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SOLVABILITY OF BOUNDARY VALUE PROBLEMS FOR
NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS

YUJI LIU

Sufficient conditions for the existence of solutions of the periodic and
anti-periodic boundary value problems for nonlinear functional difference
equations are established, respectively.

1. Introduction

In this paper, we study the following boundary value problems for nonlinear
functional difference equations

∆3x(n) = f (n,x(n),x(n+1),x(n+2),x(n+3),
x(n− τ1(n)), . . . ,x(n− τm(n)), n ∈ [0,T ],

x(0) = x(T +1),
∆x(0) = ∆x(T +1),
∆2x(0) = ∆2x(T +1),
x(i) = φ(i), i ∈ [−τ,−1],
x(i) = ψ(i), i ∈ [T +4,T +δ ],

(1)
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and 

∆3x(n) = f (n,x(n),x(n+1),x(n+2),x(n+3),
x(n− τ1(n)), . . . ,x(n− τm(n)), n ∈ [0,T ],

x(0) =−x(T +1),
∆x(0) =−∆x(T +1),
∆2x(0) =−∆2x(T +1),
x(i) = φ(i), i ∈ [−τ,−1],
x(i) = ψ(i), i ∈ [T +4,T +δ ],

(2)

where T ≥ 1, τi : [0,T ]→ Z \ {0,−1,−2,−3,}, i = 1, . . . ,m, [a,b] = {a,a+
1, . . . ,b} for the integers a and b with a≤ b, ∆x(n) = x(n+1)− x(n), ∆ix(n) =
∆(∆xi−1x(n)), f (n,y1,y2,y3,x1, . . . ,xm) is continuous for each n ∈ [0,T ] with

τ =−min
{

min
n∈[0,T ]

{n− τi(n)} : i = 1, . . . ,m
}
,

and

δ = max
{

max
n∈[0,T ]

{n− τi(n)} : i = 1, . . . ,m
}
−T.

Recently there has been a large number of authors paid attention to the ex-
istence solutions of boundary value problems for the differential equations that
arise from various applied problems. Similarly there has been a parallel inter-
est in results for the analogous discrete problems, see the papers [1-27] and the
references therein.

Particular significance in these points lies in the fact that when a BVP is
discretized, strange and interesting changes can occur in the solutions. For ex-
ample, properties such as existence, uniqueness and multiplicity of solutions
may not be shared between the continuous differential equation and its related
discrete difference equation [28, p. 520]. Moreover, when investigating differ-
ence equations, as opposed to differential equations, basic ideas from calculus
are not necessarily available to use, such as the intermediate value theorem, the
mean value theorem and Rolle′s theorem. Thus, new challenges are faced and
innovation is required [29].

In paper [1], the authors studied the anti-periodic boundary value problems
for equations{

x′′′(t)+ f (x′(t))x′′(t)+h(x(t)) = g(t,x(t),x′(t),x′′(t))+ e(t), t ∈ [0,1],
x(i)(0) =−x(i)(1), i = 0,1,2

(3)
under the following assumptions:

i) f is a continuous even function;
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ii) h is a continuous odd function;

iii) g is continuous on [0,1]×R3 satisfying Caratheodory′s conditions.

In [2], [3], the authors studied the existence of solutions of the following
periodic boundary value problems or its special cases for third-order differential
equations{

x′′′(t)+ f (x′(t))x′′(t)+h(x(t)) = g(t,x(t),x′(t),x′′(t))+ e(t), t ∈ [0,1],
x(i)(0) = x(i)(1), i = 0,1,2.

(4)
We note that the discrete analogous of equation (3) is a special case of BVP(1).
The discrete analogous of equation (4) is a special case of BVP(2).

In paper [4], the authors studied the existence of positive solutions of the
boundary value problem of third order differential equation

y′′′(t)+g(t,y(t)) = 0, t ∈ [a,b], ai,1,y(i−1)(a) = ai,2y(i−1)(b), i = 1,2,3 (5)

under the assumptions γi = ai,1−ai,2 > 0 for all i = 1,2,3. We note that BVP(5)
becomes a periodic boundary value problem when γi = 0(i = 1,2,3), BVP(5)
an anti-periodic boundary value problem when ai,1 = −ai,2(i = 1,2,3). The
methods used in [4] can not be applied to these cases. The discrete form of
BVP(5) is as follows

∆x3x(n)+g(n,x(n)) = 0, n ∈ [a,b], ai,1∆xi−1(a) = ai,2∆xi−1(b+1),

which is a spacial case of BVP(1) when γi = 0(i = 1,2, ,3), and BVP(2) when
ai,1 =−ai,2(i = 1,2,3).

Recent studies on the existence of positive solutions of boundary value prob-
lems of third-order difference equations have been made in [30-33] To the au-
thors’s knowledge, there has been few paper concerned with the solvability of
BVP(1) and BVP(2). The purpose of this paper is to establish sufficient condi-
tions for the existence of at least one solution of BVP(1) and BVP(2), respec-
tively. Our methods, based upon the Mawhin′s coincidence degree theory, are
different from those used in [5-26] and those in [1-3]. Our results are different
from those ones obtained in [6,7,9-12,21,23,27].

This paper is organized as follows. In section 2, we give the main results,
and in section 3, examples to illustrate the main results are presented.

2. Main Results

Let X and Y be Banach spaces, L : Dom L⊂ X → Y be a Fredholm operator of
index zero, P : X → X , Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L⊕Ker P, Y = Im L⊕ Im Q.
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It follows that
L|Dom L∩Ker P : Dom L∩Ker P→ Im L

is invertible, we denote the inverse of that map by Kp.
If Ω is an open bounded subset of X , Dom L∩Ω 6= /0, the map N : X → Y

will be called L−compact on Ω if QN(Ω) is bounded and Kp(I−Q)N : Ω→ X
is compact.

Lemma 2.1 (14). . Let L be a Fredholm operator of index zero and let N be
L−compact on Ω. Assume that the following conditions are satisfied:

i) Lx 6= λNx for every (x,λ ) ∈ [(DomL\KerL)∩∂Ω]× (0,1);

ii) Nx /∈ ImL for every x ∈ KerL∩∂Ω;

iii) deg(∧QN
∣∣KerL , Ω∩KerL,0) 6= 0, where ∧ : Y/ImL→ KerL is an iso-

morphism.

Then the equation Lx = Nx has at least one solution in DomL∩Ω.

Lemma 2.2 (14). Let X and Y be Banach spaces. Suppose L : DomL⊂ X → Y
is a Fredholm operator of index zero with KerL = {0}, N : X→Y is L−compact
on any open bounded subset of X. If 0 ∈ Ω ⊂ X is a open bounded subset and
Lx 6= λNx for all x ∈DomL∩∂Ω and λ ∈ [0,1], then there is at least one x ∈Ω

so that Lx = Nx.

Let X = RT+τ+δ+1 be endowed with the norm ||x||X = maxn∈[1,T+τ+δ+1] |x(n)|
for x ∈ X , Y = RT+1 be endowed with the norm ||y||Y = maxn∈[0,T ] |y(n)| for
y ∈ Y . It is easy to see that X and Y are Banach spaces. Choose DomL =

=

x ∈ X :
x(i) = 0, i ∈ [−τ, . . . ,−1],
x(i) ∈ R, i ∈ [0,T +3],
x(i) = 0, i ∈ [T +4, . . . ,T +δ ],

x(0) = x(T +1)
∆x(0) = ∆x(T +1)
∆2x(0) = ∆2x(T +1)


Set

L : DomL∩X → X , Lx(n) = ∆
3x(n), n ∈ [0,T ],

and N : X → Y by

Nx(n) = f (n,x(n)+ x0(n),x(n+1)+ x0(n+1),x(n+2)+ x0(n+2)+

+x0(n+3)+ x(n− τ1(n))+ x0(n− τ1(n)), . . . ,x(n− τm(n))+ x0(n− τm(n)))

n ∈ [0,T ], for all x ∈ X , where

x0(n) =


φ(n), n ∈ [−τ,−1],
0, n ∈ [0,T +3],
ψ(n), n ∈ [T +4,T +δ ].
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It is easy to show that ∆3x0(n) = 0 for n ∈ [0,T ] and that x ∈DomL is a solution
of Lx = Nx implies that x+ x0 is a solution of BVP(1).

It is easy to check the following results.

i) KerL =

x ∈ RT+δ+τ+1 : x(n) =


0, n ∈ [−τ, . . . ,−1],
c, n ∈ [0,T +3], c ∈ R
0, n ∈ [T +4, . . . ,T +δ ],

.

ii) ImL =
{

y ∈ RT+1 : ∑
T
n=0 y(n) = 0

}
.

iii) L is a Fredholm operator of index zero.

iv) There exist projectors P : X → X and Q : Y → Y such that KerL = ImP,
KerQ = ImL. Furthermore, let Ω ⊂ X be an open bounded subset with
Ω∩DomL 6= /0, then N is L−compact on Ω.

The projectors P : X → X and Q : Y → Y , the isomorphism ∧ : KerL→
Y/ImL and the generalized inverse Kp : ImL→ DomL∩ ImP are as follows:

(Px)(n) =


0, n ∈ [−τ,−1],
x(0), n ∈ [0,T +3],
0, n ∈ [T +4,T +δ ],

for x ∈ X ,

(Qy)(n) =
1

T +1

T

∑
n=0

y(n), n ∈ [0,T ], for y ∈ Y,

∧(xc) = (

T+1︷ ︸︸ ︷
c, . . . ,c), for xc = (

τ︷ ︸︸ ︷
0, . . . ,0,

T+4︷ ︸︸ ︷
c, . . . ,c,

δ−3︷ ︸︸ ︷
0, . . . ,0) ∈ KerL,

(Kpy)(n) =



0, n ∈ [−τ,−1],
∑

n−1
s=0 ∑

s−1
j=0 ∑

j−1
k=0 y(k)

− n−1
T+1

(
∑

T
s=0 ∑

s−1
j=0 ∑

j−1
k=0 y(k)

−T+1
2 ∑

T
s=0 ∑

s−1
j=0 y( j)

)
−T

2 ∑
T
s=0 ∑

s−1
j=0 y( j),

n ∈ [0,T +3],

0, n ∈ [T +4,T +δ ],

y ∈ Y.

Suppose the followings:
(B) let

xτi,c,0(n) =


φ(n− τi(n)), n− τi(n) ∈ [−τ,−1],
ψ(n− τi(n)), n− τi(n) ∈ [T +4,T +δ ],
c, n− τi(n) ∈ [0,T +3].
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There exists a constant M > 0 such that

c

[
T

∑
n=0

f (n,c,c,c,c,xτ1,c,0(n), . . . ,xτm,c,0(n))

]
> 0

for all |c|> M or

c

[
T

∑
n=0

f (n,c,c,c,c,xτ1,c,0(n), . . . ,xτm,c,0(n))

]
< 0

for all |c|> M.
(C1) There exist numbers β > 0, θ > 1, nonnegative sequences pi(n) (i =
1,2,3,4), qi(n) (i = 1, . . . ,m), r(n), functions g(n,y1,y2,y3,y4,x1, . . . ,xm), and
h(n,y1,y2,y3,y4,x1, . . . ,xm) such that

f (n,y1,y2,y3,y4,x1, . . . ,xm) =

= g(n,y1,y2,y3,y4,x1, . . . ,xm)+h(n,y1,y2,y3,y4,x1, . . . ,xm)

and
g(n,y1,y2,y3,y4,x1, . . . ,xm)y2 ≤−β |y2|θ+1,

and

|h(n,y1,y2,y3,y4,x1, . . . ,xm)| ≤
4

∑
i=1

pi(n)|yi|θ +
m

∑
s=1

qi(n)|xi|θ + r(n),

for all n ∈ {0, . . . ,T}, (y1,y2,y3,y4,x1, . . . ,xm) ∈ Rm+4.
(C2) There exist numbers β > 0, θ > 1, nonnegative sequences pi(n) (i =
1,2,3,4), qi(n) (i = 1, . . . ,m), r(n), functions g(n,y1,y2,y3,y4,x1, . . . ,xm) and
h(n,y1,y2,y3,y4,x1, . . . ,xm) such that (6) holds and

g(n,y1,y2,y3,y4,x1,x1, . . . ,xm)y3 ≥ β |y3|θ+1,

and

|h(n,y1,y2,y3,y4,x1, . . . ,xm)| ≤
4

∑
I=1

pi(n)|yi|θ +
m

∑
s=1

qi(n)|xi|θ + r(n),

for all n ∈ {0, . . . ,T}, (y1,y2,y3,y4,x1,x1, . . . ,xm) ∈ Rm+4.

Theorem 2.3. Suppose that (B) and (C1) hold. Then BVP(1) has at least one
solution if

4

∑
i=1
||pi||+(T +1)

θ

θ+1

m

∑
i=1
||qi||< β . (6)
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Proof. To apply Lemma 2.1, we will construct an open bounded subset Ω of X
such that (i), (ii) and (iii) in Lemma 2.1 hold. So the proof is divided into four
steps.

Step 1. Let

Ω1 = {x : Lx = λNx, (x,λ ) ∈ [(DomL\KerL)]× (0,1)},

we prove that Ω1 is bounded. For x ∈Ω1, we have Lx = λNx, λ ∈ (0,1), so

∆
3y(n) = λ f (n,y(n),y(n+1),y(n+2),y(n+3),y(n−τ1(n)), . . . ,y(n−τm(n))),

(7)
where y(n) = x(n)+ x0(n). We get that [∆3y(n)]y(n+1) =

= λ f (n,y(n),y(n+1),y(n+2),y(n+3),y(n−τ1(n)), . . . ,y(n−τm(n))y(n+1).

Since x(0) = x(T +1),∆x(0) = ∆x(T +1),∆2x(0) = ∆2x(T +1), we get y(0) =
y(T +1),∆y(0) = ∆y(T +1),∆2y(0) = ∆2y(T +1). Then

T

∑
n=0

[∆3y(n)]y(n+1) =
T

∑
n=0

[∆2y(n+1)−∆
2y(n)][y(n+2)−∆y(n+1)]

= −1
2

[
−

T

∑
n=0

(∆y(n+2)−∆y(n+1))2− [∆y(1)]2 +[∆y(T +2)]2
]

=
1
2

T

∑
n=0

(∆y(n+2)−∆y(n+1))2 ≥ 0.

So

T

∑
n=0

f (n,y(n),y(n+1),y(n+2),y(n+3),y(n− τ1(n)), . . .

. . . ,y(n− τm(n)))y(n+1)≥ 0.



60 YUJI LIU

It follows from (C1) that

β

T

∑
n=0
|y(n+1)|θ+1 ≤

≤ −
T

∑
n=0

g(n,y(n),y(n+1),y(n+2),y(n+3),y(n− τ1(n)), . . .

. . . ,y(n− τm(n))y(n+1)≤

≤
T

∑
n=0

h(n,y(n),y(n+1),y(n+2),y(n+3),y(n− τ1(n)), . . .

. . . ,y(n− τm(n))y(n+1)≤

≤
T

∑
n=0
|h(n,y(n),y(n+1),y(n+2),y(n+3),y(n− τ1(n)), . . .

. . . ,y(n− τm(n))| |y(n+1)| ≤

≤
T

∑
n=0

4

∑
i=1

pi(n)|y(n+1)||y(n+ i−1)|θ +

+
m

∑
i=1

T

∑
n=0

qi(n)|y(n− τi(n))|θ |y(n+1)|+
T

∑
n=0

r(n)|y(n+1)| ≤

≤
4

∑
i=1
||pi||

T

∑
n=0
|y(n+1)||y(n+ i−1)|θ +

+
m

∑
i=1
||qi||

T

∑
n=0
|y(n− τi(n))|θ |y(n+1)|+ ||r||

T

∑
n=0
|y(n+1)|.

Hence by Holder’s inequality, we get

β

T

∑
n=0
|y(n+1)|θ+1 ≤

[
4

∑
i=1
||pi||

]
T

∑
n=0
|y(n+1)|θ+1

+

[
m

∑
i=1
||qi||

(
τ

−1

∑
u+1=−τ

|φ(u+1)|θ+1 + |δ −3|
T+δ

∑
u+1=T+4

|ψ(u+1)|θ+1

+(T +1)
T

∑
u=0
|y(u+1)|θ+1

) θ

θ+1
[ T

∑
n=0
|y(n+1)|θ+1

] 1
θ+1

+||r||(T +1)
θ

θ+1

[
T

∑
n=0
|y(n+1)|θ+1

] 1
θ+1

.

Since limx→0+
(1+x)y−1
(1+y)x = y

1+y < 1 for y > 0, then there is σ > 0 such that (1+
x)y ≤ 1+(1+ y)x for 0≤ x≤ σ . We consider two cases.
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Case 1.
T

∑
n=0
|y(n+1)|θ+1 ≤

τ ∑
−1
u+1=−τ

|φ(u+1)|θ+1 + |δ −3|∑T+δ

u+1=T+4 |ψ(u+1)|θ+1

(T +1)σ
=: Q.

In this case, we get

β

T

∑
n=0
|y(n+1)|θ+1 ≤

[
4

∑
i=1
||pi||

]
T

∑
n=0
|y(n+1)|θ+1

+

[
m

∑
i=1
||qi||((T +1)σQ+(T +1)Q)

θ

θ+1

][
T

∑
n=0
|y(n+1)|θ+1

] 1
θ+1

+||r||(T +1)
θ

θ+1

[
T

∑
n=0
|y(n+1)|θ+1

] 1
θ+1

.

It follows that[
β −

4

∑
i=1
||pi||

]
T

∑
n=0
|y(n+1)|θ+1

≤

[
m

∑
i=1
||qi||(T +1)

θ

θ+1 [(σ +1)Q]
θ

θ+1

][
T

∑
n=0
|y(n+1)|θ+1

] 1
θ+1

+||r||(T +1)
θ

θ+1

[
T

∑
n=0
|y(n+1)|θ+1

] 1
θ+1

.

From (6), there is M1 > 0 such that ∑
T
u=0 |y(u+1)|θ+1 ≤M1.

Case 2.
T

∑
n=0
|y(n+1)|θ+1 >

>
τ ∑
−1
u+1=−τ

|φ(u+1)|θ+1 + |δ −3|∑T+δ

u+1=T+4 |ψ(u+1)|θ+1

(T +1)σ
=: Q.

In this case, we get

0 <
τ ∑
−1
u+1=−τ

|φ(u+1)|θ+1 + |δ −3|∑T+δ

u+1=T+4 |ψ(u+1)|θ+1

(2T +2)∑
T
u=0 |y(u+1)|θ+1

< σ .
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Thus

β

T

∑
n=0
|y(n+1)|θ+1 ≤

≤

[
4

∑
i=1
||pi||

]
T

∑
n=0
|y(n+1)|θ+1 +

[
(T +1)

θ

θ+1

m

∑
i=1
||qi||×

(
1+
(

1+
θ

θ +1

)
×

τ ∑
−1
u+1=−τ

|φ(u+1)|θ+1 + |δ −3|∑T+δ

u+1=T+4 |ψ(u+1)|θ+1

(T +1)∑
T
u=0 |y(u+1)|θ+1

)]
×

×
T

∑
n=0
|y(n+1)|θ+1 + ||r||(T +1)

θ

θ+1

[
T

∑
n=0
|y(n+1)|θ+1

] 1
θ+1

=

=

[
4

∑
i=1
||pi||

]
T

∑
n=0
|y(n+1)|θ+1 +(T +1)

θ

θ+1

m

∑
i=1
||qi||

T

∑
n=0
|y(n+1)|θ+1 +

+(T +1)
θ

θ+1

m

∑
i=1
||qi||

(
1+

θ

θ +1

)
σQ+ ||r||(T +1)

θ

θ+1

[
T

∑
n=0
|y(n+1)|θ+1

] 1
θ+1

.

We get [
β −

4

∑
i=1
||pi||− (T +1)

θ

θ+1

m

∑
i=1
||qi||

]
T

∑
u=0
|y(u+1)|θ+1

≤ (T +1)
θ

θ+1

m

∑
i=1
||qi||

(
1+

θ

θ +1

)
σQ+

+||r||(T +1)
θ

θ+1

[
T

∑
n=0
|y(n+1)|θ+1

] 1
θ+1

.

It follows from (6) that there is M1 > 0 such that ∑
T
u=0 |y(u+1)|θ+1 ≤M1.

Hence |y(n+ 1)| ≤M1/(θ+1)
1 for all n ∈ {0, . . . ,T} in each cases. Thus we

get

|x(n+1)| ≤ |y(n+1)|+ |x0(n+1)| ≤M1/(θ+1)
1 + ||x0||X , n ∈ [0, . . . ,T ].

Hence ||x|| ≤M1/(θ+1)
1 + ||x0||. So Ω1 is bounded. This completes the Step 1.

Step 2. Prove that the set Ω2 = {x ∈ KerL : Nx ∈ ImL} is bounded.

For x ∈ KerL, we have x(n) = (

τ︷ ︸︸ ︷
0, . . . ,0,

T+4︷ ︸︸ ︷
c, . . . ,c,

δ−3︷ ︸︸ ︷
0, . . . ,0). Thus, for n =
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0, . . . ,T , we have

Nx(n) = f (n,x(n)+ x0(n),x(n+1)+ x0(n+1),x(n+2)+ x0(n+2),

. . . ,x(n− τ1(n))+ x0(n− τ1(n)), . . . ,x(n− τm(n))+ x0(n− τm(n)))

= f (n,c,c,c,c,xτ1,c,0, . . . ,xτm,c,0),

where

xτi,c,0 =


φ(n− τi(n)), n− τi(n) ∈ [−τ,−1],
ψ(n− τi(n)), n− τi(n) ∈ [T +4,T +δ ],
c, n− τi(n) ∈ [0,T +3].

Nx ∈ ImL implies that

T−1

∑
n=0

f (n,c,c,c,c,xτ1,c,0, . . . ,xτm,c,0) = 0.

It follows from condition (B) that |c| ≤M. Thus Ω2 is bounded.

Step 3. Prove the set Ω3 = {x∈KerL : ±λ ∧x+(1−λ )QNx= 0, λ ∈ [0,1]}
is bounded.

If the first inequality in (B) holds, let

Ω3 = {x ∈ KerL : λ ∧ x+(1−λ )QNx = 0, λ ∈ [0,1]}.

We will prove that Ω3 is bounded. For x(n) = (

τ︷ ︸︸ ︷
0, . . . ,0,

T+4︷ ︸︸ ︷
c, . . . ,c,

δ−3︷ ︸︸ ︷
0, . . . ,0) ∈

Ω3, and λ ∈ [0,1], we have

−(1−λ )
T

∑
n=0

f (n,c,c,c,c,xτ1,c,0, . . . ,xτm,c,0) = λcT.

If λ = 1, then c = 0. If λ 6= 1 and |c|> M, then

0≥−(1−λ )c
T

∑
n=0

f (n,c,c,c,c,xτ1,c,0, . . . ,xτm,c,0) = λc2T > 0,

from (B), a contradiction. So |c| ≤M.
If the second inequality in (B) holds, let

Ω3 = {x ∈ KerL : −λ ∧ x+(1−λ )QNx = 0, λ ∈ [0,1]},

Similarly, we can get a contradiction. So |c| ≤M. Hence Ω3 is bounded.
Step 4. Obtain open bounded set Ω such that (i), (ii) and (iii) of Lemma 2.1
hold.
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Set Ω be a open bounded subset of X such that Ω ⊃ ∪3
i=1Ωi. We know

that L is a Fredholm operator of index zero and N is L−compact on Ω. By
the definition of Ω, we have Ω ⊃ Ω1 and Ω ⊃ Ω2, thus Lx 6= λNx for x ∈
(DomL/KerL)∩∂Ω and λ ∈ (0,1); Nx /∈ ImL for x ∈ KerL∩∂Ω.

In fact, let H(x,λ ) = ±λ ∧ x+ (1− λ )QNx. According the definition of
Ω, we know Ω ⊃ Ω3, thus H(x,λ ) 6= 0 for x ∈ ∂Ω∩KerL, thus by homotopy
property of degree,

deg(QN|KerL,Ω∩KerL,0) = deg(H(·,0),Ω∩KerL,0)

= deg(H(·,1),Ω∩KerL,0) = deg(±∧,Ω∩KerL,0) 6= 0.

Thus by Lemma 2.1, Ly = Ny has at least one solution in DomL∩Ω, which is a
solution of BVP(1). The proof is completed.

Theorem 2.4. Suppose that (B) and (C2) hold. Then BVP(1) has at least one
solution if (7) holds.

Proof. The proof of this theorem is divided into four steps.
Step 1. Let

Ω1 = {x : Lx = λNx, (x,λ ) ∈ [(DomL\KerL)]× (0,1)}.

For x ∈Ω1, we have Lx = λNx, λ ∈ (0,1), so

∆
3y(n) = λ f (n,y(n),y(n+1),y(n+2),y(n+3),y(n−τ1(n)), . . . ,y(n−τm(n))),

(8)
where y(n) = x(n)+ x0(n). Then

[∆2y(n)]y(n+2) =

= λ f (n,y(n),y(n+1),y(n+2),y(n+3),y(n−τ1(n)), . . . ,y(n−τm(n))y(n+2).
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Since y(0) =−y(T +1),∆y(0) =−∆y(T +1),∆2y(0) =−∆2y(T +1), we get

T

∑
n=0

[∆3y(n)]y(n+2) =
T

∑
n=0

[∆2y(n+1)−∆
2y(n)][y(n+3)−∆y(n+2)]

=
T

∑
n=0

[(∆2y(n+1))y(n+3)− (∆2y(n))y(n+2)−∆
2y(n+1)∆y(n+2)]

= (∆2y(T +1))y(T +3)− (∆2y(0))y(2)−
T

∑
n=0

∆
2y(n+1)∆y(n+2)

= −
T

∑
n=0

∆
2y(n+1)∆y(n+2)

= −
T

∑
n=0

(
(∆y(n+2))2− (∆y(n+1))(∆y(n+2))

)
= −1

2

[
T

∑
n=0

(∆y(n+2)−∆y(n+1))2− [∆y(1)]2 +[∆y(T +2)]2
]

= −1
2

T

∑
n=0

(∆y(n+2)−∆y(n+1))2

≤ 0.

So, we get 0≥

T−1

∑
n=0

f (n,y(n),y(n+1),y(n+2),y(n+3),y(n−τ1(n)), . . . ,y(n−τm(n))y(n+2).

The proof of the remainder steps is just similar to those of the proof of Theorem
2.3 and is omitted.

For BVP(2), choose DomL =x ∈ X :
x(i) = 0, i ∈ [−τ, . . . ,−1],
x(i) ∈ R, i ∈ [0,T +3],
x(i) = 0, i ∈ [T +4, . . . ,T +δ ],

x(0) =−x(T +1)
∆x(0) =−∆x(T +1)
∆2x(0) =−∆2x(T +1)

 .

Set
L : DomL∩X → X , Lx(n) = ∆

3x(n), n ∈ [0,T ],

and N : X → Y by

Nx(n) = f (n,x(n)+ x0(n),x(n+1)+ x0(n+1),x(n+2)+ x0(n+2),

x(n+3)+ x0(n+3),x(n− τ1(n))+ x0(n− τ1(n)), . . .

. . . ,x(n− τm(n))+ x0(n− τm(n)))
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n ∈ [0,T ], for all x ∈ X , where

x0(n) =


φ(n), n ∈ [−τ,−1],
0, n ∈ [0,T +3],
ψ(n), n ∈ [T +4,T +δ ].

It is easy to show that ∆3x0(n) = 0 for n ∈ [0,T ] and that x ∈DomL is a solution
of Lx = Nx implies that x+ x0 is a solution of BVP(2) and

i) KerL = {(0, . . . ,0) ∈ X}.

ii) L is a Fredholm operator of index zero and N is L−compact on Ω with Ω

being an open bounded nonempty subset of X .

Theorem 2.5. Suppose that (C1) holds. Then BVP(2) has at least one solution
if (6) holds.

Proof. Let Ω1 = {x : Lx = λNx, (x,λ ) ∈ (DomL)× (0,1)}. For x ∈ Ω1, we
have Lx = λNx, λ ∈ (0,1), so

∆
3y(n) = λ f (n,y(n),y(n+1),y(n+2),y(n+3),y(n−τ1(n)), . . . ,y(n−τm(n))),

(9)
where y(n) = x(n)+ x0(n). Then [∆3y(n)]y(n+1) =

= λ f (n,y(n),y(n+1),y(n+2),y(n+3),y(n−τ1(n)), . . . ,y(n−τm(n))y(n+1).

As in the proof of Theorem 2.3, we get 0≤

T−1

∑
n=0

f (n,y(n),y(n+1),y(n+2),y(n+3),y(n−τ1(n)), . . . ,y(n−τm(n))y(n+1).

Similar to that of proof of Step 1 in the proof of Theorem 2.3, we can prove that
Ω1 is bounded.

Let Ω⊃Ω1 be an open bounded subset of X , it is easy to see that Lx 6= λNx
for all x ∈ DomL∩∂Ω and λ ∈ [0,1].

Thus by Lemma 2.2, Lx = Nx has at least one solution in DomL∩Ω, so
x+ x0 is a solution of BVP(2). The proof is completed.

Theorem 2.6. Suppose that (C2) holds. Then BVP(2) has at least one solution
if (6) holds.

Proof. Let Ω1 = {x : Lx = λNx, (x,λ ) ∈ (DomL)× (0,1)}. For x ∈ Ω1, we
have Lx = λNx, λ ∈ (0,1), so

∆
3y(n) = λ f (n,y(n),y(n+1),y(n− τ1(n)), . . . ,y(n− τm(n))), (10)
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where y(n) = x(n)+ x0(n). Then

[∆3y(n)]y(n+2) = λ f (n,y(n),y(n+1),y(n+2),y(n+3),y(n− τ1(n)), . . .

. . . ,y(n− τm(n))y(n+2).

As in the proof of Theorem 2.4, we get 0≥
T−1

∑
n=0

f (n,y(n),y(n+1),y(n+2),y(n+3),y(n−τ1(n)), . . . ,y(n−τm(n))y(n+2).

The remainder of the proof is just similar to that of the step 1 of the proof of
Theorem 2.3, we can get that Ω1 is bounded.

Let Ω⊃Ω1 be an open bounded subset of X , it is easy to see that Lx 6= λNx
for all x ∈ DomL∩∂Ω and λ ∈ [0,1].

Thus by Lemma 2.2, Lx = Nx has at least one solution in DomL∩Ω, so
x+ x0 is a solution of BVP(2). The proof is completed.

3. Examples

In this section, we present some examples to illustrate the main results in section
2.

Example 3.1. Consider the following problem

∆3x(n) = p1(n)[x(n)]2k+1 + p2(n)[x(n+1)]2k+1 +β [x(n+2)]2k+1

+p4(n)[x(n+3)]2k+1 +∑
m
i=1 qi(n+1)[x(n−T −3)]2k+1

+∑
m
i=1 ri(n+1)[x(n+T +4)]2k+1 + r(n),

x(0) = x(T +1),
∆x(0) = ∆x(T +1),
∆2x(0) = ∆2x(T +1),
x(i) = φ(i), i ∈ [−(T +3),−1],
x(i) = ψ(i), i ∈ [T +4,2T +4],

(11)

where k≥ 0 an integer, β > 0, p1(n), p2(n), p4(n),qi(n)(i= 1, . . . ,m),r(n),τi(n)
are sequences. Corresponding to BVP(1), we find

f (n,y1,y2,y3,x1, . . . ,xm) = p1(n)y2k+1
1 + p2(n)y2k+1

2 +βy2k+1
3 +

+p4(n)y2k+1
4 +

m

∑
i=1

qi(n)x2k+1
i +

2m

∑
i=m+1

ri−m(n)x2k+1
i + r(n),

g(n,y1,y2,y3,x1, . . . ,xm) = βy2k+1
3 ,

h(n,y1,y2,y3,x1, . . . ,xm) = p1(n)y2k+1
1 + p2(n)y2k+1

2 + p4(n)y2k+1
4 +

+
m

∑
i=1

pi(n)x2k+1
i +

2m

∑
i=m+1

ri−m(n)x2k+1
i + r(n).
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It follows, for n ∈ [0,T ], that

c

[
T

∑
n=0

f (n,c,c,c,c,xτ1,c,0(n), . . . ,xτm,c,0(n))

]
=

= c

[
c2k+1

T

∑
n=0

(p1(n)+ p2(n)+β + p4(n))+
T

∑
n=0

(
m

∑
i=1

pi(n)φ(n−T −3)

T

∑
n=0

2m

∑
i=m+1

ri−m(n)ψ(n+T +4)+ r(n)

)]
=

= c2k+2

[
T

∑
n=0

(p1(n)+ p2(n)+ p4(n))+(T +1)β

]
+

+c

[
T

∑
n=0

(
m

∑
i=1

pi(n)φ(n−T −3)
T

∑
n=0

2m

∑
i=m+1

ri−m(n)ψ(n+T +4)+ r(n)

)]
.

It is easy to see from Theorem L2 that BVP(11) has at least one solution for
every r(n) if

||p1||Y + ||p2||Y + ||p4||Y +(2T +2)
2k+1
2k+2

m

∑
i=1
||qi||Y +(2T +2)

2k+1
2k+2

m

∑
i=1
||ri||Y < β

and either
T

∑
n=0

(p1(n)+ p2(n)+ p4(n))>−(T +1)β

or
T

∑
n=0

(p1(n)+ p2(n)+ p4(n))<−(T +1)β .

Example 3.2. Consider the following problem

∆x(n) = p1(n)[x(n)]2k+1 +β [x(n+1)]2k+1 + p3(n)[x(n+2)]2k+1

+p4(n)[x(n+3)]2k+1 +∑
m
i=1 pi(n+1)[x(n− τi(n))]2k+1 + r(n),

x(0) =−x(T +1),
∆x(0) =−∆x(T +1),
∆2x(0) =−∆2x(T +1),
x(i) = φ(i), i ∈ [−τ,−1],
x(i) = ψ(i), i ∈ [T +2,δ ],

(12)

where k≥ 0 an integer, β < 0, p1(n), p3(n), p4(n),qi(n)(i= 1, . . . ,m),r(n),τi(n)
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are sequences. Corresponding to BVP(2), we find

f (n,y1,y2,y3,x1, . . . ,xm) = p1(n)y2k+1
1 +βy2k+1

2 + p3(n)y2k+1
3 +

+p4(n)y2k+1
4 +

m

∑
i=1

pi(n)x2m+1
i + r(n),

g(n,y1,y2,y3,x1, . . . ,xm) = βy2k+1
3 ,

h(n,y1,y2,y3,x1, . . . ,xm) = p1(n)y2k+1
1 + p3(n)y2k+1

3 + p4(n)y2k+1
4 +

+
m

∑
i=1

pi(n)x2m+1
i + r(n).

It is easy to see from Theorem L3 that BVP(12) has at least one solution for
every r(n) if

||p1||Y + ||p3||Y + ||p4||Y +(2T +2)
2k+1
2k+2

m

∑
i=1
||qi||Y <−β .
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