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MONOTONE SOLUTIONS FOR NONCONVEX FUNCTIONAL
DIFFERENTIAL INCLUSIONS OF SECOND ORDER WITH

CARATHEODORY PERTURBATION

A. G. IBRAHIM - F. A. ALADSANI

We give sufficient conditions to assure the existence of a monotone
solution for a functional differential inclusions of second order with Cara-
theodory perturbation. No convexity condition is involved on the values
of the right hand side in the construction. This work generalizes some a
recent papers, for example [1,13,15].

1. Introduction

Let K be a closed subset of Rn, Ω an open subset of Rn and P a lower semicon-
tinuous set-valued map from K to the family of all nonempty subsets of K, with
closed graph and satisfies the following two conditions

(i) ∀x ∈ K,x ∈ P(x).
(ii) ∀x,y ∈ K,y ∈ P(x)⇒ P(y)⊆ P(x).

Under these conditions, a preorder (reflexive and transitive) relation on K is
defined as

x� y⇔ y ∈ P(x).
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Let σ > 0 and C([−σ ,0],Rn) be the space of continuous functions from
[−σ ,0] to Rn with the uniform norm

||x||σ = sup{||x(t) || : t ∈ [−σ ,0]}.

For each t ∈ [0,T ]; T > 0, we define the operator τ(t) from C([−σ ,T ],Rn) to
C([−σ ,0],Rn) as

(τ(t)x)(s) = x(t + s), for all s ∈ [−σ ,0].

Here τ (t)x represents the history of the state from the time t−σ to the present
time t.

Let K0 = {ϕ ∈ C([−σ ,T ],Rn) : ϕ(0) ∈ K} and F be a set-valued map
defined from K0×Ω to the family of nonempty compact subsets (not necessarily
convex) in Rn and f be a Caratheodory function from R×K×Ω to Rn. Let
(ϕ0,y0) be a given element in K0×Ω, we consider the second order functional
differential inclusion with perturbation

(Q)


x′′(t) ∈ F(τ(t)x,x′(t))+ f (t,x(t),x′(t)) a.e. on [0,T ],
x(t) = ϕ0(t) ,∀t ∈ [−σ ,0],
x′(0) = y0,
x(t) ∈ P(x(t))⊆ K, ∀t ∈ [0,T ],
x(t)� x(s), whenever 0≤ t ≤ s≤ T .

In this paper, we prove under reasonable conditions that there is a function
x : [−σ ,T ]→ Rn such that

(1) the function x is absolutely continuous on [0,T ] with absolutely continu-
ous derivative.

(2) τ(t)x ∈ K0, for all t ∈ [0,T ].

(3) x′(t) ∈Ω, a.e on [0,T ].

(4) the functions x,x′,x′′ satisfy (Q).

In order to explain the mathematical motivation to this study we refer to, Ibrahim
and AL-Adsani [13] proved the existence of monotone solution for (Q) without
perturbation, (that is f=0).

Further, Amine et al [1] proved the existence of a local solutions, not nec-
essarily monotone, for (Q) in the particular case P(x) = K, for all x ∈ K and
without delay. Thus, the result, we are going to prove, generalizes the results of
[1] and [13].

We mention, among others works, [9,11,12,13,15,20] for the proof of exis-
tence of monotone solutions for differential inclusions or functional differential
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inclusions and the works [3,4,7,8,10,14,16,17,18,19,21] for solutions not nec-
essarily monotone. Note that the case where the solutions are not necessarily
monotone has been widely investigated compared with that of monotone solu-
tions which has been rarely investigated.

The present paper is organized as follows: In section 2, some definitions and
facts to be used later introduced. In section 3, the main result is proved.

2. Preliminaries and notations

Let Rn be the n-dimensional Euclidean space with norm ||.|| and the scalar prod-
uct < ·, · >. For x ∈ Rn and r > 0, let B(x,r) = {y ∈ Rn : ||y− x|| < r} denote
the open ball centered at x of radius r and B(x,r) be its closure.

For σ > 0 and ϕ ∈ C([−σ ,0],Rn), let Bσ (ϕ,r) = {ψ ∈ C([−σ ,0],Rn) :
||ψ −ϕ||σ < r} and Bσ (ϕ,r) = {ψ ∈ C([−σ ,0],Rn) : ||ψ −ϕ||σ ≤ r}. We
also, denote by d (x,A) = inf{||x− y|| : y ∈ A} the distance from x ∈ Rn to a
closed subset A of Rn. We denote also by ||.||2to the norm L2(C[−σ ,0],Rn)).

A function V : Rn → R∪{∞} is said to be proper if its effective domain
D(V ) = {x ∈ Rn : V (x) < ∞} is nonempty. The subdifferential of a proper
convex lower semicontinuous function V : Rn→ R at a point x ∈ Rn is defined
(in the sense of convex analysis) by

∂V (x) = {ξ ∈ Rn : V (y)−V (x)≥< ξ ,y− x >, ∀y ∈ Rn}.

The second-order contingent cone of a nonempty closed subset C ⊂ Rn and
(x,y) ∈C×Rn is defined by

T 2
C (x,y) = {z ∈ Rn : lim

t→0+
inf

d(x+ ty+ t2

2 z,C)

t2 = 0}.

For the properties of the second-order contingent see [3,7,15].
Let M be a metric space, a multifunction F : M→ 2R

n
is said to be upper

semicontinuous at a point y ∈M if for every ε > 0 there exists δ > 0 such that

F(z)⊂ F(y)+B(0,ε),

for all z ∈ B(y,δ ). For more informations about the continuity properties for
multifunction we refer to [2,6].

3. Main result

We start by the following lemma which plays an important rule in the proof of
our main result.
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Lemma 3.1. Let K be a nonempty closed subset of Rn, Ω a nonempty open sub-
set of Rn, P a set-valued map from K to the family of nonempty closed subsets
of K and K0 = {ϕ ∈C([−σ ,0],Rn),ϕ (0) ∈ K}. Let F be an upper semicontin-
uous set-valued map from K0×Ω to the family of nonempty compact subsets of
Rn. Let f be a function from R×K× Ω into Rn. Assume also the following
conditions:

(H1) For all x ∈ K , x ∈ P(x).

(H2) There exists a proper convex lower semicontinuous function V : Rn→ R
such that F(ϕ,y)⊆ ∂V (y), for every (ϕ,y) ∈ K0×Ω.

(H3) For all (t,ϕ,y) ∈ I×K0×Ω, there exists z ∈ F(ϕ,y) such that

lim
h→0+

inf
1
h2 d(ϕ(0)+hy+

h2

2
z+

+
∫ t+h

t
(t +h− s) f (s,ϕ(0),y)ds,P(ϕ(0))) = 0.

(H4) f : R×K× Ω→ Rn is a Caratheodory function, (i.e. for each (x,y) ∈
Ω, t → f (t,x,y) is measurable and for all t ∈ R, (x,y) → f (t,x,y) is
continuous) and there exists m ∈ L2(R) such that || f (t,x,y)|| ≤ m(t) for
all (t,x,y) ∈ R×K×Ω.

Let (ϕ0,y0) be a fixed element in K0×Ω. Then there are two positive real
numbers r and T such that for each positive integer m there are:

(1) A positive integer νm.

(2) A set of points
Pm = {tm

0 = 0, tm
1 , ..., t

m
νm
},

with
tm
0 < tm

1 < ... < tm
νm−1
≤ T < tm

νm
.

(3) Three sets of elements in Rn

Xm = {xm
p : p = 0,1, ...,νm−1},

Ym = {ym
p : p = 0,1, ...,νm−1},

and
Zm = {zm

p : p = 0,1, ...,νm−1},

with xm
0 = ϕ0 (0) and ym

0 = y0.
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(4) A continuous function xm : [−σ ,T ]→ Rn with xm (t) = ϕ0 (t), for all t ∈
[−σ ,0] and such that for each p = 0,1, ...,νm−1, the following properties
are satisfied:

(i) hm
p+1 = tm

p+1− tm
p < 1

m .

(ii) zm
p = um

p +wm
p where um

p ∈ F(τ(tm
p )xm,ym

p )and wm
p ∈ 1

m B(0,1).

(iii) xm(t) = xm
p +(t− tm

p )y
m
p +

1
2(t− tm

p )
2zm

p +
∫ t

tm
p
(t− s) f (s,xm

p ,y
m
p )ds ,

∀t ∈ [tm
p , t

m
p+1].

(iv) xm
p+1 = xm

p +hm
p+1ym

p +
1
2(h

m
p+1)

2 zm
p+

+
∫ tm

p +hm
p+1

tm
p

(tm
p +hm

p+1− s) f (s,xm
p ,y

m
p )ds.

(v) xm
p+1 ∈ P(xm

p )∩B(ϕ0(0),r)⊆ K and
ym

p+1 = ym
p +hm

p+1zm
p ∈ B(y0,r)⊆Ω.

(vi) τ(tm
p+1)xm ∈ Bσ (ϕ0,r)∩K0 .

Proof. We follow the techniques developed in [13,18]. From [6, Prop. I.26],
for each y ∈Rn, the subset ∂V (y) is closed, convex and bounded. Moreover, by
[2, Th. 0.7.2] the multifunction y→ ∂V (y) is upper semicontinuous. So, by [2,
Prop. 1.1.3] there are two positive real numbers r and M such that

sup{||z|| : z ∈ ∂V (y)} ≤M },

for all y ∈ B(y0,r) . Using condition (H2), we get

sup{||z|| : z ∈ F(ψ,y)} ≤M , (1)

for all (ψ,y)∈ (K0∩Bσ (ϕ0,r))×B(y0,r). Since Ω is open we can choose r such
that B(y0,r) ⊆ Ω. It is obvious that the closedness of K implies the closedness
of K0 in C([−σ ,0],Rn). From the continuity of ϕ0 on [−σ ,0] there is µ > 0
such that for all t,s ∈ [−σ ,0], we have

|t− s|< µ =⇒ ||ϕ0(t)−ϕ0(s)||<
r
8

. (2)

Let r and M be the positive real numbers defined above and choose T1 > 0 such
that ∫ T1

0
(m(s)+M+1)ds <

r
4

.

Set

T2 = min
{

µ,
r

8(M+1)
,

r
8(||y0||+1)

,

√
r

8(M+1)

}
.
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Choose T such that
T ∈ ]0,min{T1,T2}[ . (3)

Thus the numbers r and T are well defined. Now let m be a fixed positive
integer. We put tm

0 = 0, xm
0 = ϕ0 (0) and ym

0 = y0. The sets Pm, Xm, Ym and Zm

will be defined by induction. We first define xm
1 , tm

1 , ym
1 , zm

0 and xm on [0, tm
1 ] such

that the properties (i)-(vi) are satisfied for p = 0. Using condition (H3), there is
um

0 ∈ F(ϕ0,y0) such that

lim
h→0+

inf
1
h2 d(ϕ0(0)+hym

0 +
h2

2
um

0 +

+
∫ 0+h

0
(tm

0 +h−s) f (s,ϕ0(0),ym
0 )ds,P(ϕ0(0))) = 0.

So, there exists a positive number hm
1 such that hm

1 ≤min{ 1
m ,T} and

d(ϕ0(0)+hm
1 ym

0 +
(hm

1 )
2

2
um

0 +

+
∫ hm

1

0
(tm

0 +h−s) f (s,ϕ0(0),ym
0 )ds,P(ϕ0(0)))≤

(hm
1 )

2

4m
.

Since P(ϕ0(0)) is closed, there is xm
1 ∈ P(ϕ0(0)) with

||ϕ0(0)+hm
1 ym

0 +
(hm

1 )
2

2
um

0 +
∫ hm

1

0
(tm

0 +h− s) f (s,ϕ0(0),ym
0 )ds− xm

1 || ≤
(hm

1 )
2

4m
.

Consequently, there is wm
0 ∈ Rn such that ||wm

0 || ≤
1

2m and

xm
1 = ϕ0(0)+hm

1 ym
0 +

(hm
1 )

2

2
um

0 +
(hm

1 )
2

2
wm

0 +
∫ hm

1

0
(tm

0 +h− s) f (s,ϕ0(0),ym
0 )ds.

Now we define zm
0 = um

0 +wm
0 , then zm

0 ∈ F(ϕ0,ym
0 )+

1
2m B(0,1)and

xm
1 = ϕ0(0)+hm

1 ym
0 +

(hm
1 )

2

2
zm

0 +
∫ hm

1

0
(tm

0 +h− s) f (s,ϕ0(0),ym
0 )ds.

We put

ym
1 = ym

0 +hm
1 zm

0 +
∫ hm

1

0
f (s,ϕ0(0),ym

0 )ds.

and tm
1 = tm

0 +hm
1 and for t ∈ [tm

0 , t
m
1 ], we define

xm(t) = ϕ0(0)+(t− tm
0 )y

m
0 +

(t− tm
0 )

2

2
zm

0 +
∫ t

tm
0

(t− s) f (s,ϕ0(0),ym
0 )ds.
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Thus, the properties (i)-(iv) are clearly satisfied for p = 0.
Since τ(tm

0 )xm = ϕ0, using relation (1), we obtain

sup{||v|| : v ∈ F(τ(tm
0 )xm,ym

0 )} ≤M.

Therefore, ||zm
0 || ≤M+ 1

2m < M+1. We get from the definition of ym
1 ,

||ym
1 − ym

0 || ≤ hm
1 ||zm

0 ||+ ||
∫ tm

1

tm
0

f (s,xm
0 ,y

m
0 )ds||

≤ T (M+1)+
r
4
< r.

Thus ym
1 ∈ B(y0,r) . Since xm

1 ∈ P(xm
0 ) ⊆ K , then to prove property (v) for

p = 0, it is sufficient to show that

||xm
1 −ϕ0(0)||< r.

We get using (1) and (3)

||xm
1 −ϕ0(0)|| ≤ hm

1 ||ym
0 ||+

(hm
1 )

2

2
||zm

0 ||+
∫ hm

1

0
|tm

1 − s| || f (s,ϕ0(0),ym
0 )||ds

≤ T ||ym
0 ||+

T 2

2
(M+1)+

∫ hm
1

0
m(s)ds

≤ r
8
(
||ym

0 ||+1
) ||ym

0 ||+
r

8(M+1)
(M+1)

2
+

r
4

<
r
8
+

r
16

+
r
4
< r,

and hence (v) is satisfied for p = 0.To prove (vi) for p = 0, let v ∈ [−σ ,0]. By
(2) and (3), we get

||τ(tm
1 )xm−ϕ0||σ = sup

−σ≤v≤0
||xm(tm

1 + v)−ϕ0(v)||

≤ sup
−σ≤v≤0
−σ≤tm1 +v≤0

||xm(tm
1 + v)−ϕ0(v)||+ sup

−σ≤v≤0
0≤tm1 +v

||xm(tm
1 + v)−ϕ0(v)||

≤ sup
−σ≤v≤0
−σ≤tm1 +v≤0

||ϕ0(tm
1 + v)−ϕ0(v)||+ sup

−σ≤v≤0
0≤tm1 +v

||xm(tm
1 + v)−ϕ0(v)||

≤ r
8
+ ||xm(tm

1 + v)−ϕ0(0)||+ ||ϕ0(0)−ϕ0(v)||

≤ r
8
+(hm

1 + v)||ym
0 ||+

(hm
1 + v)2

2
||zm

0 ||+
∫ T

0
m(s)ds+

r
8
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≤ r
8
+T ||ym

0 ||+
T 2

2
||zm

0 ||+
r
4
+

r
8
≤

≤ r
8
+

r
8
(
||ym

0 ||+1
) ||ym

0 ||+
r

16(M+1)
(M+1)+

r
4
+

r
8
≤

≤ r
8
+

r
8
+

r
16

+
r
4
+

r
8
< r,

which shows that τ(tm
1 )xm ∈ Bσ (ϕ0,r) and hence (vi) is proved.

Now we suppose that tm
p+1, xm

p+1, ym
p+1, zm

p are well defined for p= 0,1, ...,(q−1)
and xm is defined on the interval [−σ , tm

q ] such that all the properties (i)-(vi)
are satisfied for p = 0,1, ...,(q− 1). We define tm

q+1, xm
q+1, ym

q+1, zm
q and xm on

[tm
q , t

m
q+1] such that the properties (i)-(vi) are satisfied for p = q. We denote by

Hm
q the set of all h ∈

]
0, 1

m

[
for which the following conditions are satisfied:

(a) 0 < h < T − tm
q .

(b) there exists um
q ∈ F(τ(tm

q )xm,ym
q )such that

d(xm
q +h ym

q +
h2

2
um

q +
∫ tm

q +h

tm
q

(tm
q +h− s) f (s,xm

q ,y
m
q )ds, p(xm

q ))≤
h2

4m
.

From the fact that (v) and (vi) are true for p = q− 1, we get ym
q ∈ Ω and

τ(tm
q )xm ∈ K0. Moreover, since (iv) is true for p = q− 1, then τ(tm

q )xm (0) =
xm(tm

q ) = xm
q . Therefore there is um

q ∈ F(τ(tm
q )xm,ym

q )such that

lim
h→0+

inf
1
h2 d(xm

q +hym
q +

h2

2
um

q +
∫ tm

q +h

tm
q

(tm
q +h− s) f (s,xm

q ,y
m
q )ds,P(xm

q )) = 0,

which assures the existence of a positive number h such that h<min{ 1
m ,T−tm

q }
and

d(xm
q +h ym

q +
h2

2
um

q +
∫ tm

q +h

tm
q

(tm
q +h− s) f (s,xm

q ,y
m
q )ds,P(xm

q ))≤
h2

4m
,

hence h ∈ Hm
q . Since Hm

q is bounded by the number T , there is a number dm
q

such that dm
q = sup{α : α ∈ Hm

q }. Since Hm
q ∩[

dm
q
2 ,dm

q ] 6= φ , an element hm
q+1 ∈

Hm
q ∩ [

dm
q
2 ,dm

q ] is found such that

d(xm
q +hm

q+1 ym
q +

(hm
q+1)

2

2
um

q +

+
∫ tm

q +hm
q+1

tm
q

(tm
q +hm

q+1− s) f (s,xm
q ,y

m
q )ds,P(xm

q ))≤
(hm

q+1)
2

4m
.
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From the closedness of P(xm
q ), there is xm

q+1 ∈ P(xm
q )⊆ K with

||xm
q +hm

q+1ym
q +

(hm
q+1)

2

2
um

q +

+
∫ tm

q +hm
q+1

tm
q

(tm
q +hm

q+1− s) f (s,xm
q ,y

m
q )ds− xm

q+1|| ≤
(hm

q+1)
2

4m
.

Consequently, there is wm
q ∈ Rn with ||wm

q || ≤ 1
2m < 1

m such that

xm
q+1 = xm

q +hm
q+1ym

q +
(hm

q+1)
2

2
um

q +

(
hm

q+1

)2

2
wm

q +

+
∫ tm

q +hm
q+1

tm
q

(tm
q +hm

q+1− s) f (s,xm
q ,y

m
q )ds =

= xm
q +hm

q+1ym
q +

(hm
q+1)

2

2
(um

q +wm
q )+

∫ tm
q +hm

q+1

tm
q

(tm
q +hm

q+1− s) f (s,xm
q ,y

m
q )ds.

We define zm
q = um

q +wm
q . Then

zm
q ∈ F(τ(tm

q )xm,ym
q )+

1
m

B(0,1)

and

xm
q+1 = xm

q +hm
q+1ym

q +
(hm

q+1)
2

2
zm

q +
∫ tm

q +hm
q+1

tm
q

(tm
q +hm

q+1− s) f (s,xm
q ,y

m
q )ds.

We put

ym
q+1 = ym

q +hm
q+1zm

q +
∫ tm

q +hm
q+1

tm
q

f (s,xm
q ,y

m
q )ds

and tm
q+1 = tm

q +hm
q+1.

For t ∈ [tm
q , t

m
q+1], we define

xm(t) = xm
q +(t− tm

q )y
m
q +

(t− tm
q )

2

2
zm

q +
∫ t

tm
q

(t− s) f (s,xm
q ,y

m
q )ds.

Obviously the relations (i)-(iv) are satisfied for p = q.
Now we prove that (v) is true for p = q. Since (v) and (vi) are true for

p = q−1, then τ(tm
q )xm ∈ Bσ (ϕ0,r) and ym

q ∈ B(y0,r), and hence by (1) we get
||zm

q || ≤M+1. Let us prove that ||ym
q+1− y0||< r. We note that

ym
q+1 = ym

q +hm
q+1zm

q +
∫ tm

q +hm
q+1

tm
q

f (s,xm
q ,y

m
q )ds =
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ym
q−1 +hm

q zm
q−1 +

∫ tm
q−1+hm

q

tm
q−1

f (s,xm
q−1,y

m
q−1)ds+hm

q+1zm
q +

∫ tm
q +hm

q+1

tm
q

f (s,xm
q ,y

m
q )ds.

By iterating we get

ym
q+1 = ym

0 +
q

∑
j=0

hm
j+1zm

j +
q

∑
j=0

∫ tm
j+1

tm
j

f (s,xm
j ,y

m
j )ds.

Thus

||ym
q+1− ym

0 || ≤
q

∑
j=0

hm
j+1||zm

j ||+
q

∑
j=0

∫ tm
j+1

tm
j

|| f (s,xm
j ,y

m
j )||ds

≤ (M+1)
q

∑
j=0

hm
j+1 +

r
4

≤ (M+1)T +
r
4
<

r
8
+

r
4
< r.

To prove that xm
q+1 ∈ Bσ (ϕ0(0),r) we first use the induction technique to prove

the relation

xm
p+1 = ϕ0(0)+(

p
∑
j=0

hm
j+1)y

m
0 + 1

2

p
∑
j=0

(hm
j+1)

2 zm
j +

+
p−1
∑

i=0

p
∑

j=i+1
hm

i+1hm
j+1zm

i +
p
∑

i=0

∫ tm
i+1

tm
i

(tm
i+1− s) f (s,xm

i ,y
m
i )ds+

+hm
p+1

p−1
∑
j=0

∫ tm
j+1

tm
j

f (s,xm
j ,y

m
j )ds

(4)

for p = 1, ...,q. For p = 1 we note that

xm
2 = xm

1 +hm
2 ym

1 +
1
2
(hm

2 )
2zm

1 +
∫ tm

2

tm
1

(tm
2 − s) f (s,xm

1 ,y
m
1 )ds =

= xm
1 +hm

2 (y
m
0 +hm

1 zm
0 +

∫ tm
1

tm
0

f (s,xm
0 ,y

m
0 )ds)+

1
2
(hm

2 )
2zm

1 +

+
∫ tm

2

tm
1

(tm
2 − s) f (s,xm

1 ,y
m
1 )ds =

= (xm
0 +hm

1 ym
0 +

1
2
(hm

1 )
2zm

0 +
∫ tm

1

tm
0

(tm
1 −s) f (s,xm

0 ,y
m
0 )ds)+

+hm
2 (y

m
0 +hm

1 zm
0 +

∫ tm
1

tm
0

f (s,xm
0 ,y

m
0 )ds)+

1
2
(hm

2 )
2 zm

1 +
∫ tm

2

tm
1

(tm
2 − s) f (s,xm

1 ,y
m
1 )ds

= xm
0 +(hm

1 +hm
2 )y

m
0 +

1
2
((hm

1 )
2zm

0 +(hm
2 )

2zm
1 )+hm

1 hm
2 zm

0 +hm
2

∫ tm
1

tm
0

f (s,xm
0 ,y

m
0 )ds



MONOTONE SOLUTIONS . . . 137

+
∫ tm

1

tm
0

(tm
1 − s) f (s,xm

0 ,y
m
0 )ds+

∫ tm
2

tm
1

(tm
2 − s) f (s,xm

1 ,y
m
1 )ds =

= ϕ0(0)+(
1

∑
j=0

hm
j+1)y

m
0 +

1
2

1

∑
j=0

(hm
j+1)

2 zm
j +(hm

1 hm
2 zm

0 )+

+
1

∑
j=0

∫ tm
i+1

tm
i

(tm
i+1− s) f (s,xm

i ,y
m
i )ds+hm

2

∫ tm
1

tm
0

f (s,xm
0 ,y

m
0 )ds.

Then the relation (4) is true for p = 1. Suppose that (4) is true for p = q− 1.
This gives us

xm
q = ϕ0(0)+

q−1

(∑
j=0

hm
j+1)y

m
0 +

1
2

q−1

∑
j=0

(hm
j+1)

2 zm
j +

q−2

∑
i=0

q−1

∑
j=i+1

(hm
i+1hm

j+1zm
i )

+
q−1

∑
j=0

∫ tm
j+1

tm
j

(tm
j+1− s) f (s,xm

j ,y
m
j )ds+hm

q (
q−1

∑
j=0

∫ tm
i+1

tm
i

f (s,xm
j ,y

m
j )ds).

So, according to the definition of xm
q+1 we have

xm
q+1 = xm

q +hm
q+1ym

q +
1
2
(hm

q+1)
2zm

q +
∫ tm

q+1

tm
q

(tm
q+1− s) f (s,xm

q ,y
m
q )ds =

= ϕ0(0)+(
q−1

∑
j=0

hm
j+1)y

m
0 +

1
2

q−1

∑
j=0

(hm
j+1)

2 zm
j +

q−2

∑
i=0

q−1

∑
j=i+1

hm
i+1hm

j+1zm
i +

+
q−1

∑
i=0

∫ tm
i+1

tm
i

(tm
i+1− s) f (s,xm

i ,y
m
i )ds+

+hm
q+1

(
ym

0 +
q−1

∑
j=0

hm
j+1zm

j + ∑
j=0

q−1
∫ tm

i+1

tm
i

f (s,xm
i ,y

m
i )ds

)
+

+
1
2
(hm

q+1)
2zm

q +
∫ tm

q+1

tm
q

(tm
q+1− s) f (s,xm

q ,y
m
q )ds =

= ϕ0 (0)+(
q

∑
j=0

hm
j+1)y

m
0 +

1
2

q

∑
j=0

(hm
j+1)

2 zm
j +

q−1

∑
i=0

q

∑
j=i+1

hm
i+1hm

j+1zm
i +

+
q

∑
i=0

∫ tm
i+1

tm
i

(tm
i+1− s) f (s,xm

i ,y
m
i )ds+hm

q+1

q−1

∑
j=0

q−1

j=0

∫ tm
i+1

tm
i

f (s,xm
i ,y

m
i )ds.
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This implies that the relation (4) is true for p = q. Now, from the fact that
||zm

p || ≤M+1, for all p = 0,1, ...,q we get

||xm
q+1−ϕ0(0)|| ≤ ||ym

0 ||(
q

∑
j=0

hm
j+1)+

1
2

q

∑
j=0

(hm
j+1)

2(M+1)+

+(M+1)
q−1

∑
i=0

q

∑
j=i+1

hm
i+1hm

j+1 +
q

∑
i=0

∫ tm
i+1

tm
i

(tm
i+1− s) f (s,xm

i ,y
m
i )ds+

r
4
≤

≤ ||ym
0 ||T +

1
2
(M+1)T 2 +(M+1)T 2 +

r
4
+

r
4
<

<
r
8
+

r
16

+
r
8
+

r
4
+

r
4
< r.

Thus (v) is true for p = q. We prove (vi) for p = q.

||τ(tm
q+1)xm−ϕ0||σ = sup

−σ≤v≤0
||τ(tm

q+1)xm(v)−ϕ0(v)||=

= sup
−σ≤v≤0

||xm(tm
q+1 + v)−ϕ0(v)|| ≤

≤ sup
−σ≤v≤0

v+tmq+1≤0

||xm(tm
q+1 + v)−ϕ0(v)||+ sup

−σ≤v≤0
0≤v+tmq+1

||xm(tm
q+1 + v)−ϕ0(v)|| ≤

≤ sup
−σ≤v≤0

v+tmq+1≤0

||ϕ0(tm
q+1 + v)−ϕ0 (v) ||+ sup

−σ≤v≤0
0≤v+tmq+1

||xm(tm
q+1 + v)−ϕ0 (0) ||+

+ sup
−σ≤v≤0

0≤v+tmq+1

||ϕ0(0)−ϕ0(v)||<
r
8
+

r
8
+

r
16

+
r
8
+

r
4
+

r
8
< r.

It remains to show that there is a positive number νm such that tm
νm−1
≤ T <

tm
νm

. Therefore, we have to prove that the iterative process is finite. For this
purpose suppose that the iterative process is not finite. So, for each non negative
integer number p, there are tm

p ∈ [0,T [, xm
p , ym

p , zm
p such that the relations (i)-(vi)

are satisfied. Since the sequence {tp}p≥1 is bounded and increasing, there is
tm
α ∈ ]0,T ] such that lim

p→∞
tm
p = tm

α . Let us show that the sequence {xp}p≥1 and

{yp}p≥1 are Cauchy sequences. Let p and q be two positive integers such that
p > q. From the relation (4) we have

||xm
p − xm

q ||= ||(
p−1

∑
j=q

hm
j+1)y

m
0 +

1
2

p−1

∑
j=q

(hm
j+1)

2zm
j +

p−1

∑
j=q

hm
1 hm

j+1zm
0 +

p−1

∑
j=q

hm
2 hm

j+1zm
1 +

· · ·+
p−1

∑
j=p−2

hm
p−2hm

j+1zm
p−3 +hm

p−1hm
p zm

p−2 +
p−1

∑
i=q

∫ tm
i+1

tm
i

(tm
i+1− s) f (s,xm

i ,y
m
i )ds+
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+hm
p (

p−2

∑
j=0

∫ tm
i+1

tm
i

f (s,xm
j ,y

m
j )ds)−hm

q (
q−2

∑
j=0

∫ tm
i+1

tm
i

f (s,xm
j ,y

m
j )ds)|| ≤

≤ ||ym
0 ||(tm

p − tm
q )+

1
2
(M+1)(tm

p − tm
q )

2 +(M+1)(
p−1

∑
j=q

hm
j+1)(h

m
1 + ...+hm

p−1)+

+
p−1

∑
i=q

∫ tm
i+1

tm
i

|| f (s,xm
i ,y

m
i )||ds≤

≤ ||ym
0 ||(tm

p − tm
q )+

1
2
(M+1)(tm

p − tm
q )

2 +(M+1)(tm
p − tm

q )(t
m
p−1− tm

0 )+

+(tm
p − tm

q )sup
s
|| f (s,xm

i ,y
m
i )||+(tm

p − tm
p−1)sup

s
|| f (s,xm

i ,y
m
i )||+

+(tm
q − tm

q−1)sup
s
|| f (s,xm

i ,y
m
i )|| ≤

≤ ||ym
0 ||(tm

p − tm
q )+

1
2
(M+1)(tm

p − tm
q )

2 +(M+1)T (tm
p − tm

q )+

+m(s)(tm
p − tm

q )+(tm
p − tm

p−1)m(s)+(tm
q − tm

q−1)m(s).

Since the sequence {tp}p≥1 is convergent, the sequence {xm
p }p≥1 is Cauchy.

Then there is xm
α ∈ Rn such that lim

p→∞
xm

p = xm
α . Also,

||ym
p − ym

q || = ||
p−1

∑
j=q

hm
j+1zm

j +
p−1

∑
i=q

∫ tm
i+1

tm
i

f (s,xm
i ,y

m
i )ds||

≤ (M+1)(tm
p − tm

q )+m(s)(tm
p − tm

q ).

Thus the sequence {yp}p≥1 is a Cauchy sequence in Rn. Hence there is ym
α ∈

Rn such that ym
α = lim

p→∞
ym

p . From property (v) we note that

xm
p ∈ P(xm

p )∩B(ϕ0(0),r)⊆ K, (5)

and
ym

p ∈ B(y0,r)⊂Ω.

Thus xm
α ∈ K and ym

α ∈ B(y0,r)⊂Ω.
Now we put xm(tm

α ) = xm
α .To show that xm is continuous at tm

α let {sm
p : p≥ 1}

be a sequence in [0, tm
α [ such that lim

p→∞
sm

p = tm
α and tm

p ≤ sm
p ≤ tm

p+1 for every p≥ 1.

We have

||xm(sm
p )− xm(tm

α )|| ≤ ||xm(sm
p )− xm(tm

p )||+ ||xm(tm
p )− xm

α || ≤

≤ (sm
p − tm

p )||ym
0 ||+

1
2
(sm

p − tm
p )

2(M+1)+(M+1)T (sm
p − tm

p )+

+(sm
p − tm

p )m(s)+ ||xm(tm
p )− xm

α ||.
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By taking the limit as p→ ∞, we obtain

lim
p→∞
||xm(sm

p )− xm(tm
α )||= 0,

which prove that xm is continuous at tm
α . Hence xm is continuous on [−σ , tm

α ].
Consequently,

lim
p→∞

τ(tm
p )xm = τ(tm

α )xm.

Note that from (vi), τ(tm
p )xm ∈K0∩Bσ (ϕ0,r).Since the subset K0∩Bσ (ϕ0,r) is

closed, we obtain
τ(tm

α )xm ∈ K0∩Bσ (ϕ0,r) .

Furthermore, by (ii) and the relation (1), the sequences {zp}p≥1 and {up}p≥1 are
bounded in Rn. So, there are two convergent subsequences, denoted again by
{zp}p≥1 and {up}p≥1. Thus there are two elements zm

α and um
α of Rn such that

lim
p→∞

zm
p = zm

α and lim
p→∞

um
p = um

α .

Now since F is upper semicontinuous on K0×Ω with compact values and
since um

p ∈ F(τ(tm
p )xm,ym

p ), for all p ≥ 1, it follows that um
α ∈ F(τ(tm

α )xm,ym
α).

Applying condition (H3),

lim
h→0+

infd(xm(tm
α )+hym

α +
h2

2
um

α +
∫ tm

α +h

tm
α

(tm
α +h− s) f (s,xm

α ,y
m
α)ds,P(xm(tm

α )))

vanishes. Hence, there is h ∈ ]0,T − tm
α [ such that

d(xm
α +hym

α +
h2

2
um

α +
∫ tm

α +h

tm
α

(tm
α +h− s) f (s,xm

α ,y
m
α)ds,P(xm

α))≤
h2

16m
. (6)

We prove that h belongs to Hm
p for every p sufficient large. Since {tm

p }p is an
increasing sequence to tm

α , lim
p→∞

xm
p = xm

α , lim
p→∞

ym
p = ym

α and lim
p→∞

um
p = um

α , then

we can find a natural number p1 such that for every p > p1 we have tm
p < tm

α <
tm
p +h < tm

α +h,

||xm
p − xm

α || ≤
h2

24m
, (7)

||ym
p − ym

α || ≤
h

24m
(8)

and
||um

p −um
α || ≤

1
12m

. (9)

From the lower semicontinuity of P at xm
p , there is a natural number p2 such that

P(xm
α)⊆ P(xm

p )+
h2

16m B(0,1), for all p > p2. This gives that if z ∈ Rn, then

d(z,P(xm
p ))≤ d(z,P(xm

α))+
h2

16m
, ∀p > p2. (10)
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Now let p > max(p1, p2). By (7)-(10), we have

d(xm
p +hym

p +
h2

2
um

p +
∫ tm

p +h

tm
p

(tm
p +h− s) f (s,xm

p ,y
m
p )ds,P(xm

p ))

≤ d(xm
p +hym

p +
h2

2
um

p +
∫ tm

p +h

tm
p

(tm
p +h− s) f (s,xm

p ,y
m
p )ds,xm

α +hym
α +

h2

2
um

α

+
∫ tm

α +h

tm
α

(tm
α +h− s) f (s,xm

α ,y
m
α)ds)+d(xm

α +hym
α +

h2

2
um

α

+
∫ tm

α +h

tm
α

(tm
α +h− s) f (s,xm

α ,y
m
α)ds,P(xm

α))+
h2

16m

≤ ||xm
p − xm

α ||+h||ym
p − ym

α ||+
h2

2
||um

p −um
α ||

+||
∫ tm

p +h

tm
p

(tm
α +h− s) f (s,xm

p ,y
m
p )ds−

∫ tm
α +h

tm
α

(tm
α +h− s) f (s,xm

α ,y
m
α)ds||

+
h2

16m
+

h2

16m

≤ h2

24m
+

h2

24m
+

h2

24m
+

h2

16m
+

h2

16m
=

h2

8m
+

h2

8m
=

h2

4m
.

Thus h ∈ Hm
p , for all p≥max(p1, p2). From the choice of hm

p we have

1
2

supHm
p ≤ hm

p ≤ supHm
p .

Hence, hm
p ≥ h

2 > h
4 , for all p ≥ max(p1, p2), this means that limp→∞ hm

p =
limp→∞(tm

p+1− tm
p ) can not equal to zero, which contradicts with the fact that

the sequence {tm
p }p≥1 is convergent. So, the process must be finite.

Theorem 3.2. In addition to the assumptions of Lemma 3.1 we suppose that the
graph of P is closed and the following condition is satisfied.

(H5) for all x ∈ K and all y ∈ P(x)we have P(y)⊆ P(x).
Then for all (ϕ0,y0)∈K0×Ω there exist T > 0 and an absolutely continuous

function x : [0,T ]→ K with absolutely continuous derivative such that

(Q)


x′′(t) ∈ F(τ(t)x,x′(t))+ f (t,x(t),x′(t)) a.e. on [0,T ],
x(t) = ϕ0(t) ,∀t ∈ [−σ ,0],
x′(0) = y0,
x(t) ∈ P(x(t))⊆ K, ∀t ∈ [0,T ],
x(t)� x(s), whenever 0≤ t ≤ s≤ T .



142 A. G. IBRAHIM - F. A. ALADSANI

Proof. According to the definition of xm , for all m≥ 1 and all p= 0,1, . . . ,νm−1

we have ∀t ∈
[
tm
p , t

m
p+1

]
x′m(t) = ym

p +(t− tm
p )z

m
p +

d
dt

[
t
∫ t

tm
p

f (s,xm
p ,y

m
p )ds−

∫ t

tm
p

s f (s,xm
p ,y

m
p )ds

]
=

= ym
p +(t− tm

p )z
m
p + t

d
dt

∫ t

tm
p

f (s,xm
p ,y

m
p )ds+

+
∫ t

tm
p

f (s,xm
p ,y

m
p )ds− d

dt

∫ t

tm
p

s f (s,xm
p ,y

m
p )ds =

= ym
p +(t− tm

p )z
m
p + t f (t,xm

p ,y
m
p )ds+

∫ t

tm
p

f (s,xm
p ,y

m
p )ds− t f (t,xm

p ,y
m
p )ds,

and
x′′m(t) = zm

p + f (t,xm
p ,y

m
p ), ∀t ∈

]
tm
p , t

m
p+1
[
.

Then from (ii) and (v) of Lemma 3.1 we get

||x′m (t) || ≤ ||ym
p ||+(t− tm

p )||zm
p ||+ ||

∫ t

tm
p

f (s,xm
p ,y

m
p )ds|| (11)

= ||ym
0 ||+

r
4
+T (M+1)+

r
4

= ||ym
0 ||+

r
4
+

r
4
+

r
4

= ||ym
0 ||+

3r
4

,∀t ∈ [0,T ],

and

||x′′m (t) || ≤ ||zm
p ||+ || f (t,xm

p ,y
m
p )|| ≤M+1+m(t) , a.e on t ∈ [0,T ]. (12)

Then the sequences (xm) and (x′m) are equicontinuous in C([0,T ],Rn). Applying
Ascoli-Arzela theorem, there is a subsequence of (xm) denoted again by (xm),
an absolutely continuous function x : [0,T ]→ Rn with absolutely continuous
derivative x′ such that (xm) converges uniformly to x on [0,T ], (x′m) converges
uniformly to x′ on [0,T ] and (x′′m) converges weakly to x′′ in L2([0,T ],Rn). Fur-
thermore, since all the functions xm equal ϕ0 on [−σ ,0], we can say that xm

converges uniformly to x on [−σ ,T ] where x = ϕ0 on [−σ ,0].
Now, for each t ∈ [0,T ] and each m ≥ 1, let δm(t) = tm

p ,θm(t) = tm
p+1 . If

t ∈
]
tm
p , t

m
p+1

[
and δm(0) = θm(0) = 0, for t ∈

]
tm
p , t

m
p+1

[
we get

x′′m(t) = zm
p + f (t,xm

p ,y
m
p )

∈ F(τ(tm
p )xm,ym

p )+
1
m

B(0,1)+ f (t,xm
p ,y

m
p )

= F(τ(δm(t))xm,x′m(t
m
p ))+

1
m

B(0,1)+ f (t,xm
p ,y

m
p ).



MONOTONE SOLUTIONS . . . 143

Thus for all m≥ 1 and a.e. on [0,T ],

x′′m(t) ∈ F(τ(δm(t))xm,x′m(δm(t)))+
1
m

B(0,1)+ f (t,xm
p ,y

m
p ). (13)

Also, for all m≥ 1 and all t ∈ [0,T ],

τ(θm(t))xm ∈ Bσ (ϕ0,r)∩K0, (14)

xm(t) ∈ B(ϕ0(0),r), (15)

xm(θm(t)) ∈ P(xm(δm(t)))⊆ K. (16)

Claim. For each t ∈ [0,T ], lim
m→∞

τ(θm(t))xm = τ(t)x in C([−σ ,0],Rn).

Let t ∈ [0,T ], then

||τ (θm (t))xm− τ (t)x||σ ≤ ||τ (θm (t))xm− τ (t)xm||σ + ||τ (t)xm− τ (t)x||σ ≤

≤ sup
−σ≤s≤0

||xm(θm(t)+ s)− xm(t + s)||+ ||τ (t)xm− τ (t)x||σ ≤

≤ sup
−σ≤s1≤s2≤T

|s2−s1 |≤
1
m

||xm(s2)− xm(s1)||+ ||τ(t)xm− τ(t)x||σ ≤

≤ sup
−σ≤s1≤s2≤T

|s2−s1 |≤
1
m

||xm(s2)− xm(s1)||+ sup
−σ≤s1≤0≤s2≤T

|s2−s1 |≤
1
m

||xm(s2)− xm(s1)||+

+ sup
−σ≤s1≤s2≤T

|s2−s1 |≤
1
m

||xm(s2)− xm(s1)||+ ||τ(t)xm− τ(t)x||σ ≤

≤ sup
−σ≤s1≤s2≤0

|s2−s1 |≤
1
m

||ϕ0(s2)−ϕ0(s1)||+ sup
−σ≤s1≤0

|s1 |≤
1
m

||xm(0)− xm(s1)||+

+ sup
s2≤T

|s2 |≤
1
m

||xm(s2)−xm(0)||++ sup
0≤s1≤s2≤T

|s2−s1 |≤
1
m

||xm(s2)−xm(s1)||+ ||τ(t)xm−τ(t)x||σ ≤

≤ 2 sup
−σ≤s1≤s2≤0

|s2−s1 |≤
1
m

||ϕ0(s2)−ϕ0(s1)||+2 sup
0≤s1≤s2≤T

|s2−s1 |≤
1
m

||xm(s2)− xm(s1)||

+ ||τ(t)xm− τ(t)x||σ

Using the continuity of ϕ0, the fact that (x′m) is uniformly bounded, the uniform
convergence of (xm) towards x and the preceding estimate, we get

lim
m→∞
||τ(θm(t))xm− τ(t)x||σ = 0.



144 A. G. IBRAHIM - F. A. ALADSANI

Similarly, for each t ∈ [0,T ] ,

lim
m→∞
||τ(δm(t))xm− τ(t)x||σ = 0. (17)

Also, since lim
m→∞

δm(t) = t and (x′′m) is uniformly bounded, then

lim
m→∞

x′m(δm(t)) = x′ (t) ,∀ t ∈ [0,T ]. (18)

Thus by the upper semicontinuity of F and by (14) we obtain

x′′(t) ∈CoF(τ(t)x,x′(t))+ f (t,x(t),x′(t)) a.e. on [0,T ]. (19)

which implies to

x′′(t)− f (t,x(t),x′(t)) ∈ ∂V (x′(t)) a.e. on [0,T ]. (20)

By (20) and [5, Lemma 3.3], we obtain

d
dt
(V (x′(t))) = < x′′(t)− f (t,x(t),x′(t))> a.e. on [0,T ]

= < x′′(t),x′′(t)>−< x′′(t), f (t,x(t),x′(t))>

= ||x′′(t)||2−< x′′(t), f (t,x(t),x′(t))> .

therefore,

V (x′(T ))−V (x′(t0)) =
T∫
0

||x′′(t)||2 dt−
T∫
0

< x′′(t), f (t,x(t),x′(t))> dt. (21)

On the other hand, for p = 0,1, ...,νm−2 and t ∈
]
tm
p , t

m
p+1

[
,

(x′′m(t)− f (t,xm(tm
p ),x

′
m(t

m
p ))) ∈ F(τ(tm

p )xm,x′m(t
m
p ))+

1
m

B(0,1).

Then
(x′′m(t)− f (t,xm(tm

p ),x
′
m(t

m
p ))) ∈ ∂V (x′m(t

m
p ))+

1
m

B(0,1),

hence, there exists bp ∈ B(0,1) such that

(x′′m(t)− f (t,xm(tm
p ),x

′
m(t

m
p ))+

1
m

bp) ∈ ∂V (x′m(t
m
p )). (22)

Definition and properties of the subdifferential of a convex function imply that
for ξ in ∂V (x′m(t

m
p )), we have

V (x′m(t
m
p+1))−V (x′m(t

m
p ))≥< x′m(t

m
p+1)− x′m(t

m
p ),ξ > . (23)
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Then by (23)

V (x′m(t
m
p+1))−V (x′m(t

m
p ))

≥ < x′m(t
m
p+1)− x′m(t

m
p ),x

′′
m(t)− f (t,xm(tm

p ),x
′
m(t

m
p ))+

1
m

bp > ,

thus and since x′′m is constant in
]
tm
p , t

m
p+1

[
, it follows that

V (x′m(t
m
p+1))−V (x′m(t

m
p ))≥

≥ <
∫ tm

p+1

tm
p

x′′m(t)dt,x′′m(t)− f (t,xm(tm
p ),x

′
m(t

m
p ))+

1
m

bp >

≥
∫ tm

p+1

tm
p

< x′′m(t) ,x
′′
m(t)> dt−

∫ tp+1

tm
p

< x′′m(t) , f (t,xm(tm
p ),x

′
m(t

m
p ))> dt+

+
∫ tm

p+1

tm
p

< x′′m(t) ,
1
m

bp > dt,

hence we have

V (x′m(T ))−V (ym
0 ))≥

T∫
0

||x′′m(t)||2 dt−

−
νm−2

∑
p=0

tm
p+1∫
tm
p

< x′′m(t) , f (t,xm(tm
p ),x

′
m(t

m
p ))> dt +

νm−2

∑
p=0

tm
p+1∫
tm
p

< x′′m(t) ,bp > dt.

Since [0,T ] = ∪νm−2
p=0 [t

m
p , t

m
p+1], we have

||
νm−2

∑
p=0

tm
p+1∫
tm
p

< x′′m(t) , f (t,xm(tm
p ),x

′
m(t

m
p ))> dt−

T∫
0

< x′′(t), f (t,x(t),x′(t))> dt||

= ||
νm−2

∑
p=0

tm
p+1∫
tm
p

(
< x′′m(t) , f (t,xm(tm

p ),x
′
m(t

m
p ))>−< x′′(t), f (t,x(t),x′(t))>

)
dt||

≤
νm−2

∑
p=0

tm
p+1∫
tm
p

||< x′′m(t) , f (t,xm(tm
p ),x

′
m(t

m
p ))>−< x′′(t), f (t,x(t),x′(t))> ||dt ≤
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≤
νm−2

∑
p=0

tm
p+1∫
tm
p

||< x′′m(t) , f (t,xm(tm
p ),x

′
m(t

m
p ))>−< x′′m(t), f (t,xm(t),x′m(t))> ||dt+

+
νm−2

∑
p=0

tm
p+1∫
tm
p

||< x′′m(t) , f (t,xm(t),x′m(t))>−< x′′m(t), f (t,x(t),x′(t))> ||dt+

+
νm−2

∑
p=0

tm
p+1∫
tm
p

||< x′′m(t) , f (t,x(t),x′(t))>−< x′′(t), f (t,x(t),x′(t))> ||dt =

=
νm−2

∑
p=0

tm
p+1∫
tm
p

||< x′′m(t) , f (t,xm(tm
p ),x

′
m(t

m
p ))>−< x′′m(t), f (t,xm(t),x′m(t))> ||dt+

+

T∫
0

||< x′′m(t), f (t,xm(t),x′m(t))>−< x′′m(t), f (t,x(t),x′(t))> ||dt+

+

T∫
0

||< x′′m(t), f (t,x(t),x′(t))− < x′′(t), f (t,xm(t),x′m(t))> ||dt.

Since f is a Caratheodory function, xm and x′m are uniformly continuous,∥∥x′′m (s)
∥∥≤M+1+m(s), m ∈ L2([0,T ],Rn ), xm→ x, x′m→ x′

uniformly and x′′m→ x′′ weakly in L2([0,T ],Rn ) then the last term converges to
0. Hence

lim
m→∞

νm−2

∑
p=0

tm
p+1∫
tm
p

< x′′m(t) , f (t,xm(tm
p ),x

′
m(t

m
p ))> dt =

T∫
0

< x′′(t), f (t,x(t),x′(t))> dt.

Since

lim
m→∞

νm−2

∑
p=0

1
m

tm
p+1∫
tm
p

< x′′m(t),bp > dt = 0,
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by passing to the limit as m→ ∞ in (24) and using the contiuity of the function
V on the ball B(ym

0 ,r), we obtain the estimate

V (x′(T ))−V (x′(t0))≥ lim
m→∞

sup
T∫
0

||x′′(t)||2 dt−
T∫
0

< x′′(t), f (t,x(t),x′(t))> dt.

Moreover, by (21) we have∥∥x′′
∥∥2

2 ≥ lim
m→∞

sup ||x′′m||22,

and by the weak lower semicontinuity of the norm, it follows that∥∥x′′
∥∥2

2 ≤ lim
m→∞

sup ||x′′m||22.

Hence,
lim

m→∞
||x′′m||22 =

∥∥x′′
∥∥2

2 . (24)

Let us show that

x′′(t) ∈ F(τ(t)x,x′(t))+ f (t,x(t),x′(t)) a.e. on [0,T ]. (25)

Let t ∈ [0,T [. By the above construction, there exists p ∈ {0,1, ...,q} such that
t ∈
[
tm
p , t

m
p+1

[
and lim

m→∞
tm
p = t. From (13), for each positive integer m,

x′′m(t)− f (t,xm
(
tm
p
)
,x′m
(
tm
p
)
) ∈ F(τ(tm

p )xm,x′m(t
m
p ))+

1
m

B(0,1).

Using the relations (17), (18), (25) and the fact that f is is a Caratheodory and
the set-valued function F is u.s.c., we obtain the relation (26).

Furthermore, since K is closed and the graph of P is closed we get x(t) ∈
P(x(t))⊆ K.

It remains to prove the following two properties
(1) (x(t),x′(t)) ∈ K×Ω , ∀t ∈ [0,T ].
(2) x(s) ∈ P(x(t)), ∀t,s ∈ [0,T ] and t ≤ s .
To prove the first property we note that the property (iii) of Lemma 3.1

implies that xm(δm(t)) ∈ B(ϕ0(0),r)∩K and x′m(δm(t)) ∈ B(y0,r)∩Ω . Since
lim

m→∞
xm(δm(t)) = x(t) and lim

m→∞
x′m(δm(t)) = x′(t) then x(t) ∈ B(ϕ0(0),r)∩K and

x′(t) ∈ B(y0,r)∩Ω.
To prove the second property, let t,s ∈ [0,T ] be such that t ≤ s. Then for m

large enough, we can find p, q ∈ {0,1,2, ...,νm−2} such that p > q , t ∈ [tm
q , t

m
q+1]
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and s ∈ [tm
p , t

m
p+1]. Assume that j = p−q. Using property (v) of Lemma 3.1 and

condition (H5) we get

P(xm(tm
p ))⊆ P(xm(tm

p−1))⊆ P(xm(tm
p−2))⊆ ...⊆ P(xm(tm

q )).

This implies P(xm(δm(s)))⊆ P(xm(δm(t))). Since xm(δm(s)) ∈ P(xm(δm(s))), it
follows that xm(δm(s)) ∈ P(xm(δm(t))). By taking the limit as m tends to ∞ we
obtain that x(s) ∈ P(x(t)) and hence the second property is proved.

Remark 3.3. If f ≡ 0 , then the condition (H3) takes the following form: for
all (t,ϕ,y) ∈ I×K0×Ω, there exists z ∈ F(ϕ,y),

lim
h−→0+

inf
1
h2 d(ϕ(0)+hy+

h2

2
z,P(ϕ(0))) = 0,

this means that for all (t,ϕ,y) ∈ I×K0×Ω, there exists z ∈ F(ϕ,y) such that

F(ϕ,y)⊆ T 2
P(ϕ(0))(ϕ(0),y).

So, our work in the present paper generalizes the work authors in [13].
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