# LABELING CACTI WITH A CONDITION AT DISTANCE TWO 

SAMIR K. VAIDYA - DEVSI D. BANTVA

An $L(2,1)$-labeling of a graph $G$ is a function $f$ from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(x)-f(y)| \geq 2$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 1$ if $d(x, y)=2$. The $L(2,1)$-labeling number $\lambda(G)$ of $G$ is the smallest number $k$ such that $G$ has an $L(2,1)$ labeling with $\max \{f(v): v \in V(G)\}=k$. In 1992, it has been proved by Griggs and Yeh [3] that the $\lambda$-number of tree is $\Delta+1$ or $\Delta+2$. In this paper we present a graph family other than tree whose $\lambda$-number is $\Delta+1$ or $\Delta+2$.

## 1. Introduction

The channel assignment problem is the problem to assign a channel (non negative integer) to each TV or radio transmitters located at various places such that communication does not interfere. This problem was first formulated as a graph coloring problem by Hale [4] who introduced the notion of T-coloring of a graph.

In a private communication with Griggs during 1988 Roberts proposed a variation of the channel assignment problem in which close transmitters must receive different channels and very close transmitters must receive channels that are at least two apart. In a graph model of this problem, the transmitters are

Entrato in redazione: 13 luglio 2010
AMS 2010 Subject Classification: 05C78.
Keywords: $L(2,1)$-labeling, $\lambda$-number, Cactus graph, Block cut point graph, One point union of cycles.
represented by the vertices of a graph; two vertices are very close if they are adjacent in the graph and close if they are at distance two apart in the graph. Motivated by this problem Griggs and Yeh [3] introduced $L(2,1)$-labeling which is defined as follows.

Definition 1.1. An $L(2,1)$-labeling (or distance two labeling) of a graph $G=$ $(V(G), E(G))$ is a function $f$ from the set $V(G)$ of vertices to the set of all nonnegative integers such that the following conditions are satisfied:
(1) $|f(x)-f(y)| \geq 2$ if $d(x, y)=1$
(2) $|f(x)-f(y)| \geq 1$ if $d(x, y)=2$

A $k$ - $L(2,1)$-labeling is an $L(2,1)$-labeling such that no label is greater than $k$. The $L(2,1)$-labeling number of $G$, denoted by $\lambda(G)$ or $\lambda$, is the smallest number $k$ such that $G$ has a $k$ - $L(2,1)$-labeling. The $L(2,1)$-labeling has been extensively studied in recent past by many researchers like Yeh [12, 13], Georges and Mauro [2], Sakai [7], Chang and Kuo [1], Kuo and Yan [5], Lu et al. [6], Shao and Yeh [8], Wang [10] and Vaidya et al. [9].

We begin with a finite, connected and undirected graph $G=(V(G), E(G))$ without loops and multiple edges. In the present work $\Delta$ denotes the maximum degree of the graph. For standard terminology and notations we refer to West [11]. We give a brief summary of definitions and information which are prerequisites for the present work.

Proposition 1.2. [1] $\lambda(H) \leq \lambda(G)$, for any subgraph $H$ of a graph $G$.
Proposition 1.3. [12] The $\lambda$-number of a star $K_{1, \Delta}$ is $\Delta+1$, where $\Delta$ is the maximum degree.

Proposition 1.4. [12] The $\lambda$-number of a complete graph $K_{n}$ is $2 n-2$.
Proposition 1.5. [1] If $\lambda(G)=\Delta+1$ then $f(v)=0$ or $\Delta+1$ for any $\lambda(G)-$ $L(2,1)$-labeling $f$ and any vertex $v$ of maximum degree $\Delta$. In this case, $N[v]$ contains at most two vertices of degree $\Delta$, for any vertex $v \in V(G)$.

## 2. Main Results

In the discussion of the $\lambda$-number of graphs, much attention of researchers has been attracted by a connected graph without cycles, that is, a tree $T$. In fact, the maximum degree determines the labeling number of trees. Griggs and Yeh [3] proved that the $\lambda$-number of any tree is $\Delta+1$ or $\Delta+2$. Consequently, as time has passed, the classification of trees have been done based on the $\lambda$-number. The trees $T$ with $\lambda$-number $\Delta+1$ are classified as type 1 while the trees $T$ with $\lambda$ number $\Delta+2$ are classified as type 2 . This concept has been the focus of many
research papers. We present here a graph family whose $\lambda$-number is $\Delta+1$ or $\Delta+2$ which is not a tree.

A block of a graph $G$ is a maximal connected subgraph of $G$ that has no cut-vertex. The block-cutpoint graph of a graph $G$ is a bipartite graph $H$ in which one partite set consists of the cut-vertices of $G$, and the other has a vertex $b_{i}$ for each block $B_{i}$ of $G$. We include $v b_{i}$ as an edge of $H$ if and only if $v \in$ $B_{i}$. The block which contains only one cut vertex is called leaf block and that cut vertex is known as leaf block cut vertex. In a block cutpoint graph the vertices corresponding to leaf blocks are pendent vertices. An $n$-ary cactus is a connected graph whose blocks are all isomorphic to $C_{n}$. If $n=3$ then it is known as a triangular cactus. An $n$-ary $k$-regular cactus is a connected graph whose blocks are all isomorphic to $C_{n}$ and a block cutpoint graph is a tree having each block vertex $b_{i}$ of degree $n$ except leaf blocks and each cut vertex of degree $\frac{k}{2}$. We will denote it by $C_{n}(k)$.

Note 2.1. For an $n$-ary $k$-regular cactus we notice that

- $n \geq 3$.
- $k \geq 4$ and $k=$ even.
- The maximum degree of a vertex is $k$.

Example 2.2. In the following figure 1 the 4-ary 4-regular cactus is presented while figure 2 shows its block cutpoint graph.


Figure 1


Figure 2
Theorem 2.3. The $\lambda$-number of an $n$-ary $\Delta$-regular cactus is $\Delta+1$ or $\Delta+2$.
Proof. Let $C_{n}(\Delta)$ be an $n$-ary $\Delta$-regular cactus. The graph $K_{1, \Delta}$ is a subgraph of $G$ and as $\lambda\left(K_{1, \Delta}\right)=\Delta+1$ by Propositions 1.2 and 1.3 it follows that $\lambda\left(C_{n}(\Delta)\right) \geq$ $\Delta+1$. We now show that there exists an $L(2,1)$-labeling of $C_{n}(\Delta)$ with labels from the set $S=\{0,1, \ldots, \Delta+2\}$.

Let $v_{0}$ be the vertex with degree $\Delta$. Label the vertex $v_{0}$ by 0 and its adjacent vertices from the set $\{2,3, \ldots, \Delta+2\}$. Let $v_{0 i}$ be the adjacent vertex to $v_{0}$ and it has label $i$, for some $i \in\{2,3, \ldots, \Delta+1\}$. Now consider $v_{o i j}$ which is a vertex adjacent to $v_{0 i}$. In $C_{n}(\Delta)$, the vertex $v_{0 i}$ is adjacent to at most $\Delta-1$ vertices in the graph. Hence $v_{0 i j}$ can be assigned a label that differ from those assigned to at most $\Delta-1$ vertices and differ from any label within 1 of the labels assigned to $v_{o i}$. Hence at most $(\Delta-1)+3=\Delta+2$ labels cannot be used to label $v_{0 i j}$ leaving at least one available label in $S$ to label $v_{0 i j}$ and obtain $\lambda\left(C_{n}(\Delta)\right) \leq \Delta+2$.
Thus, $\lambda\left(C_{n}(\Delta)\right)=\Delta+1$ or $\Delta+2$.
On dropping the $k$ regularity of cut vertices in an $n$-ary $k$-regular cactus we prove a general result as a corollary.

Corollary 2.4. The $\lambda$-number of an n-ary cactus with maximum degree $\Delta$ is $\Delta+1$ or $\Delta+2$.

Proof. Let $G$ be the arbitrary an $n$-ary cactus with maximum degree $\Delta$. The graph $K_{1, \Delta}$ is a subgraph of $G$ and hence, by Propositions 1.2 and 1.3, $\lambda(G) \geq$ $\Delta+1$. Note that $G$ is a subgraph of $C_{n}(\Delta)$ and hence by Theorem $2.3 \lambda(G) \leq$ $\Delta+2$.
Thus, $\lambda(G)=\Delta+1$ or $\Delta+2$.

First we present some regular cacti whose $\lambda$-number is precisely $\Delta+1$ and later we give an example of a regular cactus whose $\lambda$-number is precisely $\Delta+2$. A one point union of $k$-copies of cycle $C_{n}$ is the graph obtained by taking $v$ as a common vertex such that any two cycles are edge disjoint and do not have any vertex in common except $v$. We will denote it by $C_{n}^{(k)}$. Theorem 2.5 deals with one point union of two cycles in which exact label assignment is carried out while to prove Theorem 2.6 we choose an analytical approach.

Theorem 2.5. $\lambda\left(C_{n}^{(2)}\right)=\lambda\left(C_{n}(4)\right)=5$.
Proof. Let $C_{n}^{(2)}$ be the one point union of two cycles $C_{n}$ with $n$ vertices respectively. Let $v_{j}^{1}, 0 \leq j \leq n-1$ and $v_{j}^{2}, 0 \leq j \leq n-1$ be the vertices of $C_{n}^{(2)}$. Without loss of generality assume that $v_{0}=v_{0}^{1}=v_{0}^{2}$. The graph $K_{1,4}$ is a subgraph of one point union of two cycles and hence by Propositions 1.2 and $1.3 \lambda\left(C_{n}^{(2)}\right) \geq 5$.

Now we want to show that $\lambda\left(C_{n}^{(2)}\right) \leq 5$. Define $f: V\left(C_{n}^{(2)}\right) \rightarrow\{0,1,2, \ldots, 5\}$ as follows:
(1) $n \equiv 0(\bmod 3)$

$$
\begin{aligned}
& f\left(v_{j}^{1}\right)=0 \text { if } j \equiv 0(\bmod 3) \\
& f\left(v_{j}^{1}\right)=2 \text { if } j \equiv 1(\bmod 3) \\
& f\left(v_{j}^{1}\right)=4 \text { if } j \equiv 2(\bmod 3) \\
& f\left(v_{j}^{2}\right)=0 \text { if } j \equiv 0(\bmod 3) \\
& f\left(v_{j}^{2}\right)=3 \text { if } j \equiv 1(\bmod 3) \\
& f\left(v_{j}^{2}\right)=5 \text { if } j \equiv 2(\bmod 3)
\end{aligned}
$$

(2) $n \equiv 1(\bmod 3)$ except for $n=4$, redefine the above $f$ of (1) at $v_{n-3}^{1}, v_{n-2}^{1}$, $v_{n-1}^{1}, v_{n-2}^{2}, v_{n-1}^{2}$ as

$$
\begin{aligned}
& f\left(v_{j}^{1}\right)=3 \text { if } j=n-3 \\
& f\left(v_{j}^{1}\right)=1 \text { if } j=n-2 \\
& f\left(v_{j}^{1}\right)=4 \text { if } j=n-1 \\
& f\left(v_{j}^{2}\right)=1 \text { if } j=n-2 \\
& f\left(v_{j}^{2}\right)=5 \text { if } j=n-1
\end{aligned}
$$

For $n=4, f$ is given by $f\left(v_{0}\right)=0, f\left(v_{1}^{1}\right)=2, f\left(v_{2}^{1}\right)=5, f\left(v_{3}^{1}\right)=3, f\left(v_{1}^{2}\right)=4$, $f\left(v_{2}^{2}\right)=1, f\left(v_{3}^{2}\right)=5$.
(3) $n \equiv 2(\bmod 3)$ then redefine the above $f$ of (1) at $v_{n-2}^{1}, v_{n-1}^{1}, v_{n-2}^{2}, v_{n-1}^{2}$ as

$$
\begin{aligned}
& f\left(v_{j}^{1}\right)=1 \text { if } j=n-2 \\
& f\left(v_{j}^{1}\right)=5 \text { if } j=n-1 \\
& f\left(v_{j}^{2}\right)=1 \text { if } j=n-2 \\
& f\left(v_{j}^{2}\right)=4 \text { if } j=n-1
\end{aligned}
$$

Thus, $\lambda\left(C_{n}^{(2)}\right)=\lambda\left(C_{n}(4)\right)=5$.
Theorem 2.6. $\lambda\left(C_{n}^{(k)}\right)=\lambda\left(C_{n}(2 k)\right)=2 k+1$.
Proof. Let $C_{n}^{(k)}$ be the one point union of $k$ cycles $C_{n}$. If $k=2$ then the result follows by Theorem 2.5, hence assume $k \geq 3$. Without loss of generality assume that $v_{0}$ is the common vertex of all cycles. The graph $K_{1,2 k}$ is a subgraph of $C_{n}^{(k)}$ and hence by Propositions 1.2 and $1.3 \lambda\left(C_{n}^{(k)}\right) \geq 2 k+1$.

Now we want to prove that $\lambda\left(C_{n}^{(k)}\right) \leq 2 k+1$. In a graph $C_{n}^{(k)}$, there is one vertex of degree $2 k$ which is a common vertex of all cycles and the remaining vertices are of degree 2 . Label the common vertex $v_{0}$ by 0 or $2 k+1$ and its adjacent vertices from the set $\{2,3, \ldots, 2 k+1\}$ or $\{0,1, \ldots, 2 k-1\}$. For the remaining vertices, observe that enough number of labels are available in the set $\{0,1, \ldots, 2 k+1\}$ as they have degree 2 .
Thus, $\lambda\left(C_{n}^{(k)}\right)=\lambda\left(C_{n}(2 k)\right)=2 k+1$.

Corollary 2.7. The $\lambda$-number of a Friendship graph is $F_{k}\left(=C_{3}(2 k)\right)$ is $2 k+1$.
Example 2.8. In the following Figure 3 an $L(2,1)$-labeling of Friendship graph $F_{4}$ is shown in which $\lambda\left(F_{4}\right)=9$.


Figure 3

Thus, we have investigated a graph family whose $\lambda$-number is precisely $\Delta+1$. But there are some graphs whose $\lambda$-number is precisely $\Delta+2$. Here we give an example of such graphs.

Example 2.9. In the following Figure 4 an $L(2,1)$-labeling of a 4-ary 4-regular cactus is shown in which $\lambda\left(C_{4}(4)\right)=6$ using Proposition 1.5.


Figure 4

## 3. Concluding Remarks

Here we have proved that the $\lambda$ number of an $n$-ary $k$-regular cactus is $\Delta+1$ or $\Delta+2$. The $\lambda$-number is also completely determined for one point union of $k$-cycles.

## Acknowledgement

The authors are highly thankful to anonymous referees for their constructive suggestions and kind comments.

## REFERENCES

[1] G. J. Chang - D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (2) (1996), 309-316.
[2] J. P. Georges - D. W. Mauro, Labeling trees with a condition at distance two, Discrete Math. 269 (2003), 127-148.
[3] J. R. Griggs - R. K. Yeh, Labeling graphs with condition at distance 2, SIAM J. Discrete Math. 5 (4) (1992), 586-595.
[4] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (12) (1980), 1497-1514.
[5] D. Kuo - J. Yan, On L(2,1)-labelings of cartesian products of paths and cycles, Discrete Math. 283 (2004), 137-144.
[6] C. Lu - L. Chen - M. Zhai, Extremal problems on consecutive L(2,1)-labeling, Discrete Applied Math. 155 (2007), 1302-1313.
[7] D. Sakai, Labeling Chordal Graphs: Distance Two Condition, SIAM J. Discrete Math. 7 (1) (1994), 133-140.
[8] Z. Shao - R. Yeh, The L(2, 1)-labeling and operations of graphs, IEEE Transactions on Circuits and Systems-I 52 (3) (2005), 668-671.
[9] S. K. Vaidya - P. L. Vihol - N. A. Dani - D. D. Bantva, $L(2,1)$-labeling in the context of some graph operations, Journal of Mathematics Research 2 (3) (2010), 109-119.
[10] W. Wang, The $L(2,1)$-labeling of trees, Discrete Applied Math. 154 (2006), 598603.
[11] D. B. West, Introduction to Graph theory, Prentice-Hall of India, 2001.
[12] R. K. Yeh, Labeling graphs with a condition at distance two, Ph.D. Thesis, Dept. of Math., University of South Carolina, Columbia, SC, 1990.
[13] R. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006), 1217-1231.

SAMIR K. VAIDYA
Department of Mathematics
Saurashtra University, Rajkot-360 005,
GUJARAT (INDIA).
e-mail: samirkvaidya@yahoo.co.in
DEVSI D. BANTVA
Atmiya Institute of Technology and Science
Rajkot-360 005,
GUJARAT (INDIA).
e-mail: devsi.bantva@gmail.com

