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SOME INFINITE CLASSES OF ASYMMETRIC
NEARLY HAMILTONIAN SNARKS

CARLA FIORI - BEATRICE RUINI

We determine the full automorphism group of each member of three
infinite families of connected cubic graphs which are snarks. A graph is
said to be nearly hamiltonian if it has a cycle which contains all vertices
but one. We prove, in particular, that for every possible order n≥ 28 there
exists a nearly hamiltonian snark of order n with trivial automorphism
group.

1. Introduction

Snarks are non-trivial connected cubic graphs which do not admit a 3-edge-
coloring (a precise definition will be given below). The term snark owes its
origin to Lewis Carroll’s famouse nonsense poem “The Hunting of the Snark”.
It was introduced as a graph theoretical term by Gardner in [13] when snarks
were thought to be very rare and unusual “creatures”. Tait initiated the study
of snarks in 1880 when he proved that the Four Color Theorem is equivalent
to the statement that no snark is planar. Asymmetric graphs are graphs pos-
sessing a single graph automorphism -the identity- and for that reason they are
also called identity graphs. Twenty-seven examples of asymmetric graphs are
illustrated in [27]. Two of them are the snarks Sn8 and Sn9 of order 20 listed
in [21] p. 276. Asymmetric graphs have been the subject of many studies, see,
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for example, [4], [9], and [17]. Erdős and Rényi proved in [9] that almost all
graphs are asymmetric. This property remains true also for cubic graphs, see
[3]. Determining the full automorphism group of a given graph may require
some non-trivial work, especially if the graph belongs to an infinite family and
the task is that of determining the automorphism group of each member of the
family. In this paper we are interested in the computation of the full automor-
phism group of each member of three infinite classes of snarks. We prove, in
particular, that for every possible order ≥ 28 there exists an asymmetric (nearly
hamiltonian) snark of that order.

Throughout the paper, G = (V (G),E(G)) will be a finite connected simple
graph with vertex-set V (G) and edge-set E(G). The chromatic index χ ′(G)
of a graph G is the minimum number of colors needed to color the edges of
G in such a way that no two adjacent edges are assigned one and the same
color. If ∆(G) denotes the maximum degree of G then, since edges sharing a
vertex require different colors, we have χ ′(G)≥ ∆(G). Vizing [23] proved that
∆(G)+1 colors suffice: if G is a simple connected graph with maximum degree
∆(G), then the chromatic index χ ′(G) satisfies the inequalities ∆(G)≤ χ ′(G)≤
∆(G)+1. This result divides simple graphs into two classes: a simple graph G
is Class 1 if χ ′(G) = ∆(G), otherwise G is Class 2. Erdős and Wilson in [10]
proved that, almost all graphs are Class 1. A snark is a Class 2 cubic graph and
girth ≥ 5 which is cyclically 4–edge–connected (see Section 2). Some authors
use a slightly different notion of a snark (see, for examples, [18] and [22]).
The importance of snarks partially arises from the fact that some conjectures
about graphs would have snarks as minimal counter-examples, see for example
[16]: (a) (Tutte’s 5-Flow Conjecture) every bridgeless graph has a nowhere-
zero 5-flow; (b) (The 1-Factor Double Cover Conjecture) every bridgeless cubic
graph can be covered exactly twice with 1-factors; (c) (The Cycle Double Cover
Conjecture) every bridgeless graph can be covered exactly twice with cycles.

The first graph which was shown to be a snark is the Petersen graph dis-
covered in 1898. Up until 1975 only four examples of snarks were known. In
1975 Isaacs [15] produced the first two infinite families of snarks. In [1], [2]
and [5] a catalogue of snarks of order smaller than 30 is generated. For survey
papers on snarks we refer the reader to [6], [5], [8] and [24]. If a connected
graph G admits a cycle containing all vertices but one, then we shall say that
G is nearly hamiltonian. In the paper [6] graphs with this property were re-
ferred to as almost-hamiltonian graphs, but we prefer to avoid this terminology
here because the term almost-hamiltonian has been used with different mean-
ings elsewhere, see [19], [20], [25]. In this paper we are interested in nearly
hamiltonian snarks. In [6] several classical snarks are shown to be nearly hamil-
tonian: the Celmins snark [7] of order 26, the Flower snark [15] of order 4k,
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the Double Star snark [12], the Goldberg snark [14] of order 8k, the Szekeres
snark [24], the Watkins snarks [24] of order 42 and 50. Moreover, a catalogue
of all non-isomorphic nearly hamiltonian snarks of order smaller than 30 is pro-
duced in [6]. In particular the following results holds [6, Thm. 1.1]: (a) All
snarks of order less than 28 are nearly hamiltonian; (b) There are exactly 2897
non-isomorphic nearly hamiltonian snarks of order 28; (c) up to isomorphism,
there is a unique nearly hamiltonian snark, of order 28 and girth ≥ 6, that is,
the flower snark of order 28; and (d) there are exactly three snarks of order 28
which are not nearly hamiltonian.

Finally, in [6], a general method to construct some infinite families of nearly
hamiltonian snarks is described. In Section 2 we recall this construction in
detail and in Section 3 we focus our attention on three infinite families O,F ,I
obtained by applying the above mentioned construction. The first and the third
family have been introduced in [6], while the second family is introduced here.
In Section 4 we analyse the behavior of graph automorphisms on subgraphs
which arise from the construction. In Section 5, by using the results of Section
4, we show that for every possible order n ≥ 28 there exists an asymmetric
nearly hamiltonian snark of order n belonging to the set O ∪F ∪I .

2. Preliminaries

A path of length r in a graph G is a sequence of distinct edges of type [v0,v1],
[v1,v2], . . . , [vr−1,vr]. If all the vertices of the path are distinct, except for v0
and vr which coincide, then the path is a cycle of length r or r-cycle and we
denote it as (v0,v1, . . . ,vr). The girth of G is the length of the shortest cycle of
G. The graph G is cyclically k-edge-connected if deleting fewer than k edges
from G does not disconnect G into components, each of which contains a cycle.
According to our definition in Section 1 a snark is a Class 2 cubic graph and
girth ≥ 5 which is cyclically 4–edge–connected.

We recall in detail a construction of infinite classes of nearly hamiltonian
snarks described in [6]. Let H be the cubic graph of order 13, with five semi-
edges e1,e2, . . . ,e5, constructed as follows. Order the first twelve vertices in a
circular way and assign a number to each one of them in the clockwise order,
starting from the vertex 0. The thirteenth vertex is labelled 12. The edges of H
are given by the pairs:

(a) [i,i+1] (indices mod 12), for any i = 0,1, . . . ,11, i 6= 6,9;

(b) [3j,12], for any j = 0,1,2; and

(c) [1,5], [4,8], [7,10], and [9,11].
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Figure 1: Graphs H and H∗

The remaining five edges e1,e2, . . . ,e5, considered in the ordering induced
by that of the vertices, are assumed to be semi-edges to make H a cubic graph.
The girth of H is 5 (see Figure 1).

Starting from H we construct another cubic graph H∗ of order 17, which
has the same five semi-edges e1,e2, . . . ,e5. We insert four new vertices, la-
belled a,b,c, and d, on the edges [7,8], [8,9], and [0,11] of H so that the pairs
[7,a], [a,8], [8,b], [b,9], [11,c], [c,d], [d,0], [a,c] and [b,d] become edges of H∗

(see Figure 1). The graph H∗ has girth 5. The following result (see [6] p. 68)
holds:

Theorem 2.1. Let G be a snark of order n with a cutset of five edges whose re-
moval leaves components H (as defined above) and F with semi-edges {e1,e2,
e3,e4,e5} and { f1, f2, f3, f4, f5}, respectively. Let G∗ be the cubic graph ob-
tained from G by replacing H with H∗ and attaching the semi-edges of H∗ to
those of H according to the ordering induced by indices. Then G∗ is a snark of
order n+4.

The graph G∗ contains H as a subgraph. Therefore we can repeat the con-
struction an arbitrary number of times to obtain an infinite family of snarks. In
particular we get the following corollary (see [6] p. 69):

Corollary 2.2. Let G be a nearly hamiltonian snark of order n which contains H
as subgraph. Let Gm be the snark obtained from G by applying the construction
described in Theorem 2.1 m times. Then Gm is a nearly hamiltonian snark of
order n+4m.
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The infinite family {Gm}m≥1 from Corollary 2.2 is said to be generated by
the graph G.

By relabelling as in Figure 2 the vertices of the graph obtained from H∗

by deleting the semi-edges we obtain the graph GX = (X ,E(GX)), where X =
{x1,x2, . . . ,x17} and E(GX) = {[xi,xi+1] : i = 1,2, . . . ,16}∪{[x10,x17], [x13,x17],
[x11,x15], [x3,x14], [x2,x9], [x1,x7], [x4,x8]} (the vertex x17 of GX corresponds to
the vertex 12 of H∗).

Figure 2: Graph Ḡm with m≥ 1

Consider the sets Am = {ai : i = 1,2, . . . ,m−1}, Bm = {bi : i = 1,2, . . . ,m−
1}, Cm = {ci : i = 1,2, . . . ,m−1}, Dm = {di : i = 1,2, . . . ,m−1} and let
{Ḡm}m≥1 be the family of the graphs defined as follows:

(1) Ḡm = GX if m = 1;

(2) Ḡm = (V (Ḡm),E(Ḡm)) if m≥ 2 with V (Ḡm) =X∪Am∪Bm∪Cm∪Dm and
E(Ḡm)=E(GX)∪{[ai,bi] : i= 1,2, . . . ,m−1} ∪{[bi,di] : i= 1,2, . . . ,m−
1} ∪{[ci,dm−i] : i = 1,2, . . . ,m−1}∪ {[x5,am−1], [x1,c1], [x6,dm−1]}∪
∪{[ai,ai+1] : i = 1,2, . . . ,m−2} ∪ {[ci,ci+1] : i = 1,2, . . . ,m−2}∪
∪{[bi+1,di] : i = 1,2, . . . ,m− 2} where the last three sets are empty if
m = 2.

The graph GX is a subgraph of Ḡm for any m ≥ 1 and the graph Ḡm is a
subgraph of Gm (see Corollary 2.2) for any m≥ 1. Figure 2 illustrates the con-
struction of the graph Ḡm with m≥ 1.
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3. Three families O,F ,I of nearly hamiltonian snarks

In this section we apply Corollary 2.2 to construct three infinite families of
nearly hamiltonian snarks. Let O and F be the nearly hamiltonian snarks of
order 24 shown in Figure 3, and let I be the nearly hamiltonian snark of order
26 shown in Figure 4. Dotted lines identify the cycle missing one vertex.

Figure 3: Nearly hamiltonian snarks O and F

By applying Corollary 2.2 to O,F and I we obtain three infinite families of
nearly hamiltonian snarks O = {Om : m≥ 1}, F = {Fm : m≥ 1} and I = {Im :
m≥ 1} (generated by the snarks O,F and I, respectively).

The first and the third family have been introduced in [6] while the sec-
ond family is new. Now we give an explicit description of the classes O , F ,
I . Let us consider the following sets: Y = {y1,y2,y3,y4}, T = {t1, t2, t3},
Z = {z1,z2, . . . ,z7}, S = {s1,s2,s3,s4,s5}, R = {r1,r2, . . . ,r8}. Figures 4 and
5 show the graphs O1,F1 I1. Also in this cases dotted lines identify the cycle
missing one vertex. For m≥ 2 we get

• Om = (V (Om),E(Om)) with V (Om) = V (Ḡm) ∪ Y ∪ Z and E(Om) =
E(Ḡm) ∪{[yi,yi+1] : i = 1,2,3} ∪{[zi,zi+1] : i = 1,2, . . . ,6} ∪ {[x16,y1],
[y1,z2], [y2,z6], [y3,x12], [y4,a1], [y4,z4], [z1,z5], [z3,z7], [z1,cm−1], [z7,b1]};

• Fm = (V (Fm),E(Fm)) with V (Fm) =V (Ḡm)∪T ∪R and E(Fm) =E(Ḡm)∪
{[ti, ti+1] : i = 1,2} ∪{[ri,ri+1] : i = 1,2, . . . ,7}∪ {[x16, t1], [x12, t2], [t1,r3]
[t3,r6], [t3,a1], [r2,r7], [r1,r5], [r4,r8], [r1,cm−1], [r8,b1]}.
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Figure 4: Nearly hamiltonian snarks I and O1

• Im = (V (Im),E(Im)) with V (Im) = V (Ḡm)∪ S∪R and E(Im) = E(Ḡm)∪
{[si,si+1] : i = 1,2,3,4} ∪{[ri,ri+1] : i = 1,2, . . . ,7}∪ {[x16,s1], [x12,s3],
[s1,r2], [s2,r6], [s4,r4], [s5,r8], [s5,cm−1], [r1,r5], [r3,r7], [r1,a1], [r8,b1]}.

The graph Ḡm is a subgraph of each of Om,Fm and Im, with m ≥ 1 and in
particular the graph GX is a subgraph of each G∈O∪F ∪I . Figure 6, 7 and 8
show the graphs Om,Fm, Im with m = 4. Also in these cases dotted lines identify
the cycle missing one vertex.

4. Automorphisms of cubic graphs with Ḡm as a subgraph

In this section we describe the behavior of particular graph automorphisms of
cubic graphs which act on the subgraphs Ḡm. This will be useful in Section
5 for the computation of the full automorphism group of each graph of O ∪
F ∪I . We will be using the functional notation for mappings, in other words
α(x) denotes the image of the element x under mapping α and α|A denotes the
restriction of α to A.

In what follows we shall make repeated use of the following four elementary
properties of an automorphism of a cubic graph with girth at least five.
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Figure 5: Nearly hamiltonian snarks F1 and I1

Elementary Properties Let G be a cubic graph with girth at least 5 and let
α be an automorphism of G. Then,

EP1) the number of r-cycles passing through a vertex u of G coincides with
the number of r-cycles passing through the vertex α(u);

EP2) if u and v are vertices fixed by α with the property of being adjacent
to a vertex w, then the vertex w is also fixed by α;

EP3) if α fixes the vertices u,v,w with [u,v], [w,v] and [v, t] edges of G, then
the vertex t is fixed by α;

EP4) if α fixes the vertices v, t and if u,w and t are different vertices adjacent
to the vertex v, then α({u,w}) = {u,w}.
We note that EP2 follows from the observation that if the vertex w is not fixed
by α then (u,w,v,α(w)) would be a 4-cycle, contradicting the fact that the girth
of G is at least 5.

Lemma 4.1. Let G be a cubic graph with girth at least 5 and with GX as a
subgraph. The 5-cycles constituted by vertices of X are the following:

C1 = (x10,x11,x12,x13,x17), C2 = (x10,x11,x15,x16,x17),

C3 = (x11,x12,x13, x14,x15), C4 = (x13,x14,x15,x16,x17),

C5 = (x4,x5,x6,x7,x8), C6 = (x2,x3,x4, x8,x9),
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Figure 6: Nearly hamiltonian snark O4

C7 = (x1,x2,x9,x8,x7).

Moreover, the following are the only other 5-cycles that can pass through at
least one vertex of X:

C8 = (x5,x6, p1, p2, p3), C9 = (x1,x7,x6,q1,q2) with pi,q j /∈ X, i = 1,2,3,
j = 1,2,

C10 = (x1,x7,x6, x5, p), C11 = (x16,r,x12,x11,x15), C12 = (x16,r,x12,x13,
x17) with p,r /∈ X.

Proposition 4.2. Let G be a cubic graph with girth at least 5 and with GX as a
subgraph. Let α be an automorphism of G with α(x3) ∈ X, then α(x3) = x1 or
α(x3) = x3.

Proof. Lemma 4.1 establishes that C6 is the only 5-cycle in G passing through
the vertex x3 and that there are at least two 5-cycles in G going through each
vertex of the set X \ {x1,x3,x5,x6}. Therefore, by Property EP1 we get that
α(x3) ∈ {x1,x3,x5,x6}. If α(x3) = x5 or α(x3) = x6, then the 5-cycle C5 has
to be the only 5-cycle in G touching x5 or x6. Hence the relation α(C6) = C5
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Figure 7: Nearly hamiltonian snark F4

yields one of the following cases:

(a)



α(x2) = x4

α(x3) = x5

α(x4) = x6

α(x8) = x7

α(x9) = x8

(b)



α(x2) = x6

α(x3) = x5

α(x4) = x4

α(x8) = x8

α(x9) = x7

(c)



α(x2) = x5

α(x3) = x6

α(x4) = x7

α(x8) = x8

α(x9) = x4

(d)



α(x2) = x7

α(x3) = x6

α(x4) = x5

α(x8) = x4

α(x9) = x8.

Cases (a) and (d) cannot occur since only two 5-cycles pass through the vertex
x9 while three 5-cycles go through the vertex x8; thus α(x9) 6= x8.

Case (b) implies α(C7) = α((x1,x2,x9,x8,x7)) = (α(x1),α(x2),α(x9),
α(x8),α(x7)) = (α(x1),x6,x7,x8,α(x7)). Lemma 4.1 establishes that C5 =
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Figure 8: Nearly hamiltonian snark I4

(x5,x6,x7, x8,x4) is the only 5-cycle touching the three vertices x6,x7,x8, where-
by α(x7) = x4; a contradiction, since from (b) we have α(x4) = x4.

Case (c) does not occur either. In G two 5-cycles pass through x2 and
α(x2) = x5. Thus, there must be two 5-cycles going through the vertex x5,
either C5 and C8 or C5 and C10 (see Lemma 4.1). Therefore two 5-cycles touch
the vertex x6 (either C5 and C8 or C5 and C10), whereas only one 5-cycle pass
through the vertex x3. Thus α(x3) = x6 is a contradiction.
Therefore, if α(x3) ∈ X , then we have either α(x3) = x1 or α(x3) = x3.

Proposition 4.3. Let G be a cubic graph with girth at least 5 and with GX as
a subgraph. Let α be an automorphism of G that fixes x3. Then α fixes X set-
wise and the restriction α|X is either the identity permutation or the involution
(x11 x17)(x12 x16)(x13 x15).

Proof. Let α(x3) = x3. By Property EP1 and Lemma 4.1 we get α(C6) = C6,
hence α(x8) ∈ {x8,x9}; therefore, by Property EP1 and Lemma 4.1 we have
α(x8) = x8. From α(C6) = C6, α(x3) = x3, α(x8) = x8 we obtain α(x2) =
x2,α(x4) = x4,α(x9) = x9. Property EP3 implies α(x10) = x10, α(x14) = x14,
α(x7) = x7. By Lemma 4.1 and α(x4) = x4,α(x8) = x8, α(x7) = x7 we have
α(C5) = C5, thus α(x6) = x6,α(x5) = x5 and by Property EP2 we finally get
α(x1) = x1.
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Since the automorphism α fixes x3 and x14, then Property EP4 implies that
α({x13,x15}) = {x13,x15}.
Case I: if α(x13) = x13 and α(x15) = x15, then by Property EP2 we get α(x11) =
x11, α(x12) = x12, α(x17) = x17 and α(x16) = x16. Therefore α(X) = X and the
restriction of α to X is the identity permutation.
Case II: if α(x13) = x15 and α(x15) = x13, then α(C2) = α((x10,x17,x16,x15,
x11)) = (x10,α(x17),α(x16),x13,α(x11)), hence α(x11) is adjacent to the ver-
tices x13 and x10, and so α(x11) = x17. Moreover, α(C3) = α((x11,x12,x13,x14,
x15)) = (x17,α(x12),x15,x14,x13), hence α(x12) is adjacent to the vertices x15,
x17, and α(x12) = x16; therefore α(x17) = x11 and α(x16) = x12. We have proved
that α(X) = X and α|X = (x11 x17)(x12 x16)(x13 x15).

Proposition 4.4. Let G be a cubic graph with girth at least 5 and with Ḡm as a
subgraph for some m≥ 2. Let α be an automorphism of G that fixes x3. Then α

fixes Am∪Bm∪Cm∪Dm pointwise.

Proof. Let α(x3) = x3. By Proposition 4.3 the vertex xi, with i = 1,2,4,5,6,7,
is fixed by α and by Property EP3 we have α(c1) = c1, α(am−1) = am−1 and
α(dm−1) = dm−1; hence by Property EP3 we also get α(bm−1) = bm−1. If m = 2
the statement is proved.

If m≥ 3 we prove
1) α(ai) = ai with i = m−2,m−3, . . . ,1;
2) α(bi) = bi with i = m−2,m−3, . . . ,1;
3) α(c j) = c j with j = 2,3, . . . ,m−1;
4) α(di) = di with i = m−2,m−3, . . . ,1.

The vertices am−1,x5, bm−1 are fixed by α , hence Property EP3 implies that
α(am−2) = am−2. The vertices x1,c1, dm−1 are fixed by α , thus by Property
EP3 we obtain α(c2) = c2. The vertex dm−2 is adjacent to the fixed vertices c2
and bm−1, thus by Property EP2 we get α(dm−2) = dm−2. The vertex bm−2 is
adjacent to the fixed vertices am−2 and dm−2, so Property EP2 yields α(bm−2) =
bm−2. Let h be an integer h ≥ 2. By induction we assume that 1), 2), 4) are
true for i ≥ m− h and that 3) is true for j ≤ h. We prove 1), 2), 4) for i =
m−(h+1) and 3) for j = h+1. By induction hypothesis the vertices bm−h, am−h
and am−(h−1) are fixed by α , hence Property EP3 implies that α(am−(h+1)) =
am−(h+1). The vertices ch,ch−1 and dm−h are fixed by α , thus by Property EP3
we obtain α(ch+1) = ch+1. The vertex dm−(h+1) is adjacent to the fixed vertices
ch+1 and bm−h, hence Property EP2 implies that α(dm−(h+1)) = dm−(h+1). The
vertex bm−(h+1) is adjacent to the fixed vertices am−(h+1) and dm−(h+1) and so
by Property EP2 we get α(bm−(h+1)) = bm−(h+1). Therefore, the automorphism
α fixes the vertices of the set Am∪Bm∪Cm∪Dm.



ASYMMETRIC NEARLY HAMILTONIAN SNARKS 15

Corollary 4.5. Let G be a cubic graph with girth at least 5 and with Ḡm as a
subgraph for some m ≥ 1. Let α be an automorphism of G that fixes x3. Then
α leaves Ḡm invariant and the restriction of α to Ḡm is either the involution
(x11 x17) (x12 x16)(x13 x15) or the identity permutation.

Proof. The statement follows from Propositions 4.3 and 4.4.

5. O,F ,I : asymmetric nearly hamiltonian snarks

In this section we prove that each member of O ∪F ∪I is an asymmetric
graph. First of all, we consider some properties of cycles of graphs from O ∪
F ∪I which will be useful for characterizing the automorphisms of the graphs.

Lemma 5.1. The vertices of Om lying in just one 5-cycle are the following:

(a) x1,x3,x5,x6,z1,z2,z6,z7 if m = 1;

(b) x3,a1,b1,z1,z2,z6,z7,cm−1 if m≥ 2.

If m = 1, there are exactly six 8-cycles going through the vertex x3 while there
are exactly three 8-cycles touching the vertex x1.

Proof. The statement follows from the definition of Om. The following two ta-
bles show the 5-cycles and the 8-cycles passing through each vertex considered
in the statement:

x1 x5,x6 x3 z1,z2 z6,z7 a1,b1 a1,b1 c1 cm−1
cycle of C7 C5 C6 C16 C17 C15 C13 C18 C14
length 5 m = 1 m = 1 m≥ 1 m≥ 1 m≥ 1 m = 2 m≥ 3 m = 2 m≥ 3

x1 x3
cycle of Ω1, Ω2,Ω3 Ω4, Ω5, Ω6, Ω7,Ω12,Ω13
length 8 m = 1 m = 1

where C5, C6, C7 are the cycles of Lemma 4.1, C13 = (a1,a2,b2,d1,b1), C14 =
(cm−2,cm−1,d1,b2,d2), C15 = (a1,x5,x6,d1,b1), C16 = (z1,z2,z3,z4,z5), C17 =
(z6,z7,z3,z4,z5)), C18 = (x1,c1,d1,x6,x7), Ω1 = (x5,x4,x8,x9,x2,x1,x7,x6),
Ω2 = (y4,x5,x6,x7,x1,z1,z5,z4), Ω3 = (x1,z1,z5,z4,z3,z7,x6,x7), Ω4 =
(x10, x11,x12,x13,x14,x3,x2,x9), Ω5 = (x10,x9,x8,x4,x3,x14,x13,x17), Ω6 = (x10,
x11,x15,x14,x3,x4,x8,x9), Ω7 = (x10,x9,x2,x3,x14,x15,x16,x17), Ω12 = (x12,x13,
x14,x3,x4,x5,y4,y3), Ω13 = (x5,x4,x3,x2,x9,x8,x7,x6).

Lemma 5.2. The vertices of Fm lying in just one 5-cycle are the following:

(a) x1,x3,x5,x6 if m = 1;
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(b) x3,a1,b1,cm−1 if m≥ 2.

If m = 1 there are exactly four 8-cycles going through the vertex x1 while
there are exactly six 8-cycles touching the vertex x3.

Proof. The statement follows from the definition of Fm. The following two ta-
bles show the 5-cycles and the 8-cycles passing through each vertex considered
in the statement:

x1 x5,x6 x3 a1,b1 a1,b1 c1 cm−1
cycle of C7 C5 C6 C15 C13 C18 C14
length 5 m = 1 m = 1 m≥ 1 m = 2 m≥ 3 m = 2 m≥ 3

x1 x3
cycle of Ω1, Ω8,Ω9,Ω10 Ω4, Ω5, Ω6, Ω7, Ω11, Ω13
length 8 m = 1 m = 1

where C5, C6, C7 are the cycles of Lemma 4.1, C13, C14, C15, C18, Ω1, Ω4, Ω5,
Ω6, Ω7, Ω13 are cycles of Lemma 5.1; Ω8 = (x1,r1,r2,r3,r4,r8,x6,x7), Ω9 =
(t3,x5,x6,x7,x1,r1,r5,r6), Ω10 = (x1,r1,r5,r6,r7,r8,x6,x7), Ω11 = (x12,x13,x14,
x3,x4,x5, t3, t2).

Lemma 5.3. The vertices of Im lying in just one 5-cycle are the following:

(a) s5,x3,x5,r1,r2,r6,r7,r8 if m = 1;

(b) s5,x3,a1,r1,r2,r6,r7,r8 if m≥ 2.

Proof. The statement follows from the definition of Im. The following table
shows the 5-cycles going through each vertex considered in the statement:

x5 x3 a1 a1 s5,r8 s5,r8 r1,r2 r6,r7
cycle of C5 C6 C15 C13 C19 C20 C21 C22
length 5 m = 1 m≥ 1 m = 2 m≥ 3 m = 1 m≥ 2 m≥ 1 m≥ 1

where C5, C6 are the cycles of Lemma 4.1, C13, C15 are cycles of Lemma
5.1; C19 = (s5,x1,x7,x6,r8), C20 = (s5,cm−1,d1,b1,r8), C21 = (r1,r2,r3,r4,r5),
C22 = (r3,r4,r5,r6,r7).

By using the above Lemmas we obtain the following proposition:

Proposition 5.4. Let G be any graph from O ∪F ∪I . Then every automor-
phism of G fixes x3.
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Proof. Let α be an automorphism of G. The cycle C6 is the only 5-cycle in G
touching the vertex x3. By Property EP1 if α(x3) = v, the vertex v is a vertex
contained just in one 5-cycle C of G. Thus, v is one of the vertices of Lemmas
5.1, 5.2 and 5.3 and α(C6) = C where C is one of the 5-cycles highlighted in
the proof of Lemmas 5.1, 5.2 and 5.3. We prove that α(x3) ∈ {x1,x3,x5,x6}.
The assumption α(x3) /∈ {x1,x3,x5,x6} yields the following cases:

(a) G ∈ {O2,F2} with α(x3) = a1, then we obtain α(C6) = C15 and α−1(b1)
∈ {x2,x4};

(b) G ∈ {Om,Fm : m ≥ 3}, with α(x3) = a1, then we get α(C6) = C13 and
α−1(b1) ∈ {x2,x4};

(c) G ∈ {Om,Fm : m≥ 2} with α(x3) = b1, then α−1(a1) ∈ {x2,x4};

(d) G ∈ {Om : m ≥ 1} with α(x3) = zi with i = 1 or i = 2 or i = 6 or i = 7,
then we obtain α−1(z j) ∈ {x2,x4} with j = 2 or j = 1 or j = 7 or j = 6,
respectively;

(e) G ∈ {Im : m≥ 1} with α(x3) = s5 or α(x3) = r1 or α(x3) = r2 or α(x3) =
r6 or α(x3) = r7 or α(x3) = r8, then we obtain α−1(r8) ∈ {x2,x4}, or
α−1(r2) ∈ {x2,x4} , or α−1(r1) ∈ {x2,x4} , or α−1(r7) ∈ {x2,x4} , or
α−1(r6) ∈ {x2,x4} , or α−1(s5) ∈ {x2,x4} , respectively;

(f) G = I2 with α(x3) = a1, then we get α(C6) = C15 and α(x9) ∈ {d1,x6};

(g) G ∈ {Im : m ≥ 3} with α(x3) = a1 implies α(C6) = C13 and α(x9) ∈
{d1,b2};

(h) G ∈ {Om,Fm : m ≥ 3} with α(x3) = cm−1, then we obtain α−1(d1) ∈
{x2,x4};

(i) G ∈ {O2,F2} with α(x3) = c1, then we get α(C6) = C18 and α(x9) ∈
{x6,x7}.

We show that each one of these cases yields a contradiction.
Cases (a)–(e): While each of x2 or x4 is contained in precisely two 5-cycles

(the cycles C6, C7 or C5, C6, respectively), the number of 5-cycles touching
their image α(x2),α(x4) is different from 2 (it is namely 1 by Lemmas 5.1, 5.2
and 5.3).

Case (f): Only two 5-cycles, C6 and C7, go through x9 while the three cycles
C5, C8 = (x6,d1,b1,a1,x5) and C9 = (x6,d1,c1,x1,x7) contain the vertex x6 and
the three cycles C8,C9,C20 touch the vertex d1.
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Case (g): Only two 5-cycles, C6 and C7, go through x9 while the three cycles
C13,C14 and C20, go through d1 and the three cycles C13,C14 and (b2,d2,b3,
a3,a2) contain the vertex b2.

Case (h): There do not exist 6-cycles containing d1 while the 6-cycle (x1,x2,
x3,x4,x8,x7) goes through x2 or x4.

Case (i): While x9 is contained in precisely two 5-cycles, (C6 and C7), the
three 5-cycles C5, C15 and C18 go through x6 and the three 5-cycles C5, C7,C18
contain x7.

Therefore, we have proved that α(x3) ∈ {x1,x3,x5,x6}. Hence, Proposition
4.2 implies that α(x3) = x3 or α(x3) = x1. The second case does not occur: if
α ∈ Aut(Im), with m≥ 1, there is a different number of 5-cycles going through
each vertex x3 and x1; if α ∈ Aut(G), with G ∈ {Om,Fm : m ≥ 2}, there is a
different number of 5-cycles containing each vertex x3 and x1; and finally, if
G∈{O1,F1}, there is a different number of 8-cycles passing through each vertex
x3 and x1 (see Lemmas 5.1 and 5.2).

Proposition 5.5. Let G be any graph from O ∪F ∪I with Ḡm as subgraph of
G for an integer m≥ 1. Let α be an automorphism of G, then α fixes Ḡm setwise
and the restriction α to Ḡm is either the involution (x11 x17) (x12 x16)(x13 x15)
or the identity permutation.

Proof. The statement follows from Proposition 5.4 and Corollary 4.5.

Theorem 5.6. Let G be any graph from O ∪F ∪I , then the automorphism
group of G is the trivial group.

Proof. Let α be an automorphism of G with G ∈ O ∪F ∪I . Define V̄ = X if
m= 1 and V̄ =X∪Am∪Bm∪Cm∪Dm if m≥ 2. Every vertex v∈ V̄ is adjacent to
no more than one vertex pv /∈ V̄ . Let us consider the vertices x5,x6,x1 if m = 1,
or the vertices a1,b1,cm−1 if m ≥ 2; Proposition 5.5 and Property EP3 imply
that α fixes the vertices not belonging to V̄ and adjacent to each of the vertices
x5,x6,x1 if m = 1, or vertices a1,b1,cm−1 if m≥ 2. In particular we get

• α(y4) = y4, α(z7) = z7 and α(z1) = z1, if G ∈ O;

• α(t3) = t3, α(r8) = r8 and α(r1) = r1, if G ∈F ;

• α(r1) = r1, α(r8) = r8 and α(s5) = s5, if G ∈I . Moreover, in this case
Property EP3 also implies that α(s4) = s4.

By Proposition 5.5 we have only two cases:
I) The automorphism α acts on Ḡm as the permutation (x11 x17)(x12 x16)
(x13 x15).
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If G ∈ O , then the pair α([x12,y3]) = [α(x12),α(y3)] = [x16,α(y3)] is an
edge and so the vertex α(y3) is adjacent to x16; Proposition 5.5 implies that
α(X) = X ; thus α(y3) = y1, hence α([y3,y4]) = [α(y3),α(y4)] = [y1,y4]. A
contradiction since [y1,y4] is not an edge.

If G∈F , then the pair α([x12, t2]) = [α(x12),α(t2)] = [x16,α(t2)] is an edge
with the vertex α(t2) adjacent to x16. From Proposition 5.5 we obtain α(X)=X ;
hence α(t2) = t1, thus α([t2, t3]) = [α(t2),α(t3)] = [t1, t3]. A contradiction since
[t1, t3] is not an edge.

If G ∈ I , then the pair α([x12,s3]) = [α(x12),α(s3)] = [x16,α(s3)] is an
edge with the vertex α(s3) adjacent to x16. From Proposition 5.5 we get α(X) =
X , thus α(s3) = s1, therefore α([s3,s4]) = [α(s3),α(s4)] = [s1,s4]. A contradic-
tion since [s1,s4] is not an edge.
Therefore, this first case does not occur.
II) The automorphism α acts on Ḡm as the trivial permutation.

Let G ∈ O . By Property EP3 we have α(y3) = y3 (the vertices x12,x11,x13
are fixed by α); Property EP3 implies α(y2) = y2 and α(y1) = y1 (the vertices
y3,y4,x12 and x16,x17,x15 are respectively fixed by α). By Property EP2 we also
have α(z2) = z2 (the vertices z1,y1 are fixed), α(z3) = z3 (the vertices z2,z7 are
fixed), α(z4) = z4 (the vertices z3,y4 are fixed), α(z5) = z5 (the vertices z1,z4 are
fixed) and α(z6) = z6 (the vertices z5,z7 are fixed). Therefore, α is the identity
permutation on G.

Let G ∈F . By Property EP3 we obtain α(t1) = t1 (the vertices x15,x16,x17
are fixed by α), α(t2) = t2 (the vertices x12,x11,x13 are fixed by α), thus α(r3) =
r3 (the vertices x16, t1, t2 are fixed) and α(r6)= r6 (the vertices a1, t3, t2 or x5, t3, t2
if m = 1, are fixed). By Property EP2 we also have α(r2) = r2 (the vertices r1,r3
are fixed), α(r4) = r4 (the vertices r3,r8 are fixed), α(r5) = r5 (the vertices
r4,r6 are fixed) and α(r7) = r7 (the vertices r6,r8 are fixed). Therefore, α is the
identity permutation on G.

Let G ∈ I . By Property EP3 we get α(s3) = s3 (the vertices x12,x11,x13
are fixed by α), hence α(s2) = s2 (the vertices x12,s3,s4 are fixed). By Property
EP2 we obtain α(s1) = s1 (the vertices s2 and x16 are fixed). By Property EP3
we have α(r2) = r2 (the vertices s1,s2,x16 are fixed), α(r4) = r4 (the vertices
s3,s4,s5 are fixed) and α(r6) = r6 (the vertices s1,s2,s3 are fixed). Therefore,
by Property EP2 the vertices r3,r5 and r7 are also fixed. The automorphism α

is the identity permutation on G. The statement follows.

Corollary 5.7. For every possible order greater than 26 there exists an asym-
metric nearly hamiltonian snark of that order.

Proof. The nearly hamiltonian snarks O and F shown in Figure 3 have order
24 while the nearly hamiltonian snark I shown in Figure 4 has order 26. From
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Corollary 2.2 the nearly hamiltonian snarks Om and Fm have order 24+4m while
Im has order 26+4m. The statement follows from Theorem 5.6.
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