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AN ALGORITHM TO COMPUTE THE STANLEY DEPTH OF
MONOMIAL IDEALS

GIANCARLO RINALDO

In this article we describe an algorithm to compute the Stanley depth of
I/J where I and J are monomial ideals. We describe also an implementation
in CoCoA.

1. Introduction

Let K be a field, S = K[x1, . . . ,xn] be the polynomial ring in n variables with
coefficient in K and M be a finitely generated Zn-graded S-module. Let u ∈M be
a homogeneous element in M and Z a subset of the set of variables {x1, . . . ,xn}.
We denote by uK[Z] the K-subspace of M generated by all elements uv where v is
a monomial in K[Z].

If uK[Z] is a free K[Z]-module, the Zn-graded K-space uK[Z]⊂M is called a
Stanley space of dimension |Z|.

A Stanley decomposition of M is a presentation of the Zn-graded K-module
M as a finite direct sum of Stanley spaces

D : M =
m⊕

i=1

uiK[Zi]
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in the category of Zn-graded K-spaces.
The number

sdepthD := min{|Zi| : i = 1, . . . ,m}

is called the Stanley depth of D and the number

sdepthM := max{sdepthD : D is a Stanley decomposition of M}

is called the Stanley depth of M.
The following widely open conjecture is due to Stanley [8]:

depthM ≤ sdepthM for all Zn-graded S-modules M.

Our goal is to give an algorithm (see Algorithm 1, Section 4) to compute the
sdepth of I/J where I, J are monomial ideals of S based on [5, Theorem 2.1 and
Corollary 2.5]. We give also some enhancements proved in Proposition 3.1 and in
Theorem 3.5.

In the last section we describe an implementation in CoCoA (see [3]) and
some examples of computation with remarks on the complexity of the algorithm.

2. Preliminaries

Let S = K[x1, . . . ,xn], with K a field, and let J ⊂ I be monomial ideals of S. In [5]
the authors calculated the Stanley depth of I/J by considering partitionings of a
poset induced by I/J. In this section we recall the construction given in [5] and
we give an example.

A natural partial order on Nn is defined as follows:

a≤ b if and only if a(i)≤ b(i) for i = 1, . . . ,n,

with a = (a(1), . . . ,a(n)), b = (b(1), . . . ,b(n)).
Let εi be the ith canonical unit vector in Nn, then a = ∑

n
i=1 a(i)εi.

The set Nn with the partial order above defined is a distributive lattice with
meet and join defined as follows:

(a∧b)(i) = min{a(i),b(i)}, (a∨b)(i) = max{a(i),b(i)}, i = 1, . . . ,n.

For a = (a(1), . . . ,a(n)) ∈ Nn we set xa = xa(1)
1 · · ·xa(n)

n . Observe that xa | xb if
and only if a≤ b.

Let I and J be two monomial ideals of S. Suppose I = (xa1 , . . . ,xar) and J =
(xb1 , . . . ,xbs) and choose g = (g(1), . . . ,g(n)) ∈Nn such that ai ≤ g and b j ≤ g for
all i and j.
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We define

Pg
I/J = {c ∈ Nn : c≤ g and ∃i,ai ≤ c and ∀ j,c� b j}.

This finite poset is called the characteristic poset of I/J with respect to g.
There is a natural choice for g = (g(1), . . . ,g(n)) ∈ Nn, namely

g(t) = max{(ai∨b j)(t), t = 1, . . . ,n},

for all i and j. We will call it the canonical g of I/J. In this case Pg
I/J has the least

number of elements and it is denoted by PI/J .
Given a poset P and a,b ∈ P we set

[a,b] := {c ∈ P : a≤ c≤ b}

and we call [a,b] an interval. Note that [a,b] 6= /0 if and only if a≤ b.
If P is a finite poset, a partition P of P is a disjoint union of intervals, namely

P : P =
r⋃

i=1

[ai,bi].

It is possible to associate to each partition of Pg
I/J a Stanley decomposition of

I/J. In order to describe this fact we need some notation and results from [5].

Definition 2.1. Let c ∈ Pg
I/J , we set

Zc = {x j : c( j) = g( j)},

and we define the function

ρ : Pg
I/J → Z≥0, c→ ρ(c),

where ρ(c) = |{ j : c( j) = g( j)}|= |Zc|.

The following results holds (See [5], Theorem 2.1 and Corollary 2.5):

Theorem 2.2. Let P : Pg
I/J =

⋃r
i=1[ci,di] be a partition of Pg

I/J . Then

D(P) : I/J =
r⊕

i=1

(
⊕

c
xcK[Zdi ])

is a Stanley decomposition of I/J, where the inner direct sum is taken over all
c ∈ [ci,di] for which c( j) = ci( j) for all j with x j ∈ Zdi . Moreover

sdepthD(P) = min{ρ(di) : i = 1, . . . ,r}
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Theorem 2.3. Let J ⊂ I monomial ideals. Then

sdepth I/J = max{sdepthD(P) : P is a partition of Pg
I/J}.

In particular, there exists a partition P : Pg
I/J =

⋃r
i=1[ci,di] of Pg

I/J such that

sdepth I/J = min{ρ(di) : i = 1, . . . ,r}.

We give an example to demonstrate how to compute the Stanley depth by
using Theorem 2.2 and Theorem 2.3:

Example 2.4. Let S = K[x1,x2,x3], I = (x2
1x2,x3

1x3,x2x3,x3
3) and J = (0). We may

assume g = (3,1,3). The following figure shows the poset PI/J . Each point p =
(a1,a2,a3) in this poset is represented as a1a2a3: for example g = (3,1,3) is
represented by 313.

011
210 111 012 003
310 301 211 112 103 013
311 302 212 203 113
312 303 213
313

Since I is not a principal ideal it follows from[5] that 1 ≤ sdepth I ≤ 2. We first
check whether there exists a partition P on the poset such that sdepthD(P) = 2.
It is useful to calculate for each point in the poset the ρ function (next to the
colon):

011 : 1
210 : 1 111 : 1 012 : 1 003 : 1
310 : 2 301 : 1 211 : 1 112 : 1 103 : 1 013 : 2
311 : 2 302 : 1 212 : 1 203 : 1 113 : 2
312 : 2 303 : 2 213 : 2
313 : 3

If we find a partition of the poset into intervals whose maximum elements have
ρ ≥ 2 we are done.

Such a partition exists. In fact, if we consider the intervals I1 = [011,013],
I2 = [210,310], I3 = [111,113], I4 = [003,303], I5 = [301,311], I6 = [211,213],
I7 = [302,312] I8 = [313,313], then

P =
8⋃

i=1

Ii

satisfies this condition.
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3. Some improvements

In this section we give some improvements and remarks with respect to Theo-
rem 2.2 and Theorem 2.3, necessary to clarify the algorithm in Section 4.

Let I and J be two monomial ideals of S = K[x1, . . . ,xn],

I = (xa1 , . . . ,xar) and J = (xb1 , . . . ,xbr′ ).

The input of our algorithm is given by the vectors a1, . . . ,ar,b1, . . . ,br′ ∈ Nn.
For our purpose we choose g = (g1, . . . ,gn) as the join of all the ai and b j. In this
case the poset Pg

I/J has the least number of points. From now on we denote the
poset simply by PI/J .

By Theorem 2.3 we have to consider all the partitions of the poset PI/J . Since
sdepth I/J = max{sdepthD(P)}, it is natural to check if for a “reasonable” high
value s there exists a partition P such that sdepthP = s.

In [7, Section 3] A. Soleyman Jahan observed that if M is a Zn-graded S-
module with dimKMa ≤ 1 for all homogeneous components of M, then

sdepthM ≤min{dimS/P : P ∈ Ass(M)}.

This observation give us an upper bound for the value of s.

Proposition 3.1. Let J ⊂ I be ideals of S. Then

sdepth I/J ≤min{dimS/P : P ∈ Ass(S/J)}.

Proof. Since Ass(I/J) ⊂ Ass(S/I), the assertion follows from the above quoted
result of Soleyman Jahan.

We give the following

Definition 3.2. Let P be a characteristic subposet of Nn and 0≤ s≤ n. We define
two subsets of P,

P<s = {p ∈ P : ρ(p) < s},

and
P≥s = {p ∈ P : ρ(p)≥ s}

where ρ() is the function defined in 2.1.

Once computed the poset P and the value s = min{dimS/P : P ∈ Ass(S/J)},
we may start to test if the poset has a partition P whose sdepth is equal to s. To
reach this goal we consider the poset P as a disjoint union of the two sets defined
in 3.2

P = P<s∪P≥s.
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It is easy to observe that if a partition P of the poset P with sdepthP = s exists,
then

P = A∪B,

where
A =

⋃
pi∈P<s

[pi,qi], B =
⋃

p′i∈P≥s\A
[p′i,q

′
i]

and P can be refined by a new partition P ′

P ′ = A∪B′

with
B′ =

⋃
p′i∈P≥s\A

[p′i, p′i].

Therefore in our algorithm we consider only the partitions A whose elements
[p,q] are p ∈ P<s and q ∈ P≥s.

To find such a partition A, we have to find for each element p∈P<s all possible
“candidates” q ∈ P≥s. We give the following

Definition 3.3. We define the function

ρ̃ : P<s→ 2P≥s , ρ̃(p) = S(s)
p

where S(s)
p = {q ∈ P≥s : q > p}. We call S(s)

p the ρ-shadow of p (with respect to s).

Lemma 3.4. Let [p,q] be an interval in PI/J such that ρ(p) < s≤ ρ(q). Then for

q0 ∈min{x ∈ [p,q] : ρ(x)≥ s} (3.1)

there exists a partition of the interval [p,q]

[p,q] = [p,q0]∪ [p1,q1]∪·· ·∪ [pr,qr] with qr = q

such that ρ(qi)≥ s, i = 0, . . . ,r.

Proof. Applying the translation x→ x− p we may assume without loss of gener-
ality p = (0, . . . ,0) ∈ Nn.

Let Zq0 = {i ∈ [n] : q0(i) = g(i)}. Then

q0 =
n

∑
i=1

q0(i)εi = ∑
i∈Zq0

g(i)εi + ∑
i∈[n]\Zq0

q0(i)εi.

Since q0 is minimal in S(s)
p , it follows that

q0 = ∑
i∈Zq0

g(i)εi.
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After a suitable reordering of the indexes we may assume that

q0 = (g(1), . . . ,g(s),0, . . . ,0), q = (g(1), . . . ,g(s),q(s+1), . . . ,q(n)).

We claim that
n−s⋃
k=0

⋃
s<i1<i2<...<ik≤n

[εi1 + . . .+ εik ,q0 +q(i1)εi1 + . . .+q(ik)εik ] (3.2)

is a partition of [0,q].
Indeed for each point u ∈ [0,q], we show that u belongs to exactly one of the

intervals
[εi1 + . . .+ εik ,q0 +q(i1)εi1 + . . .+q(ik)εik ].

To show this we define the set

supp>s(u) = {i ∈ [n] : u(i) 6= 0, i > s}.

Let k = |supp>s(u)|. If k = 0, then

u = (u(1), . . . ,u(s),0, . . . ,0),

and hence u ∈ [0,q0].
If k > 0, let supp>s(u) = {i1, . . . , ik} with s < i1 < .. . < ik ≤ n. Therefore

u =
s

∑
i=1

u(i)εi +
k

∑
j=1

u(i j)εi j ,

where ∑
s
i=1 u(i)εi ∈ [0,q0] and

k

∑
j=1

u(i j)εi j ∈ [εi1 + . . .+ εik ,q(i1)εi1 + . . .+q(ik)εik ],

and since

[0,q0]+ [εi1 + . . .+ εik ,q(i1)εi1 + . . .+q(ik)εik ] =
= [εi1 + . . .+ εik ,q0 + εi1q(i1)+ . . .+ εik q(ik)]

the assertion follows.
We also observe that these intervals are disjoint. In fact if a point belongs

to different intervals it means that the same point has distinct supports supp>s,
contradiction.

Theorem 3.5. Let sdepth I/J ≥ s. Then there exists a Stanley decomposition
D(P) with

P : PI/J =
r⋃

i=1

[pi,qi]

such that qi ∈min{x ∈ [pi,q] : ρ(x)≥ s}, for i ∈ {1, . . . ,r}.
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Proof. Since sdepth I/J ≥ s, we have a partition on the poset PI/J

P : PI/J =
r⋃

i=1

[pi,qi]

with qi ≥ s. If there exists q j that is not minimal in S(s)
p j we apply Lemma 3.4 to

the interval [p j,q j].

By Theorem 3.5 and Lemma 3.4 in the calculation of the ρ-shadow of p∈ P<s

we consider only the minimal elements in the subposet P≥s that are greater than
p. This increases the speed of the algorithm especially when we have to check all
the possible partitions. This is the case when we ask if the sdepth I/J is equal to
t, but in reality sdepth I/J is < t.

We have a method for computing the minimal elements of the ρ-shadow that
is given by the following

Corollary 3.6. Let p ∈ P<s and I = {i ∈ [n] : g(i) = p(i)}. Then

minS(s)
p = {q ∈ P : q = p+∑

i∈I

(g(i)− p(i))εi : I ⊂ I ⊂ [n], |I|= s}.

Proof. Since we want to calculate minS(s)
p we may restrict our attention to the

subposet of P
P≥p = {q ∈ P : q≥ p}.

Applying the translation x → x− p we consider without loss of generality
p = (0, . . . ,0) ∈ Nn with

I = {i ∈ [n] : g(i) = p(i)}= {i ∈ [n] : g(i) = 0}.
For each maximal element q ∈ P≥p we obtain an interval [p,q]. Let q0 ∈

minS(s)
p with q0 ∈ [p,q] and let I = {i ∈ [n] : q0(i) = g(i)}. By an observation in

the proof of Lemma 3.4 we have that

q0 = ∑
i∈I

g(i)εi, with |I|= s.

By the same argument we observe that if q0 ∈ [p,q] and

q0 = ∑
i∈I

g(i)εi

with |I| = s then q0 ∈ minS(s)
p . Applying this argument to each q ∈ maxP≥p we

have that

minS(s)
p = {q ∈ P : q = ∑

i∈I

(g(i))εi : I ⊂ I ⊂ [n], |I|= s}.

The assertion follows if we apply the translation x→ x+ p to the poset P≥p.
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4. The algorithm

In this section we describe the main steps of the algorithm 1.

Algorithm 1: Stanley depth algorithm
Data: a1, . . . ,ar,b1, . . . ,br′ ∈ Nn, s ∈ N
Result: true if sdepth I/J = s
P:=Poset(a1, . . . ,ar,b1, . . . ,br′)1

foreach pi ∈ P< do2

S(s)
i := ρ̃(pi)

ji := 0
i := 13

while 1≤ i≤ |S(s)| do4

if pi is covered then5
isCovered:=true

while ¬ isCovered and ji < |S(s)
i | do6

ji := ji +1
isCovered:=tryInterval(pi,S

(s)
i ( ji))

if isCovered then i := i+17

else
ji := 08

i := i−1
goBack:=true
while i > 0 and goBack do9

if ji = |S(s)
i | then10

uncoverInterval(pi,S
(s)
i ( ji))

ji := 0
i := i−1

else if ji 6= 0 then
uncoverInterval(pi,S

(s)
i ( ji))

goBack:=false
else i := i−1

if i = 0 then return false else return true11

• line 1. We define the poset. For simplicity we don’t give any details on the
inner structure of it.

• line 2. In this loop we calculate the ρ-shadow for each point pi ∈ P< (see
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Definition 3.3 and Theorem 3.5). In particular we have the family of sets

S(s) = {S(s)
i = ρ̃(pi)}

and for each set S(s)
i we define an index ji that address an element of S(s)

i .
When ji is “active” we have 1≤ ji ≤ |S(s)

i |. In the beginning ji is not active
that is ji = 0.

• line 3,4. We define the index i addressing the set S(s)
i . In the main loop 4 we

look for a partition and 1≤ i≤ |S(s)|. This loop ends if either i = 0, and this
means we do not find any partition, or i = |S(s)|+1 and we find a partition
(see line 11).

• line 5. It could happen that the point pi is already covered by another in-
terval, this is the meaning of this condition. In the positive case we put the
variable isCovered to true.

• line 6. In this loop we try to cover the uncovered point pi that is we incre-
ment ji and we observe if the interval

[pi,S
(s)
i ( ji)],

where S(s)
i ( ji) is the jith element of S(s)

i , does not intersect the intervals al-
ready computed. The loop ends if either we find a covering interval starting
from pi or we fail. Even in this case this status is represented by the variable
isCovered.

• line 7. If we find a covering for pi we have to consider the next element that
is pi+1.

• line 8. If we fail to cover the point pi it means that the previous computed
intervals never will partition the poset P. Therefore we have to “backtrack”
(see [10],Chapter 3.4). That is we have to go back to the last choice made
and choose the next one (if there exists!). Before backtracking we have to
reset ji and put i := i−1.

• line 9. We don’t know “a priori” how much we have to decrement i. This
loop calculates the right value of i restoring the old status at the ith loop
(line 4). The loop go on if goBack is true and i > 0. We observe in fact that
i = 0 means that there are no more backtracking possible that is no partition
are allowed.
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• line 10. Inside the loop we consider the three possible cases induced by the
value of ji.

If ji = |S(s)
i | then we do not have other elements in S(s)

i , hence we have
to recover the previous status (uncoverInterval), reset ji and continue
going back (i := i−1).

If 0 < ji < |S(s)
i | then we have some other elements in S(s)

i to be checked
therefore we recover and we stop going back (goBack:=false).

If ji = 0 then the point pi is already covered by an other interval, therefore
we have to continue going back.

• line 11. If the main loop exits with the value i = 0 means that we failed
searching the partition. Otherwise we succeeded (i = |S(s)|+1).

5. An implementation in CoCoA

In this section we describe an implementation given by the author under GPL
license and written in CoCoA (see [6]). We calculate in the meantime the Stanley
depth of a Stanley-Reisner ring whose simplicial complex is Cohen-Macaulay
but not shellable. These kind of examples are interesting because for shellable
simplicial complex the Stanley’s conjecture is proved (see [4], Theorem 6.5).

Let ∆ be a triangulation of the 3 dimensional real projective space

<< "SdepthLib.coc";
N:=8;
Use S::=Q[x[1..N]];
I:=Ideal(1);

J:=Ideal(x[1]*x[2]*x[3]*x[4], x[2]*x[3]*x[4]*x[5],
x[1]*x[3]*x[4]*x[6], x[1]*x[5]*x[6], x[2]*x[5]*x[6],
x[1]*x[2]*x[4]*x[7], x[1]*x[5]*x[7], x[3]*x[5]*x[7],
x[2]*x[6]*x[7], x[3]*x[6]*x[7], x[1]*x[2]*x[3]*x[8],
x[1]*x[5]*x[8], x[4]*x[5]*x[8], x[2]*x[6]*x[8],
x[4]*x[6]*x[8], x[3]*x[7]*x[8], x[4]*x[7]*x[8]);

Sd:=4;
IsSdepth(Sd,I,J);

We first load the libray SdepthLib.coc then we define the ring S. We already
know that this Stanley-Reisner ring has dimension 4 and is Cohen-Macaulay.
Therefore if sdepthK[∆] < 4 we find a counterexample to Stanley’s conjecture.
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We define I = (1) since we want to compute K[∆] = S/J. We define the
ideal J, and we want to check if sdepthK[∆] = 4. Therefore we call the func-
tion IsSdepth(Sd,I,J) with Sd=4. The output of the program is (7 seconds of
computation): The poset PK[∆] that corresponds to the face poset of ∆ and . . .

0
1 2 3 4 5 6 7 8
12 13 14 15 16 17 18 23 24 25 26 27 28 34 35 36 37 38 45 46
47 48 56 57 58 67 68 78
123 124 125 126 127 128 134 135 136 137 138 145 146 147 148
167 168 178 234 235 236 237 238 245 246 247 248 257 258 278
345 346 347 348 356 358 368 456 457 467 567 568 578 678
1235 1236 1237 1245 1246 1248 1278 1345 1347 1348 1368 1467
1678 2346 2347 2348 2358 2457 2578 3456 3568 4567 5678

. . . the intervals covering PK[∆].

[0,1235] [4,1245] [6,1236] [7,1237]
[8,1248] [34,1345] [38,1348] [46,1246]
[47,1347] [56,3456] [57,2457] [58,2578]
[67,1467] [68,1368] [78,1278] [234,2348]
[238,2358] [247,2347] [346,2346] [358,3568]
[567,4567] [568,5678] [678,1678]

With the suggestion of Prof. Naoki Terai we tested some and more difficult
to compute simplicial complexes Cohen-Macaulay but not shellable (see also the
site http://www.math.tu-berlin.de/~lutz, Frank H. Lutz). In some cases
the computation took some days. But we did not find any counterexample.

Remark 5.1. We observe that this algorithm is exponential in time and space.
To show this fact we consider m the maximal ideal of the ring K[x1, . . . ,xn].

By the results proven in [1] we already know that sdepthm = dn
2e.

It is easy to see that the poset Pm has exactly 2n−1 elements. By backtracking
algorithm it is difficult to know “a priori” how many steps are needed to compute
the partitions. Therefore we compute the speed by examples when n∈ {6, . . . ,12}.
The following table summarizes the results on a AMD Sempron 2.800 Mhz.
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n time (sec.)
6 0.38
7 1.60
8 5.21
9 25.69

10 89.39
11 464.18
12 1769.85

The growing of the time of computation is obviously exponential.
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