doi: 10.4418/2011.66.1.3

LABELING CACTI WITH A CONDITION AT DISTANCE TWO

SAMIR K. VAIDYA - DEVSI D. BANTVA

An L(2,1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that $|f(x)-f(y)|\geq 2$ if d(x,y)=1 and $|f(x)-f(y)|\geq 1$ if d(x,y)=2. The L(2,1)-labeling number $\lambda(G)$ of G is the smallest number k such that G has an L(2,1)-labeling with $\max\{f(v):v\in V(G)\}=k$. In 1992, it has been proved by Griggs and Yeh [3] that the λ -number of tree is $\Delta+1$ or $\Delta+2$. In this paper we present a graph family other than tree whose λ -number is $\Delta+1$ or $\Delta+2$.

1. Introduction

The channel assignment problem is the problem to assign a channel (non negative integer) to each TV or radio transmitters located at various places such that communication does not interfere. This problem was first formulated as a graph coloring problem by Hale [4] who introduced the notion of T-coloring of a graph.

In a private communication with Griggs during 1988 Roberts proposed a variation of the channel assignment problem in which *close* transmitters must receive different channels and *very close* transmitters must receive channels that are at least two apart. In a graph model of this problem, the transmitters are

Entrato in redazione: 13 luglio 2010

AMS 2010 Subject Classification: 05C78.

Keywords: L(2,1)-labeling, λ -number, Cactus graph, Block cut point graph, One point union of cycles.

represented by the vertices of a graph; two vertices are *very close* if they are adjacent in the graph and *close* if they are at distance two apart in the graph. Motivated by this problem Griggs and Yeh [3] introduced L(2,1)-labeling which is defined as follows.

Definition 1.1. An L(2,1)-labeling (or distance two labeling) of a graph G = (V(G), E(G)) is a function f from the set V(G) of vertices to the set of all nonnegative integers such that the following conditions are satisfied:

(1)
$$|f(x) - f(y)| \ge 2$$
 if $d(x, y) = 1$

(2)
$$|f(x) - f(y)| \ge 1$$
 if $d(x, y) = 2$

A k-L(2,1)-labeling is an L(2,1)-labeling such that no label is greater than k. The L(2,1)-labeling number of G, denoted by $\lambda(G)$ or λ , is the smallest number k such that G has a k-L(2,1)-labeling. The L(2,1)-labeling has been extensively studied in recent past by many researchers like Yeh [12, 13], Georges and Mauro [2], Sakai [7], Chang and Kuo [1], Kuo and Yan [5], Lu et al. [6], Shao and Yeh [8], Wang [10] and Vaidya et al. [9].

We begin with a finite, connected and undirected graph G = (V(G), E(G)) without loops and multiple edges. In the present work Δ denotes the maximum degree of the graph. For standard terminology and notations we refer to West [11]. We give a brief summary of definitions and information which are prerequisites for the present work.

Proposition 1.2. [1] $\lambda(H) \leq \lambda(G)$, for any subgraph H of a graph G.

Proposition 1.3. [12] The λ -number of a star $K_{1,\Delta}$ is $\Delta + 1$, where Δ is the maximum degree.

Proposition 1.4. [12] The λ -number of a complete graph K_n is 2n-2.

Proposition 1.5. [1] If $\lambda(G) = \Delta + 1$ then f(v) = 0 or $\Delta + 1$ for any $\lambda(G)$ -L(2,1)-labeling f and any vertex v of maximum degree Δ . In this case, N[v] contains at most two vertices of degree Δ , for any vertex $v \in V(G)$.

2. Main Results

In the discussion of the λ -number of graphs, much attention of researchers has been attracted by a connected graph without cycles, that is, a tree T. In fact, the maximum degree determines the labeling number of trees. Griggs and Yeh [3] proved that the λ -number of any tree is $\Delta+1$ or $\Delta+2$. Consequently, as time has passed, the classification of trees have been done based on the λ -number. The trees T with λ -number $\Delta+1$ are classified as type 1 while the trees T with λ -number $\Delta+2$ are classified as type 2. This concept has been the focus of many

research papers. We present here a graph family whose λ -number is $\Delta + 1$ or $\Delta + 2$ which is not a tree.

A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. The block-cutpoint graph of a graph G is a bipartite graph H in which one partite set consists of the cut-vertices of G, and the other has a vertex b_i for each block B_i of G. We include vb_i as an edge of H if and only if $v \in B_i$. The block which contains only one cut vertex is called leaf block and that cut vertex is known as leaf block cut vertex. In a block cutpoint graph the vertices corresponding to leaf blocks are pendent vertices. An n-ary cactus is a connected graph whose blocks are all isomorphic to C_n . If n=3 then it is known as a triangular cactus. An n-ary k-regular cactus is a connected graph whose blocks are all isomorphic to C_n and a block cutpoint graph is a tree having each block vertex b_i of degree n except leaf blocks and each cut vertex of degree n we will denote it by $C_n(k)$.

Note 2.1. For an *n*-ary *k*-regular cactus we notice that

- n > 3.
- $k \ge 4$ and k = even.
- The maximum degree of a vertex is k.

Example 2.2. In the following *figure 1* the 4-ary 4-regular cactus is presented while *figure 2* shows its block cutpoint graph.

Figure 1

Theorem 2.3. The λ -number of an n-ary Δ -regular cactus is $\Delta + 1$ or $\Delta + 2$.

Proof. Let $C_n(\Delta)$ be an n-ary Δ -regular cactus. The graph $K_{1,\Delta}$ is a subgraph of G and as $\lambda(K_{1,\Delta}) = \Delta + 1$ by Propositions 1.2 and 1.3 it follows that $\lambda(C_n(\Delta)) \ge \Delta + 1$. We now show that there exists an L(2,1)-labeling of $C_n(\Delta)$ with labels from the set $S = \{0,1,...,\Delta+2\}$.

Let v_0 be the vertex with degree Δ . Label the vertex v_0 by 0 and its adjacent vertices from the set $\{2,3,...,\Delta+2\}$. Let v_{0i} be the adjacent vertex to v_0 and it has label i, for some $i \in \{2,3,...,\Delta+1\}$. Now consider v_{oij} which is a vertex adjacent to v_{0i} . In $C_n(\Delta)$, the vertex v_{0i} is adjacent to at most $\Delta-1$ vertices in the graph. Hence v_{0ij} can be assigned a label that differ from those assigned to at most $\Delta-1$ vertices and differ from any label within 1 of the labels assigned to v_{oi} . Hence at most $(\Delta-1)+3=\Delta+2$ labels cannot be used to label v_{0ij} leaving at least one available label in S to label v_{0ij} and obtain $\lambda(C_n(\Delta)) \leq \Delta+2$. Thus, $\lambda(C_n(\Delta)) = \Delta+1$ or $\Delta+2$.

On dropping the k regularity of cut vertices in an n-ary k-regular cactus we prove a general result as a corollary.

Corollary 2.4. The λ -number of an n-ary cactus with maximum degree Δ is $\Delta + 1$ or $\Delta + 2$.

Proof. Let G be the arbitrary an n-ary cactus with maximum degree Δ . The graph $K_{1,\Delta}$ is a subgraph of G and hence, by Propositions 1.2 and 1.3, $\lambda(G) \ge \Delta + 1$. Note that G is a subgraph of $C_n(\Delta)$ and hence by Theorem 2.3 $\lambda(G) \le \Delta + 2$.

Thus,
$$\lambda(G) = \Delta + 1$$
 or $\Delta + 2$.

First we present some regular cacti whose λ -number is precisely $\Delta + 1$ and later we give an example of a regular cactus whose λ -number is precisely $\Delta + 2$. A one point union of k-copies of cycle C_n is the graph obtained by taking v as a common vertex such that any two cycles are edge disjoint and do not have any vertex in common except v. We will denote it by $C_n^{(k)}$. Theorem 2.5 deals with one point union of two cycles in which exact label assignment is carried out while to prove Theorem 2.6 we choose an analytical approach.

Theorem 2.5.
$$\lambda(C_n^{(2)}) = \lambda(C_n(4)) = 5.$$

Proof. Let $C_n^{(2)}$ be the one point union of two cycles C_n with n vertices respectively. Let v_j^1 , $0 \le j \le n-1$ and v_j^2 , $0 \le j \le n-1$ be the vertices of $C_n^{(2)}$. Without loss of generality assume that $v_0 = v_0^1 = v_0^2$. The graph $K_{1,4}$ is a subgraph of one point union of two cycles and hence by Propositions 1.2 and 1.3 $\lambda(C_n^{(2)}) \ge 5$.

Now we want to show that $\lambda(C_n^{(2)}) \le 5$. Define $f: V(C_n^{(2)}) \to \{0, 1, 2, \dots, 5\}$ as follows:

(1) $n \equiv 0 \pmod{3}$

$$f(v_j^1) = 0$$
 if $j \equiv 0 \pmod{3}$
 $f(v_j^1) = 2$ if $j \equiv 1 \pmod{3}$
 $f(v_j^1) = 4$ if $j \equiv 2 \pmod{3}$
 $f(v_j^2) = 0$ if $j \equiv 0 \pmod{3}$
 $f(v_j^2) = 3$ if $j \equiv 1 \pmod{3}$
 $f(v_j^2) = 5$ if $j \equiv 2 \pmod{3}$

(2) $n \equiv 1 \pmod{3}$ except for n = 4, redefine the above f of (1) at $v_{n-3}^1, v_{n-2}^1, v_{n-1}^1, v_{n-2}^2, v_{n-1}^2$ as

$$f(v_j^1) = 3 \text{ if } j = n - 3$$

$$f(v_j^1) = 1 \text{ if } j = n - 2$$

$$f(v_j^1) = 4 \text{ if } j = n - 1$$

$$f(v_j^2) = 1 \text{ if } j = n - 2$$

$$f(v_j^2) = 5 \text{ if } j = n - 1$$

For n = 4, f is given by $f(v_0) = 0$, $f(v_1^1) = 2$, $f(v_2^1) = 5$, $f(v_3^1) = 3$, $f(v_1^2) = 4$, $f(v_2^2) = 1$, $f(v_3^2) = 5$.

(3) $n \equiv 2 \pmod{3}$ then redefine the above f of (1) at $v_{n-2}^1, v_{n-1}^1, v_{n-2}^2, v_{n-1}^2$ as

$$f(v_j^1) = 1 \text{ if } j = n-2$$

 $f(v_j^1) = 5 \text{ if } j = n-1$
 $f(v_j^2) = 1 \text{ if } j = n-2$
 $f(v_j^2) = 4 \text{ if } j = n-1$

Thus,
$$\lambda(C_n^{(2)}) = \lambda(C_n(4)) = 5$$
.

Theorem 2.6.
$$\lambda(C_n^{(k)}) = \lambda(C_n(2k)) = 2k + 1.$$

Proof. Let $C_n^{(k)}$ be the one point union of k cycles C_n . If k=2 then the result follows by Theorem 2.5, hence assume $k \ge 3$. Without loss of generality assume that v_0 is the common vertex of all cycles. The graph $K_{1,2k}$ is a subgraph of $C_n^{(k)}$ and hence by Propositions 1.2 and 1.3 $\lambda(C_n^{(k)}) \ge 2k+1$.

Now we want to prove that $\lambda(C_n^{(k)}) \leq 2k+1$. In a graph $C_n^{(k)}$, there is one vertex of degree 2k which is a common vertex of all cycles and the remaining vertices are of degree 2. Label the common vertex v_0 by 0 or 2k+1 and its adjacent vertices from the set $\{2,3,...,2k+1\}$ or $\{0,1,...,2k-1\}$. For the remaining vertices, observe that enough number of labels are available in the set $\{0,1,...,2k+1\}$ as they have degree 2.

Thus,
$$\lambda(C_n^{(k)}) = \lambda(C_n(2k)) = 2k + 1.$$

Corollary 2.7. The λ -number of a Friendship graph is $F_k (= C_3(2k))$ is 2k + 1.

Example 2.8. In the following *Figure 3* an L(2,1)-labeling of Friendship graph F_4 is shown in which $\lambda(F_4) = 9$.

Thus, we have investigated a graph family whose λ -number is precisely $\Delta + 1$. But there are some graphs whose λ -number is precisely $\Delta + 2$. Here we give an example of such graphs.

Example 2.9. In the following *Figure 4* an L(2,1)-labeling of a 4-ary 4-regular cactus is shown in which $\lambda(C_4(4)) = 6$ using Proposition 1.5.

Figure 4

3. Concluding Remarks

Here we have proved that the λ number of an *n*-ary *k*-regular cactus is $\Delta + 1$ or $\Delta + 2$. The λ -number is also completely determined for one point union of *k*-cycles.

Acknowledgement

The authors are highly thankful to anonymous referees for their constructive suggestions and kind comments.

REFERENCES

- [1] G. J. Chang D. Kuo, *The L*(2,1)-*labeling problem on graphs*, SIAM J. Discrete Math. 9 (2) (1996), 309–316.
- [2] J. P. Georges D. W. Mauro, *Labeling trees with a condition at distance two*, Discrete Math. 269 (2003), 127–148.
- [3] J. R. Griggs R. K. Yeh, *Labeling graphs with condition at distance 2*, SIAM J. Discrete Math. 5 (4) (1992), 586–595.

- [4] W. K. Hale, *Frequency assignment: Theory and applications*, Proc. IEEE 68 (12) (1980), 1497–1514.
- [5] D. Kuo J. Yan, On L(2,1)-labelings of cartesian products of paths and cycles, Discrete Math. 283 (2004), 137–144.
- [6] C. Lu L. Chen M. Zhai, *Extremal problems on consecutive L*(2,1)-labeling, Discrete Applied Math. 155 (2007), 1302–1313.
- [7] D. Sakai, *Labeling Chordal Graphs: Distance Two Condition*, SIAM J. Discrete Math. 7 (1) (1994), 133–140.
- [8] Z. Shao R. Yeh, *The L*(2,1)-*labeling and operations of graphs*, IEEE Transactions on Circuits and Systems-I 52 (3) (2005), 668–671.
- [9] S. K. Vaidya P. L. Vihol N. A. Dani D. D. Bantva, L(2,1)-labeling in the context of some graph operations, Journal of Mathematics Research 2 (3) (2010), 109–119.
- [10] W. Wang, The L(2,1)-labeling of trees, Discrete Applied Math. 154 (2006), 598–603.
- [11] D. B. West, *Introduction to Graph theory*, Prentice-Hall of India, 2001.
- [12] R. K. Yeh, *Labeling graphs with a condition at distance two*, Ph.D. Thesis, Dept. of Math., University of South Carolina, Columbia, SC, 1990.
- [13] R. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006), 1217–1231.

SAMIR K. VAIDYA
Department of Mathematics
Saurashtra University, Rajkot-360 005,
GUJARAT (INDIA).
e-mail: samirkvaidya@yahoo.co.in

DEVSI D. BANTVA
Atmiya Institute of Technology and Science
Rajkot-360 005,
GUJARAT (INDIA).
e-mail: devsi.bantva@gmail.com