doi: 10.4418/2010.65.1.13

A NOTE ON QUASI-POLARIZED SURFACES OF GENERAL TYPE WHOSE SECTIONAL GENUS IS EQUAL TO THE IRREGULARITY

YOSHIAKI FUKUMA

Let (X,L) be a quasi-polarized surface. In our previous papers, we studied (X,L) with $\kappa(X)=2$, $h^0(L)>0$ and $g(X,L)=h^1(\mathscr{O}_X)$. Here g(X,L) denotes the sectional genus of (X,L). In this note, we give the classification of quasi-polarized surfaces (X,L) of this type completely.

1. Introduction

Let X be a smooth projective surface over the field of complex numbers $\mathbb C$ and let L be a nef and big (resp. an ample) divisor on X. Then the pair (X,L) is called a quasi-polarized (resp. polarized) surface. Then $g(X,L) \geq q(X)$ can be proved if (a) $\kappa(X) \leq 1$, or (b) $\kappa(X) = 2$ and $h^0(L) > 0$ (see [4]). (Here $g(X,L) = 1 + 1/2(K_X + L)L$ denotes the *sectional genus* of (X,L) and $q(X) = h^1(\mathcal O_X)$ is the irregularity of X.) If $g(X,L) \geq q(X)$ holds, then it is natural and interesting to study (X,L) with g(X,L) = q(X). In our paper [4] we classified quasi-polarized surfaces (X,L) with g(X,L) = q(X) and $\kappa(X) \leq 1$ (see also [7]). Moreover in [3] and [5], we studied (X,L) with g(X,L) = q(X), $\kappa(X) = 2$ and $h^0(L) > 0$. In the latter case we were able to characterize types of the divisor

Entrato in redazione: 25 agosto 2010

AMS 2000 Subject Classification: 14C20, 14J29.

Keywords: Quasi-polarized surface, sectional genus, irregularity.

This research was partially supported by the Grant-in-Aid for Scientific Research (C) (No.20540045), Japan Society for the Promotion of Science, Japan.

 $D \in |L|$, but we could not characterize X completely (in particular for the case where D is irreducible).

In this short note, by using results of [1], [6] and [9], we consider the case in which g(X,L) = q(X), $\kappa(X) = 2$ and $h^0(L) > 0$, and we will give a characterization of (X,L) with g(X,L) = q(X), $\kappa(X) = 2$ and $h^0(L) > 0$.

The author would like to thank the referee for giving some useful comments.

2. Main results

First we recall the following definitions.

Definition 2.1. ([4, Definition 1.9 (2)]) Let (X, L) be a quasi-polarized surface. Then (X, L) is called *L-minimal* if LE > 0 for any (-1)-curve E on X.

Definition 2.2. Let (X,L) and (Y,A) be quasi-polarized surfaces. Then (X,L) is called *a simple blowing up of* (Y,A) if X is the blowing up of Y at one point on Y, and $L = \mu^*(A) - E$, where $\mu : X \to Y$ is the birational morphism and E is the (-1)-curve.

- **Definition 2.3.** (1) Let C be a smooth projective curve. Then $S^2(C)$ denotes the 2-fold symmetric product of C, $\pi: C \times C \to S^2(C)$ is the natural map and let $C_x := \pi(C \times \{x\}) = \pi(\{x\} \times C)$ for $x \in C$.
 - (2) Let B_1 and B_2 be smooth projective curves. Then $B_1(x)$ (resp. $B_2(y)$) denotes the divisor $B_1 \times \{x\}$ (resp. $\{y\} \times B_2$) on $B_1 \times B_2$, where $x \in B_2$ (resp. $y \in B_1$).

Theorem 2.4. Let (X,L) be an L-minimal quasi-polarized surface with $\kappa(X) = 2$ and $h^0(L) > 0$. Assume that g(X,L) = q(X). Then $h^0(L) = 1$ and the effective divisor $D \in |L|$ is reduced. Moreover (X,D) is one of the following types.

- (1) $(X,D) \cong (S^2(C),C_x)$, where C is a smooth projective curve with $g(C) \geq 3$ and $x \in C$. In this case $q(X) \geq 3$.
- (2) $(X,D) \cong (C_0 \times C_1, C_0(x) + C_1(y))$, where C_0 and C_1 are smooth projective curves with $g(C_0) \geq 2$ and $g(C_1) \geq 2$, $x \in C_1$ and $y \in C_0$. In this case $q(X) \geq 4$.
- (3) There exist smooth projective curves A_1 and A_2 such that $g(A_1) \geq 2$ and $g(A_2) \geq 2$, (X,D) is a simple blowing up of $(A_1 \times A_2, A_1(x) + A_2(y))$ for $x \in A_2$ and $y \in A_1$, and the center of the simple blowing up is $A_1(x) \cap A_2(y)$. In this case $q(X) \geq 4$.

(4) There exist smooth projective curves A_1 and A_2 such that $g(A_1) \ge 2$ and $g(A_2) \ge 2$, (X,D) is a simple blowing up of $(A_1 \times A_2, A_1(x) + A_2(y))$ for $x \in A_2$ and $y \in A_1$, and the center of the simple blowing up is contained in $(A_1(x) \cup A_2(y)) \setminus (A_1(x) \cap A_2(y))$. In this case $q(X) \ge 4$.

Proof. First we note that $h^0(L) = 1$ in this case by [5, Theorem 2.1] and let $D \in |L|$ be the effective divisor which is linearly equivalent to L. Then D is 1-connected (see e.g. [8, Lemma 2.6 (i)]), and we see from [5, Theorem 2.1] that D is reduced by [3, Proposition 3.2] and D is one of the following two types.

- (A) D is an irreducible smooth projective curve.
- (B) Assume that *D* is not irreducible. Let $D = \sum_{k=0}^{l} C_k$. Then each irreducible component C_i of *D* is smooth and *D* is one of the following.
 - (B-I) $C_0C_j=1$ and $C_j^2=-1$ for every j with $1 \le j \le l$, $C_0^2=-l+1$, and $C_iC_j=0$ for every integers i and j with $1 \le i \le l$, $1 \le j \le l$ and $i \ne j$.
 - (B-II) $l = 1, C_0^2 = C_1^2 = 0$ and $C_0C_1 = 1$.
- (I) First we consider the type (B). We assume that D satisfies the type (B-II). Then by [5, Theorem 3.4 (4)] we see that X is minimal. In this case we can prove the following. (Here we use notation in Definition 2.3 (2).)

Claim 2.1.
$$X \cong C_0 \times C_1$$
 and $D = C_0(x) + C_1(y)$ for $x \in C_1$ and $y \in C_0$.

Proof. Since $g(C_0) \ge 2$, $g(C_1) \ge 2$, $C_0C_1 = 1$ and $C_0^2 = C_1^2 = 0$, we see from the proof of [9, Proposition 3.1] that there exists a fiber space $f_1: X \to C_0$ (resp. $f_2: X \to C_1$) such that C_1 (resp. C_0) is a fiber of f_1 (resp. f_2). Then there exists a morphism $h: X \to C_0 \times C_1$ such that $f_1 = p_1 \circ h$ (resp. $f_2 = p_2 \circ h$), where $p_1: C_0 \times C_1 \to C_0$ (resp. $p_2: C_0 \times C_1 \to C_1$) denotes the first (resp. the second) projection. Since $C_0C_1 = 1$, we see that h is birational. Hence h is an isomorphism because X is minimal. Therefore we get the assertion.

In this case $g(C_0) \ge 2$ and $g(C_1) \ge 2$ hold. So we get $q(X) = g(C_0) + g(C_1) \ge 4$.

Next we consider the case where D satisfies the type (B-I).

Claim 2.2. If (X,D) is the type (B-I), then X is not minimal.

Proof. Assume that X is minimal. Then we note that $(C_0 + C_1 + \cdots + C_{l-1})^2 = 0$ and $g(C_0 + C_1 + \cdots + C_{l-1}) \ge 1$. We also note that $g(C_l) \ge 1$. (If $g(C_l) = 0$, then C_l is a (-1)-curve and $DC_l = 0$. But this is impossible because $D \in |L|$ and (X,L) is L-minimal.) Hence by the same argument as in [9, Proposition 3.1], we

see that there exist smooth projective curves B and F such that X is birationally equivalent to $B \times F$. But since X is minimal, we have $X \cong B \times F$. Moreover by the proof of [9, Proposition 3.1] we infer that $C_0 + C_1 + \cdots + C_{l-1}$ is a fiber of either the first projection $X \to B$ or the second projection $X \to F$. But this is impossible if $l \ge 2$. Therefore l = 1 and $D = C_0 + C_1$. Here we note that $g(C_0) \ge 1$ because $C_0^2 = 0$, and $g(C_1) \ge 1$ since $DC_1 = 0$, $C_1^2 = -1$, $D \in |L|$ and (X, L) is L-minimal. Furthermore, applying the proof of [9, Proposition 3.1] again, we see that there exists a smooth projective curve G such that $X \cong C_0 \times G$ and C_0 is a fiber of the second projection $X \to G$ because X is minimal by assumption. In particular, the intersection number $K_X C_1 = (2g(C_0) - 2)GC_1 + (2g(G) - 2)C_0C_1$ is even. But this is impossible because $C_1^2 = -1$ and $(K_X + C_1)C_1$ is even. Hence we get the assertion of Claim 2.2.

- By [5, Theorem 3.4] and Claims 2.1 and 2.2, we see that $l \le 2$ and there exist smooth projective curves A_1 and A_2 such that the type (B-I) is one of the following types.
 - (i) If l = 2, then (X, D) is a simple blowing up of $(A_1 \times A_2, A_1(x) + A_2(y))$ for $x \in A_2$ and $y \in A_1$, and the center of the simple blowing up is $A_1(x) \cap A_2(y)$.
 - (ii) If l=1, then (X,D) is a simple blowing up of $(A_1 \times A_2, A_1(x) + A_2(y))$ for $x \in A_2$ and $y \in A_1$, and the center of the simple blowing up is contained in $(A_1(x) \cup A_2(y)) \setminus (A_1(x) \cap A_2(y))$.

Here we note that $g(A_1) \ge 2$ and $g(A_2) \ge 2$ because $\kappa(X) = 2$. Thus $q(X) = g(A_1) + g(A_2) \ge 4$.

- (II) Next we consider the type (A). Here we carry on the proof by an argument similar to that in the proof of [9, Theorem 1.1]. First we prove the following claim.
- **Claim 2.3.** *X* is not birationally equivalent to $B_1 \times B_2$, where B_1 and B_2 are smooth projective curves.

Proof. Assume that X is birationally equivalent to $B_1 \times B_2$. Here we note that $q(X) = g(B_1) + g(B_2) \ge 4$ since $\kappa(X) = 2$. Let $\mu: X \to B_1 \times B_2$ be the birational morphism, let $f_i: X \to B_1 \times B_2 \to B_i$, and let F_i be a general fiber of f_i for i = 1, 2. If $DF_1 = 1$ or $DF_2 = 1$, then D is isomorphic to B_1 or B_2 . In particular $g(X, D) = g(B_1)$ or $g(X, D) = g(B_2)$. But since $g(X, D) = g(B_1) + g(B_2)$, $g(B_1) \ge 2$ and $g(B_2) \ge 2$ by assumption, this is impossible. Hence $DF_i \ge 2$ for i = 1, 2.

Therefore

$$K_XD \ge (K_{B_1 \times B_2})\mu_*(D)$$

 $\ge 2(2g(B_1) - 2) + 2(2g(B_2) - 2)$
 $= 4(q(X) - 2),$

and we have

$$g(X,D) = 1 + \frac{1}{2}(K_X D + D^2)$$

$$\geq 1 + \frac{1}{2}D^2 + 2(q(X) - 2)$$

$$= 2q(X) - 3 + \frac{1}{2}D^2$$

$$= q(X) + q(X) - 3 + \frac{1}{2}D^2$$

$$> q(X).$$

But this contradicts the assumption.

Here we put $d := D^2$. Then we prove the following.

Claim 2.4. $q(X) \ge d$.

Proof. Assume that q(X) < d. Let $\lambda : X \to S$ be the minimalization of X and let $D_S = \lambda_*(D)$. Then we note that D_S is nef and big, $d \le D_S^2$, and $K_X D \ge K_S D_S$. Since $q(S) = q(X) \ne 0$, we see from [2, Théorème 6.1 and Addendum] that $K_S^2 \ge 2h^0(K_S) \ge 2q(S)$. Hence by Hodge index theorem we have $(K_S D_S)^2 \ge (K_S)^2(D_S)^2 \ge 2q(S)d > q(X)^2$. Therefore $K_X D \ge K_S D_S > q(X)$. On the other hand, since g(X,D) = q(X) we have $d + q(X) < d + K_X D = 2q(X) - 2$. Namely we get d < q(X) - 2. But this contradicts the assumption that q(X) < d. Hence we get the assertion. □

By [9, Proposition 4.3] and Claim 2.4, there exists a d-dimensional system $\mathscr C$ of effective divisors numerically equivalent to D. For any member D' of $\mathscr C$, we see that D' is nef and big, and g(X,D')=q(X). Here we note that (X,L) is L-minimal, $D \in |L|$, and D' is numerically equivalent to D. So we infer that D'E>0 for any (-1)-curve E on X. Hence by Claim 2.3 and the above argument (I), we see that D' is the type (A) above, that is, D' is irreducible and smooth. Namely any member of $\mathscr C$ is irreducible and smooth. Since the Jacobian of every curve of $\mathscr C$ is isomorphic to $\operatorname{Pic}^0(D)$, we see that any curve of $\mathscr C$ is isomorphic to D. If d>1, then by [6, Lemma 2.2.1] X is not of general type. So we get d=1. Hence by [1, Theorem 0.20], we infer that there exist a smooth projective curve C and a birational morphism $\rho: X \to S^2(C)$ such

that $\rho_*(D) = C_x$. (Here we use notation in Definition 2.3 (1).) In particular $1 = D^2 \le (C_x)^2 = 1$. Since (X, L) is L-minimal we have $X \cong S^2(C)$ and $D = C_x$. In this case $g(C) \ge 3$ holds because $\kappa(X) = 2$. So we have $q(X) = g(C) \ge 3$. Therefore we get the assertion of Theorem 2.4.

As a corollary, we can get the characterization of polarized surfaces (X, L) with $\kappa(X) = 2$, $h^0(L) > 0$ and g(X, L) = q(X). If (X, D) is either the type (3) or type (4) in Theorem 2.4, then D is not ample. So we get the following corollary.

Corollary 2.5. Let (X,L) be a polarized surface with $\kappa(X) = 2$, $h^0(L) > 0$ and g(X,L) = q(X). Then (X,L) is one of the following types.

- (a) $(X,L) \cong (S^2(C), \mathcal{O}(C_x))$, where C is a smooth projective curve and $x \in C$. In this case $g(C) \geq 3$.
- (b) $(X,L) \cong (C_0 \times C_1, \mathcal{O}(C_0(x) + C_1(y)))$, where C_0 and C_1 are smooth projective curves with $g(C_0) \geq 2$ and $g(C_1) \geq 2$, $x \in C_1$ and $y \in C_0$.

We also note that the following corollary is the answer to [3, Problem 5.2].

Corollary 2.6. Let (X,L) be a polarized surface with $\kappa(X) = 2$, $h^0(L) > 0$ and g(X,L) = q(X). Let D be the member of |L|. If D is irreducible, then $D^2 = 1$.

REFERENCES

- [1] F. Catanese C. Ciliberto M. Mendes Lopes, *On the classification of irregular surfaces of general type with non birational bicanonical map*, Trans. Amer. Math. Soc. 350 (1998), 275–308.
- [2] O. Debarre, *Inégalités numériques pour les surfaces de type général*, Bull. Soc. Math. Fr. 110 (1982), 319–346. *Addendum*, Bull. Soc. Math. Fr. 111 (1983), 301–302.
- [3] Y. Fukuma, On polarized surfaces (X,L) with $h^0(L) > 0$, $\kappa(X) = 2$, and g(L) = g(X), Trans. Amer. Math. Soc. 348 (1996), 4185–4197.
- [4] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata 64 (1997), 229–251.
- [5] Y. Fukuma, On quasi-polarized surfaces of general type whose sectional genus is equal to the irregularity, Geom. Dedicata 74 (1999), 37–47.
- [6] L. Guerra G. P. Pirola, On rational maps from a general surface in \mathbb{P}^3 to surfaces of general type, Adv. Geom. 8 (2008), 289–307.

- [7] A. Lanteri, Algebraic surfaces containing a smooth curve of genus q(S) as an ample divisor, Geom. Dedicata 17 (1984), 189–197.
- [8] M. Mendes Lopes, *Adjoint systems on surfaces*, Bollettino U.M.I. (7) 10-A (1996), 169–179.
- [9] M. Mendes Lopes R. Pardini G. P. Pirola, *A characterization of the symmetric square of a curve*, preprint (2010), ArXiv:1008.1790.

YOSHIAKI FUKUMA Department of Mathematics Faculty of Science Kochi University

Kochi University Akebono-cho, Kochi 780-8520

e-mail: fukuma@kochi-u.ac.jp