogγ L

loc (Ω),

Lp
loclogγ logL(Ω), W 1,Lplogγ logL

loc (Ω)

are defined in an obvious way.
At this point, we pass to introduce the distributional Jacobian determinant.

Starting with the work of Morrey [13], Reshetnyak [16] and Ball [2], it is known
that one can define the distributional Jacobian determinant DetD f under fairly
weak assumption on f = (u,v) (see the subsequent Remark 2).

Actually, by Nikodym Theorem (see e.g. [12]) follows that for

f = (u,v) ∈W 1,1
loc (Ω,R2)

such that

u
∂v
∂x

, u
∂v
∂y

, v
∂u
∂x

, v
∂u
∂y
∈ L1

loc(Ω)

the two expressions

T1 =
∂

∂x

(
u

∂v
∂y

)
+

∂

∂y

(
−u

∂v
∂x

)
= div

 u
∂v
∂y

−u
∂v
∂x

 (18)

and

T2 =
∂

∂x

(
−v

∂u
∂y

)
+

∂

∂y

(
v

∂u
∂x

)
= div

−v
∂u
∂y

v
∂u
∂x

 (19)

are well defined in the sense of distributions and they agree, so one can put

DetD f = T1 = T2,

where the equality must be understood in the sense of distributions.

Remark 2.2. For f = (u,v) ∈W 1,4/3
loc (Ω,R2) the two expressions (18) and (19)

are well defined in the sense of distributions and they agree, because by Sobolev
embedding Theorem and by Hölder’s inequality we have that

u
∂v
∂x

, u
∂v
∂y

, v
∂u
∂x

, v
∂u
∂y
∈ L1

loc(Ω).
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For our purposes, we need to define DetD f under different assumptions on
the two components u and v of f .

Proposition 2.3. The two expressions (18) and (19) are well defined in the sense
of distributions and they agree if

f = (u,v) ∈W 1,2
loc (Ω)×W 1,q

loc (Ω) for some q ∈ (1,2)

or if
f = (u,v) ∈W 1,L2 logα L

loc (Ω)×W 1,1
loc (Ω) for some α > 1.

(Hence we define DetD f = T1 = T2, where the equality must be understood in
the sense of distributions).

Proof. First of all, we suppose that f = (u,v) ∈W 1,2
loc (Ω)×W 1,q

loc (Ω) for some
q ∈ (1,2). By Sobolev embedding Theorem we have that

u ∈ Lq′
loc(Ω), v ∈ L2

loc(Ω),

where q′ = q/(q−1), and since

∂v
∂x

,
∂v
∂y
∈ Lq

loc(Ω),
∂u
∂x

,
∂u
∂y
∈ L2

loc(Ω),

by Holder’s inequality we deduce that

u
∂v
∂x

, u
∂v
∂y

, v
∂u
∂x

, v
∂u
∂y
∈ L1

loc(Ω).

Now, we assume that f = (u,v)∈W 1,L2 logα L
loc (Ω)×W 1,1

loc (Ω) for some α > 1. By
Cianchi embedding Theorem (see [5], Example 1) we have that

W 1,L2 logα L
loc (Ω) ↪→ L∞

loc(Ω)

and by (13) it follows that

W 1,1
loc (Ω) ↪→ L2

loc log−α L(Ω),

therefore
u ∈ L∞

loc(Ω), v ∈ L2
loc log−α L(Ω),

thus, since
∂v
∂x

,
∂v
∂y
∈ L1

loc(Ω),
∂u
∂x

,
∂u
∂y
∈ L2

loc logα L(Ω),

by Holder’s inequality and by generalized Holder’s inequality (12) we get that

u
∂v
∂x

, u
∂v
∂y

, v
∂u
∂x

, v
∂u
∂y
∈ L1

loc(Ω).

The assertion follows by Nikodym Theorem.
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Remark 2.4. If we assume f = (u,v) ∈W 1,2
loc (Ω)×W 1,1

loc (Ω), then only the ex-
pression (19) is well defined as a distribution, while the expression (18) is not.

Proposition 2.5. Let f ∈W 1,1
loc (Ω,R2). Then the two expressions (18) and (19)

are well defined in the sense of distributions and they agree if

f = (u,v) ∈W 1,Φ
loc (Ω)×W 1,Ψ

loc (Ω),

where Φ and Ψ are Young functions such that

Φ̃� Ψ̂ near infinity and Ψ̃� Φ̂ near infinity,

with Φ̃ and Ψ̃ Young conjugate of Φ and Ψ respectively and Ψ̂ and Φ̂ Young
functions defined by (14).

Proof. By Cianchi embedding Theorem, see (15), we have that

u ∈ LΦ̄
loc(Ω), v ∈ LΨ̄

loc(Ω),

where Φ̄ and Ψ̄ are functions defined by (16), and since Ψ̃� Φ̂ near infinity and
Φ̃� Ψ̂ near infinity, by (13) it follows that

u ∈ LΨ̃
loc(Ω), v ∈ LΦ̃

loc(Ω),

whence, by the fact that

∂v
∂x

,
∂v
∂y
∈ LΨ

loc(Ω),
∂u
∂x

,
∂u
∂y
∈ LΦ

loc(Ω),

and by generalized Holder’s inequality (12) we obtain that

u
∂v
∂x

, u
∂v
∂y

, v
∂u
∂x

, v
∂u
∂y
∈ L1

loc(Ω).

The assertion follows by Nikodym Theorem.

Now, we compare the Jacobian determinant J f = detD f with the distribu-
tional Jacobian determinant DetD f . We recall that, if

f ∈W 1,2
loc (Ω,R2)

or if
f ∈W 1,4/3

loc (Ω,R2) and DetD f ∈ L1
loc(Ω),

then
DetD f = detD f . (20)
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(see [14]). Furthermore, considering the grand Lebesgue space L2)(Ω), intro-
duced by Iwaniec-Sbordone in [10], defined as

L2)(Ω) =

{
ϕ : Ω⊂ R2→ R | sup

ε∈(0,1)

(
ε

∫
Ω

|ϕ(z)|2−ε dz
) 1

2−ε

< ∞

}
and denoting by Σ2(Ω) the subclass of L2)(Ω) defined as

Σ
2(Ω) =

{
ϕ ∈ L2)(Ω) | lim

ε→0+
ε

∫
Ω

|ϕ(z)|2−ε dz = 0
}
,

it is well known that (20) holds if

f ∈W 1,1
loc (Ω,R2), detD f ≥ 0 a.e. in Ω and |D f | ∈ Σ

2
loc(Ω)

(see [8]). Moreover, it is interesting to note as in [8] is shown that the equality
(20) remains valid if one assumes

detD f ∈ L1
loc(Ω)

and that the two components u and v of f satisfy an asymmetric assumption,
namely

|∇u| ∈ L2)
loc(Ω) and |∇v| ∈ Σ

2
loc(Ω).

On the other hand, we observe that the identity (20) fails in general if one
only assumes

f ∈W 1,p(Ω,R2) for every p ∈ [1,2),

as is shown by the mapping

f (z) =
z
|z|

for z ∈ D(0,1),

where D(0,1) denotes the disk of R2 centered at 0 with radius 1. In fact, we
have

detD f = 0 a.e.,

while
DetD f = πδ0,

where δ0 is the Dirac mass at 0.
Recently Hencl in [9] constructs a homeomorphism

f ∈W 1,p(Ω,R2) for every p ∈ [1,2)

such that
detD f = 0 a.e.

and

DetD f is a singular measure.
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3. Proofs of the results

Now, we are able to prove our results. We start to prove Proposition 1.2 and
Proposition 1.4, next we will see the proof of Theorem 1.5.

Proofs of Propositions 1.2 and 1.4. By Proposition 2.3 we know that DetD fk
and DetD f are well defined in the sense of distributions.
Let ϕ ∈C∞

0 (Ω) and let Ω′ ⊂⊂Ω be fixed in such a way that the support of ϕ be
contained in Ω′. Integrating by parts we get

〈DetD fk,ϕ〉=
〈

∂

∂x

(
−vk

∂uk

∂y

)
+

∂

∂y

(
vk

∂uk

∂x

)
,ϕ

〉
=

∫
Ω′

vk

(
∂uk

∂y
∂ϕ

∂x
− ∂uk

∂x
∂ϕ

∂y

)
dz.

We can pass to the limit on the right-hand side, because if

fk = (uk,vk)⇀ f = (u,v) weakly in W 1,2
loc (Ω)×W 1,q

loc (Ω),

for some q ∈ (1,2), then

uk ⇀ u weakly in W 1,2(Ω′)

and by Rellich-Kondrackov Theorem

vk→ v strongly in L2(Ω′);

while if

fk = (uk,vk)⇀ f = (u,v) weakly in W 1,L2 logα L
loc (Ω)×W 1,1

loc (Ω),

for some α > 1, then

uk ⇀ u weakly in W 1,L2 logα L(Ω′)

and by the fact that

W 1,1(Ω′) ↪→↪→ L2 log−α L(Ω′)

we have

vk→ v strongly in L2 log−α L(Ω′).

As result we obtain ∫
Ω′ v
(

∂u
∂y

∂ϕ

∂x
− ∂u

∂x
∂ϕ

∂y

)
dz.

Integrating by parts we have that∫
Ω′ v
(

∂u
∂y

∂ϕ

∂x
− ∂u

∂x
∂ϕ

∂y

)
dz =

〈
∂

∂x

(
−v

∂u
∂y

)
+

∂

∂y

(
v

∂u
∂x

)
,ϕ

〉
=

〈DetD f ,ϕ〉.
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Therefore

DetD fk ⇀ DetD f in D′(Ω).

In particular if

{ fk} ⊂W 1,2
loc (Ω,R2), f ∈W 1,2

loc (Ω,R2),

then

DetD fk = J fk , k = 1,2, . . .

DetD f = J f ,

so by the density of C∞
0 (Ω) in C0

0(Ω) we can conclude that
J fk

∗
⇀ J f in M(Ω).

Proof of Theorem 1.5. By Proposition 2.5 we know that DetD fk and DetD f are
well defined in the sense of distributions.
Let ϕ ∈C∞

0 (Ω) and let Ω′ ⊂⊂Ω be fixed in such a way that the support of ϕ be
contained in Ω′. Integrating by parts we have

〈DetD fk,ϕ〉=
〈

∂

∂x

(
−vk

∂uk

∂y

)
+

∂

∂y

(
vk

∂uk

∂x

)
,ϕ

〉
=

∫
Ω′

vk

(
∂uk

∂y
∂ϕ

∂x
− ∂uk

∂x
∂ϕ

∂y

)
dz.

We can pass to the limit on the right-hand side, because if

fk = (uk,vk)⇀ f = (u,v) weakly in W 1,Φ
loc (Ω)×W 1,Ψ

loc (Ω),

where Φ and Ψ are Young functions satisfying (11), then

uk ⇀ u weakly in W 1,Φ(Ω′)

and by Cianchi embedding Theorem, see (17),

vk→ v strongly in LΦ̃(Ω′).

As result we obtain ∫
Ω′

v
(

∂u
∂y

∂ϕ

∂x
− ∂u

∂x
∂ϕ

∂y

)
dz.

Integrating by parts ∫
Ω′

v
(

∂u
∂y

∂ϕ

∂x
− ∂u

∂x
∂ϕ

∂y

)
dz =
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=

〈
∂

∂x

(
−v

∂u
∂y

)
+

∂

∂y

(
v

∂u
∂x

)
,ϕ

〉
= 〈DetD f ,ϕ〉.

Therefore
DetD fk ⇀ DetD f in D′(Ω).

In particular if
{ fk} ⊂W 1,2

loc (Ω,R2), f ∈W 1,2
loc (Ω,R2),

arguing as in the proof of Proposition 1.2 and Proposition 1.4 we can conclude
that

J fk

∗
⇀ J f in M(Ω).

Example 3.1. We give here a counterexample. In order to show that the con-
clusion of Proposition 1.2 fails for q = 1, we consider the following mappings,
suggested by [4]:

fk = (uk,vk),

uk(z) = φ(kz) vk(z) = kψ(kz), k = 1,2, . . .

for z ∈ Ω′ = D(0,1), the disk of R2 centered at 0 with radius 1, with φ ,ψ ∈
C1

0(Ω
′) such that

r0 =
∫

Ω′
φ ?∇ψ dz 6= 0,

where ? denotes the Hodge star operator, i.e.

?=

(
0 1
−1 0

)
: R2→ R2.

Note that { fk} ⊂W 1,2(Ω′,R2),

uk ⇀ 0 weakly in W 1,2(Ω′) vk ⇀ 0 weakly in W 1,1(Ω′).

By the fact that div(?∇vk) = 0 and integrating by parts, we have for ϕ ∈C∞
0 (Ω

′),∫
Ω′

J fk ϕ dz =
∫

Ω′
∇uk ·?∇vk ϕ dz =

−
∫

Ω′
uk ?∇vk ·∇ϕ dz =−k2

∫
Ω′/k

φ(kz)?∇ψ(kz) ·∇ϕ(z)dz.

Making the change of variables w = kz in the last integral we obtain∫
Ω′

J fk ϕ dz =−
∫

Ω′
φ(w)?∇ψ(w) ·∇ϕ(w/k)dw.
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Passing to the limit for k→ ∞, as result we get

−
∫

Ω′
φ ?∇ψ ·∇ϕ(0)dw =

∫
Ω′

div(r0δ0)ϕ dw.

By the density of C∞
0 (Ω

′) in C0
0(Ω

′) we conclude that

J fk

∗
⇀ div(r0δ0) 6= 0 in M(Ω′).

4. Examples

In this section we will show suitable functions verifying the hypotheses of The-
orem 1.5.

Example 4.1. Consider Young functions

Φ(t)≈ t2 log(e+ t) near infinity and Ψ(t)≈ t log1/2 log(e+ t) near infinity.

We have that

Φ̃(t)≈ t2 log−1(e+ t) near infinity, Ψ̃(t)≈ eet2 − e near infinity,

Φ̂(t)≈ eet2 − e near infinity, Ψ̂(t)≈ t2 log log(e+ t) near infinity.

Then we obtain

Φ̃≺≺ Ψ̂ near infinity and Ψ̃� Φ̂ near infinity.

Therefore by Theorem 1.5 we get that if

fk = (uk,vk)⇀ f = (u,v) weakly in W 1,L2 logL
loc (Ω)×W 1,L log1/2 logL

loc (Ω)

then
DetD fk ⇀ DetD f in D′(Ω).

Example 4.2. Let β < 1 and let us consider

Φ(t)≈ t2 logβ (e+ t) near infinity and Ψ(t)≈ t log(1−β )/2(e+ t) near infinity

so that

Φ̃(t)≈ t2 log−β (e+ t) near infinity, Ψ̃(t)≈ et2/(1−β )−1 near infinity,

Φ̂(t)≈ et2/(1−β )−1 near infinity, Ψ̂(t)≈ t2 log1−β (e+ t) near infinity.
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Then we have

Φ̃≺≺ Ψ̂ near infinity and Ψ̃� Φ̂ near infinity.

Therefore by Theorem 1.5 we obtain that if

fk = (uk,vk)⇀ f = (u,v) weakly in W 1,L2 logβ L
loc (Ω)×W 1,L log(1−β )/2 L

loc (Ω)

then
DetD fk ⇀ DetD f in D′(Ω).
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