A NOTE ON QUASI-POLARIZED SURFACES OF GENERAL TYPE WHOSE SECTIONAL GENUS IS EQUAL TO THE IRREGULARITY

YOSHIAKI FUKUMA

Let (X, L) be a quasi-polarized surface. In our previous papers, we studied (X, L) with $\kappa(X)=2, h^{0}(L)>0$ and $g(X, L)=h^{1}\left(\mathscr{O}_{X}\right)$. Here $g(X, L)$ denotes the sectional genus of (X, L). In this note, we give the classification of quasi-polarized surfaces (X, L) of this type completely.

1. Introduction

Let X be a smooth projective surface over the field of complex numbers \mathbb{C} and let L be a nef and big (resp. an ample) divisor on X. Then the pair (X, L) is called a quasi-polarized (resp. polarized) surface. Then $g(X, L) \geq q(X)$ can be proved if (a) $\kappa(X) \leq 1$, or (b) $\kappa(X)=2$ and $h^{0}(L)>0$ (see [4]). (Here $g(X, L)=1+1 / 2\left(K_{X}+L\right) L$ denotes the sectional genus of (X, L) and $q(X)=$ $h^{1}\left(\mathscr{O}_{X}\right)$ is the irregularity of X.) If $g(X, L) \geq q(X)$ holds, then it is natural and interesting to study (X, L) with $g(X, L)=q(X)$. In our paper [4] we classified quasi-polarized surfaces (X, L) with $g(X, L)=q(X)$ and $\kappa(X) \leq 1$ (see also [7]). Moreover in [3] and [5], we studied (X, L) with $g(X, L)=q(X), \kappa(X)=2$ and $h^{0}(L)>0$. In the latter case we were able to characterize types of the divisor

Entrato in redazione: 25 agosto 2010

$D \in|L|$, but we could not characterize X completely (in particular for the case where D is irreducible).

In this short note, by using results of [1], [6] and [9], we consider the case in which $g(X, L)=q(X), \kappa(X)=2$ and $h^{0}(L)>0$, and we will give a characterization of (X, L) with $g(X, L)=q(X), \kappa(X)=2$ and $h^{0}(L)>0$.

The author would like to thank the referee for giving some useful comments.

2. Main results

First we recall the following definitions.
Definition 2.1. ([4, Definition 1.9 (2)]) Let (X, L) be a quasi-polarized surface. Then (X, L) is called L-minimal if $L E>0$ for any (-1)-curve E on X.

Definition 2.2. Let (X, L) and (Y, A) be quasi-polarized surfaces. Then (X, L) is called a simple blowing up of (Y, A) if X is the blowing up of Y at one point on Y, and $L=\mu^{*}(A)-E$, where $\mu: X \rightarrow Y$ is the birational morphism and E is the (-1)-curve.

Definition 2.3. (1) Let C be a smooth projective curve. Then $S^{2}(C)$ denotes the 2-fold symmetric product of $C, \pi: C \times C \rightarrow S^{2}(C)$ is the natural map and let $C_{x}:=\pi(C \times\{x\})=\pi(\{x\} \times C)$ for $x \in C$.
(2) Let B_{1} and B_{2} be smooth projective curves. Then $B_{1}(x)$ (resp. $B_{2}(y)$) denotes the divisor $B_{1} \times\{x\}$ (resp. $\{y\} \times B_{2}$) on $B_{1} \times B_{2}$, where $x \in B_{2}$ (resp. $y \in B_{1}$).

Theorem 2.4. Let (X, L) be an L-minimal quasi-polarized surface with $\kappa(X)=$ 2 and $h^{0}(L)>0$. Assume that $g(X, L)=q(X)$. Then $h^{0}(L)=1$ and the effective divisor $D \in|L|$ is reduced. Moreover (X, D) is one of the following types.
(1) $(X, D) \cong\left(S^{2}(C), C_{x}\right)$, where C is a smooth projective curve with $g(C) \geq 3$ and $x \in C$. In this case $q(X) \geq 3$.
(2) $(X, D) \cong\left(C_{0} \times C_{1}, C_{0}(x)+C_{1}(y)\right)$, where C_{0} and C_{1} are smooth projective curves with $g\left(C_{0}\right) \geq 2$ and $g\left(C_{1}\right) \geq 2, x \in C_{1}$ and $y \in C_{0}$. In this case $q(X) \geq 4$.
(3) There exist smooth projective curves A_{1} and A_{2} such that $g\left(A_{1}\right) \geq 2$ and $g\left(A_{2}\right) \geq 2,(X, D)$ is a simple blowing up of $\left(A_{1} \times A_{2}, A_{1}(x)+A_{2}(y)\right)$ for $x \in A_{2}$ and $y \in A_{1}$, and the center of the simple blowing up is $A_{1}(x) \cap$ $A_{2}(y)$. In this case $q(X) \geq 4$.
(4) There exist smooth projective curves A_{1} and A_{2} such that $g\left(A_{1}\right) \geq 2$ and $g\left(A_{2}\right) \geq 2,(X, D)$ is a simple blowing up of $\left(A_{1} \times A_{2}, A_{1}(x)+A_{2}(y)\right)$ for $x \in A_{2}$ and $y \in A_{1}$, and the center of the simple blowing up is contained in $\left(A_{1}(x) \cup A_{2}(y)\right) \backslash\left(A_{1}(x) \cap A_{2}(y)\right)$. In this case $q(X) \geq 4$.

Proof. First we note that $h^{0}(L)=1$ in this case by [5, Theorem 2.1] and let $D \in|L|$ be the effective divisor which is linearly equivalent to L. Then D is 1connected (see e.g. [8, Lemma 2.6 (i)]), and we see from [5, Theorem 2.1] that D is reduced by [3, Proposition 3.2] and D is one of the following two types.
(A) D is an irreducible smooth projective curve.
(B) Assume that D is not irreducible. Let $D=\sum_{k=0}^{l} C_{k}$. Then each irreducible component C_{i} of D is smooth and D is one of the following.
(B-I) $C_{0} C_{j}=1$ and $C_{j}^{2}=-1$ for every j with $1 \leq j \leq l, C_{0}^{2}=-l+1$, and $C_{i} C_{j}=0$ for every integers i and j with $1 \leq i \leq l, 1 \leq j \leq l$ and $i \neq j$.
(B-II) $l=1, C_{0}^{2}=C_{1}^{2}=0$ and $C_{0} C_{1}=1$.
(I) First we consider the type (B). We assume that D satisfies the type (BII). Then by [5, Theorem 3.4 (4)] we see that X is minimal. In this case we can prove the following. (Here we use notation in Definition 2.3 (2).)

Claim 2.1. $X \cong C_{0} \times C_{1}$ and $D=C_{0}(x)+C_{1}(y)$ for $x \in C_{1}$ and $y \in C_{0}$.
Proof. Since $g\left(C_{0}\right) \geq 2, g\left(C_{1}\right) \geq 2, C_{0} C_{1}=1$ and $C_{0}^{2}=C_{1}^{2}=0$, we see from the proof of [9, Proposition 3.1] that there exists a fiber space $f_{1}: X \rightarrow C_{0}$ (resp. $f_{2}: X \rightarrow C_{1}$) such that C_{1} (resp. C_{0}) is a fiber of f_{1} (resp. f_{2}). Then there exists a morphism $h: X \rightarrow C_{0} \times C_{1}$ such that $f_{1}=p_{1} \circ h$ (resp. $f_{2}=p_{2} \circ h$), where $p_{1}: C_{0} \times C_{1} \rightarrow C_{0}$ (resp. $p_{2}: C_{0} \times C_{1} \rightarrow C_{1}$) denotes the first (resp. the second) projection. Since $C_{0} C_{1}=1$, we see that h is birational. Hence h is an isomorphism because X is minimal. Therefore we get the assertion.

In this case $g\left(C_{0}\right) \geq 2$ and $g\left(C_{1}\right) \geq 2$ hold. So we get $q(X)=g\left(C_{0}\right)+$ $g\left(C_{1}\right) \geq 4$.

Next we consider the case where D satisfies the type (B-I).
Claim 2.2. If (X, D) is the type (B-I), then X is not minimal.
Proof. Assume that X is minimal. Then we note that $\left(C_{0}+C_{1}+\cdots+C_{l-1}\right)^{2}=0$ and $g\left(C_{0}+C_{1}+\cdots+C_{l-1}\right) \geq 1$. We also note that $g\left(C_{l}\right) \geq 1$. (If $g\left(C_{l}\right)=0$, then C_{l} is a (-1)-curve and $D C_{l}=0$. But this is impossible because $D \in|L|$ and (X, L) is L-minimal.) Hence by the same argument as in [9, Proposition 3.1], we
see that there exist smooth projective curves B and F such that X is birationally equivalent to $B \times F$. But since X is minimal, we have $X \cong B \times F$. Moreover by the proof of [9, Proposition 3.1] we infer that $C_{0}+C_{1}+\cdots+C_{l-1}$ is a fiber of either the first projection $X \rightarrow B$ or the second projection $X \rightarrow F$. But this is impossible if $l \geq 2$. Therefore $l=1$ and $D=C_{0}+C_{1}$. Here we note that $g\left(C_{0}\right) \geq$ 1 because $C_{0}^{2}=0$, and $g\left(C_{1}\right) \geq 1$ since $D C_{1}=0, C_{1}^{2}=-1, D \in|L|$ and (X, L) is L-minimal. Furthermore, applying the proof of [9, Proposition 3.1] again, we see that there exists a smooth projective curve G such that $X \cong C_{0} \times G$ and C_{0} is a fiber of the second projection $X \rightarrow G$ because X is minimal by assumption. In particular, the intersection number $K_{X} C_{1}=\left(2 g\left(C_{0}\right)-2\right) G C_{1}+(2 g(G)-2) C_{0} C_{1}$ is even. But this is impossible because $C_{1}^{2}=-1$ and $\left(K_{X}+C_{1}\right) C_{1}$ is even. Hence we get the assertion of Claim 2.2.

By [5, Theorem 3.4] and Claims 2.1 and 2.2, we see that $l \leq 2$ and there exist smooth projective curves A_{1} and A_{2} such that the type (B-I) is one of the following types.
(i) If $l=2$, then (X, D) is a simple blowing up of $\left(A_{1} \times A_{2}, A_{1}(x)+A_{2}(y)\right)$ for $x \in A_{2}$ and $y \in A_{1}$, and the center of the simple blowing up is $A_{1}(x) \cap$ $A_{2}(y)$.
(ii) If $l=1$, then (X, D) is a simple blowing up of $\left(A_{1} \times A_{2}, A_{1}(x)+A_{2}(y)\right)$ for $x \in A_{2}$ and $y \in A_{1}$, and the center of the simple blowing up is contained in $\left(A_{1}(x) \cup A_{2}(y)\right) \backslash\left(A_{1}(x) \cap A_{2}(y)\right)$.

Here we note that $g\left(A_{1}\right) \geq 2$ and $g\left(A_{2}\right) \geq 2$ because $\kappa(X)=2$. Thus $q(X)=$ $g\left(A_{1}\right)+g\left(A_{2}\right) \geq 4$.
(II) Next we consider the type (A). Here we carry on the proof by an argument similar to that in the proof of [9, Theorem 1.1]. First we prove the following claim.

Claim 2.3. X is not birationally equivalent to $B_{1} \times B_{2}$, where B_{1} and B_{2} are smooth projective curves.

Proof. Assume that X is birationally equivalent to $B_{1} \times B_{2}$. Here we note that $q(X)=g\left(B_{1}\right)+g\left(B_{2}\right) \geq 4$ since $\kappa(X)=2$. Let $\mu: X \rightarrow B_{1} \times B_{2}$ be the birational morphism, let $f_{i}: X \rightarrow B_{1} \times B_{2} \rightarrow B_{i}$, and let F_{i} be a general fiber of f_{i} for $i=1,2$. If $D F_{1}=1$ or $D F_{2}=1$, then D is isomorphic to B_{1} or B_{2}. In particular $g(X, D)=$ $g\left(B_{1}\right)$ or $g(X, D)=g\left(B_{2}\right)$. But since $g(X, D)=q(X)=g\left(B_{1}\right)+g\left(B_{2}\right), g\left(B_{1}\right) \geq 2$ and $g\left(B_{2}\right) \geq 2$ by assumption, this is impossible. Hence $D F_{i} \geq 2$ for $i=1,2$.

Therefore

$$
\begin{aligned}
K_{X} D & \geq\left(K_{B_{1} \times B_{2}}\right) \mu_{*}(D) \\
& \geq 2\left(2 g\left(B_{1}\right)-2\right)+2\left(2 g\left(B_{2}\right)-2\right) \\
& =4(q(X)-2)
\end{aligned}
$$

and we have

$$
\begin{aligned}
g(X, D) & =1+\frac{1}{2}\left(K_{X} D+D^{2}\right) \\
& \geq 1+\frac{1}{2} D^{2}+2(q(X)-2) \\
& =2 q(X)-3+\frac{1}{2} D^{2} \\
& =q(X)+q(X)-3+\frac{1}{2} D^{2} \\
& >q(X)
\end{aligned}
$$

But this contradicts the assumption.
Here we put $d:=D^{2}$. Then we prove the following.
Claim 2.4. $q(X) \geq d$.
Proof. Assume that $q(X)<d$. Let $\lambda: X \rightarrow S$ be the minimalization of X and let $D_{S}=\lambda_{*}(D)$. Then we note that D_{S} is nef and big, $d \leq D_{S}^{2}$, and $K_{X} D \geq K_{S} D_{S}$. Since $q(S)=q(X) \neq 0$, we see from [2, Théorème 6.1 and Addendum] that $K_{S}^{2} \geq 2 h^{0}\left(K_{S}\right) \geq 2 q(S)$. Hence by Hodge index theorem we have $\left(K_{S} D_{S}\right)^{2} \geq$ $\left(K_{S}\right)^{2}\left(D_{S}\right)^{2} \geq 2 q(S) d>q(X)^{2}$. Therefore $K_{X} D \geq K_{S} D_{S}>q(X)$. On the other hand, since $g(X, D)=q(X)$ we have $d+q(X)<d+K_{X} D=2 q(X)-2$. Namely we get $d<q(X)-2$. But this contradicts the assumption that $q(X)<d$. Hence we get the assertion.

By [9, Proposition 4.3] and Claim 2.4, there exists a d-dimensional system \mathscr{C} of effective divisors numerically equivalent to D. For any member D^{\prime} of \mathscr{C}, we see that D^{\prime} is nef and big, and $g\left(X, D^{\prime}\right)=q(X)$. Here we note that (X, L) is L-minimal, $D \in|L|$, and D^{\prime} is numerically equivalent to D. So we infer that $D^{\prime} E>0$ for any (-1)-curve E on X. Hence by Claim 2.3 and the above argument (I), we see that D^{\prime} is the type (A) above, that is, D^{\prime} is irreducible and smooth. Namely any member of \mathscr{C} is irreducible and smooth. Since the Jacobian of every curve of \mathscr{C} is isomorphic to $\operatorname{Pic}^{0}(D)$, we see that any curve of \mathscr{C} is isomorphic to D. If $d>1$, then by [6, Lemma 2.2.1] X is not of general type. So we get $d=1$. Hence by [1, Theorem 0.20], we infer that there exist a smooth projective curve C and a birational morphism $\rho: X \rightarrow S^{2}(C)$ such
that $\rho_{*}(D)=C_{x}$. (Here we use notation in Definition 2.3 (1).) In particular $1=D^{2} \leq\left(C_{x}\right)^{2}=1$. Since (X, L) is L-minimal we have $X \cong S^{2}(C)$ and $D=C_{x}$. In this case $g(C) \geq 3$ holds because $\kappa(X)=2$. So we have $q(X)=g(C) \geq 3$. Therefore we get the assertion of Theorem 2.4.

As a corollary, we can get the characterization of polarized surfaces (X, L) with $\kappa(X)=2, h^{0}(L)>0$ and $g(X, L)=q(X)$. If (X, D) is either the type (3) or type (4) in Theorem 2.4, then D is not ample. So we get the following corollary.

Corollary 2.5. Let (X, L) be a polarized surface with $\kappa(X)=2, h^{0}(L)>0$ and $g(X, L)=q(X)$. Then (X, L) is one of the following types.
(a) $(X, L) \cong\left(S^{2}(C), \mathscr{O}\left(C_{x}\right)\right)$, where C is a smooth projective curve and $x \in C$. In this case $g(C) \geq 3$.
(b) $(X, L) \cong\left(C_{0} \times C_{1}, \mathscr{O}\left(C_{0}(x)+C_{1}(y)\right)\right)$, where C_{0} and C_{1} are smooth projective curves with $g\left(C_{0}\right) \geq 2$ and $g\left(C_{1}\right) \geq 2, x \in C_{1}$ and $y \in C_{0}$.

We also note that the following corollary is the answer to [3, Problem 5.2].
Corollary 2.6. Let (X, L) be a polarized surface with $\kappa(X)=2, h^{0}(L)>0$ and $g(X, L)=q(X)$. Let D be the member of $|L|$. If D is irreducible, then $D^{2}=1$.

REFERENCES

[1] F. Catanese - C. Ciliberto - M. Mendes Lopes, On the classification of irregular surfaces of general type with non birational bicanonical map, Trans. Amer. Math. Soc. 350 (1998), 275-308.
[2] O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. Fr. 110 (1982), 319-346. Addendum, Bull. Soc. Math. Fr. 111 (1983), 301-302.
[3] Y. Fukuma, On polarized surfaces (X, L) with $h^{0}(L)>0, \kappa(X)=2$, and $g(L)=$ $q(X)$, Trans. Amer. Math. Soc. 348 (1996), 4185-4197.
[4] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata 64 (1997), 229-251.
[5] Y. Fukuma, On quasi-polarized surfaces of general type whose sectional genus is equal to the irregularity, Geom. Dedicata 74 (1999), 37-47.
[6] L. Guerra - G. P. Pirola, On rational maps from a general surface in \mathbb{P}^{3} to surfaces of general type, Adv. Geom. 8 (2008), 289-307.
[7] A. Lanteri, Algebraic surfaces containing a smooth curve of genus $q(S)$ as an ample divisor, Geom. Dedicata 17 (1984), 189-197.
[8] M. Mendes Lopes, Adjoint systems on surfaces, Bollettino U.M.I. (7) 10-A (1996), 169-179.
[9] M. Mendes Lopes - R. Pardini - G. P. Pirola, A characterization of the symmetric square of a curve, preprint (2010), ArXiv:1008.1790.

> YOSHIAKI FUKUMA
> Department of Mathematics
> Faculty of Science
> Kochi University
> Akebono-cho, Kochi 780-8520
> Japan
> e-mail: fukuma@kochi-u.ac.jp

