LE MATEMATICHE Vol. LXV (2010) – Fasc. I, pp. 151–153 doi: 10.4418/2010.65.1.12

ESSENTIALLY α -HYPONORMAL OPERATORS WITH ESSENTIAL SPECTRUM OF AREA ZERO.

VASILE LAURIC

We prove that essentially α -hyponormal operators with zero area of the essential spectrum are essentially normal.

Let \mathcal{H} be a complex, separable, infinite dimensional Hilbert space, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all linear bounded operators on \mathcal{H} and let \mathbb{K} denote the two-sided ideal of all compact operators on \mathcal{H} . An operator $T \in \mathcal{L}(\mathcal{H})$ is called *essentially normal* if $C_T := T^*T - TT^*$ is a compact operator, and T is called *α-hyponormal* (*essentially α-hyponormal*) if $C_T^{\alpha} := (T^*T)^{\alpha} - (TT^*)^{\alpha}$ is a positive definite operator (C_T^{α} is the sum of a positive definite operator and a compact operator, or equivalently, $\pi(T)$ is an *α*-hyponormal operator in the Calkin algebra $\mathcal{L}(\mathcal{H})/\mathbb{K}$, where $\pi : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})/\mathbb{K}$ is the canonical map, respectively). The class of 1-hyponormal and essentially 1-hyponormal operators. Furthermore, let $\sigma(T)$ and $\sigma_e(T)$ denote the spectrum and the essential spectrum of T, and let $||T||_e$ denote the norm of $\pi(T)$ in the Calkin algebra.

In [3], B. Conway and N. Feldman proved that for a hyponormal operator T,

$$||C_T||_e \leq rac{\mu_2(\sigma_e(T))}{\pi}$$
 ,

where μ_2 denotes the area measure. Consequently, a hyponormal operator with essential spectrum of area zero is essentially normal. In [4], S. Lohaj and M.

AMS 2000 Subject Classification: 47B20.

Entrato in redazione: 9 agosto 2010

Keywords: Essentially α -hyponormal operators, essential spectrum.

Lohaj proved that an essentially hyponormal operator with essential spectrum contained in a circle is essentially hyponormal. Their proof is based on the fact that hyponormal elements of a C^* -algebra have equal norm and spectral radius. On the other hand, Conway-Feldman's proof made use of Putnam's inequality (cf. [6]), which states that for a hyponormal operator T,

$$||C_T|| \leq \frac{\mu_2(\sigma(T))}{\pi}$$

Putnam's inequality has been extended to α -hyponormal operators. Let μ_{α} denote the measure defined by $\mu_{\alpha}(E) = \frac{\alpha}{2} \int_{E} r^{\alpha-1} dr d\theta$, which for $\alpha = 2$ is the area measure.

Putnam's inequality has been generalized by many authors to various classes of hyponormal related operators. For instance (although the literature is quite extensive), according to [1] and [2],

$$||C_T^{\alpha}|| \le \frac{\mu_{2\alpha}(\sigma(T))}{\pi},\tag{1}$$

for an α -hyponormal operator *T* with $0 < \alpha \leq 1$.

It is the purpose of this note to show that the results in [3] and [4] can be extended to a larger class of operators.

Theorem 1. If $T \in \mathcal{L}(\mathcal{H})$ is an essentially α -hyponormal operator with $\alpha \in (0,1]$, then

$$||C_T^{\alpha}||_e \leq rac{\mu_{2lpha}(\sigma_e(T))}{\pi}$$

Proof. Let $T \in \mathcal{L}(\mathcal{H})$ be an essentially α -hyponormal operator and let $\mathcal{A}_{\mathcal{T}}$ be the unital C^* -algebra generated by $\pi(T)$. Let $\rho : \mathcal{A}_{\mathcal{T}} \to \mathcal{L}(\mathcal{K})$ be a faithful representation and denote $\rho(\pi(T))$ by Q_T . Since $\mathcal{A}_{\mathcal{T}}$ is a unital algebra, $\sigma(Q_T) = \sigma_e(T)$ (according [5], Prop. 1.3) and Q_T is an α -hyponormal operator. According to inequality (1),

$$||C^{lpha}_{Q_T}|| \leq rac{\mu_{2lpha}(\sigma(Q_T))}{\pi},$$

and since ρ is an isometric *-isomorphism, $||C_{Q_T}^{\alpha}|| = ||C_T^{\alpha}||_e$, which concludes the proof.

Corollary 2. If *T* is an essentially α -hyponormal operator for $\alpha > 0$ and $\mu_2(\sigma_e(T)) = 0$, then *T* is essentially normal.

Proof. If $\alpha \in (0,1]$, the theorem implies that $C_T^{\alpha} \in \mathbb{K}$, and a standard argument involving approximations by polynomials implies that C_T is compact. If $\alpha > 1$, then Q_T is α -hyponormal and according to Lowner inequality, Q_T is hyponormal and Putnam's inequality implies tat Q_T is normal, or T is essentially normal.

REFERENCES

- [1] M. Cho M. Itoh, *Putnam's inequality for p-hyponormal operators*, Proc. of the Amer. Math. Soc. 123 (8) (1995), 2435–2440.
- [2] M. Cho M. Itoh S. Oshiro, Weyl's theorem holds for p-hyponormal operators, Glasgow Math. J. 39 (1997), 217–220.
- [3] J. Conway N. Feldman, *The essential selfcommutator of a subnormal operator*, Proc. of the Amer. Math. Soc. 125 (1) (1997), 243–244.
- [4] S. Lohaj M. Lohaj, *Essentially hyponormal operators with essential spectrum contained in a circle*, Le Matematiche 64 (1) (2009), 93–96.
- [5] C. M. Pearcy, Some recent developments in operator theory, Amer. Math. Soc., Providence, R. I., 1977.
- [6] C. R. Putnam, *An inequality for the area of hyponormal spectra*, Math. Zeit. 116 (1970), 323–330.

VASILE LAURIC Department of Mathematics Florida A&M University Tallahassee, FL 32307, U.S.A. e-mail: vasile.lauric@famu.edu