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LINEAR FRACTIONAL TRANSPORTATION PROBLEM
WITH VARYING DEMAND AND SUPPLY

VISHWAS DEEP JOSHI - NILAMA GUPTA

In this paper, we investigate the transportation problem with fractional
objective function when the demand and supply quantities are varying.
A set of mathematical programs is obtained to determine the objective
value. Due to varying economic policies in the global world, it is hard
to specify the supply and demand quantities for transportation problem.
A transportation problem with fractional objective function is based on a
network structure consisting of a finite number of nodes and arcs attached
to them. After the derivation, we obtained the result in range, where the
total transportation cost would appear. In addition to allowing for simul-
taneous changes in supply and demand values, the total cost bounds are
calculated directly. This methodology would be very beneficial in the de-
cision making. A numerical example is given in this paper for the support
of theory.

1. Introduction

The fractional transportation problem was originally proposed by Swarup [3] in
1966 and it has an important role in logistics and supply chain management for
reducing cost and improving service. Transportation problem could be defined
as a linear fractional programming problem originates from network models
consisting of a finite number of nodes and arcs. It deals with the situation in
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which a commodity is shipped from sources to destinations. The main objective
of this paper is to determine the amounts shipped from each source to each
destination that minimizes the total cost while satisfying both the supply limits
and the demand requirements. The study about more-for less paradox [1], [5]
in fractional transportation model can be help to increase demand and supply at
some nodes. It would be helpful for us to save money and make better decisions
to improving the routs.

In real world applications, however, the supply and demand quantities in
the transportation problem are sometimes hardly specified precisely because of
changing weather, social, or economic conditions. With the development of
the market-oriented economy, market takes a more and more important role for
adjusting the relationship of supply and demand. Under this background, the
character and the rule of supply and demand will take on a flexible characteris-
tic. Obviously, it is very feasible for the regulation of the supply and demand
by using the concept of elasticity. Transportation models provide a powerful
framework to meet this challenge.

Several efficient algorithms have been developed over the past decades for
solving the transportation problem when the cost coefficients and the supply
and demand values are known exactly. However, there are cases when these pa-
rameters may not be presented in a precise manner. For example, the customer
demand and supplier capabilities might change over time and the supply-chain
relationships might also evolve over time. Obviously, when the supply and de-
mand quantities are varying in specific ranges, the total transportation cost will
vary within an interval as well. In this paper, we develop a procedure that can
directly calculate the total cost bounds of the transportation problem, where at
least one of the supply or demand is varying. A pair of mathematical programs
is constructed to calculate the lower and upper bounds of the total transportation
cost. In this paper we extend the work done by S. T. Liu [4]. We studied the to-
tal cost bounds with varying demand and supply for the transportation problem
with fractional objective function.

The work done in this article is as follows. Firstly, we define the fractional
transportation problem with varying supply and demand quantities briefly. Then
a pair of mathematical programs is formulated for calculating the bounds of the
total transportation cost. A numerical example is given in this paper for the
support of this theory. Finally, some conclusions are drawn in the favour of this
work.

2. Mathematical Model

In the conventional transportation problem, a homogeneous product is to be
transported from several sources to several destinations in such a way that the to-
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tal transportation cost is a minimum. Suppose that there are m supply nodes and
n demand nodes. The ith supply node can provide si units of a certain product
and the jth demand node has a demand for di units. The fractional transportation
of products from the ith supply node to the jth demand node carries a cost of ci j

and li j per unit of product transported. The problem is to determine a feasible
way of transporting the available amounts, to satisfy demand that minimizes the
total transportation cost with the maximum profit.

Let xi j be the number of units transported from supply i to demand j. The
mathematical description of the conventional transportation problem is

Min
∑i ∑ j ci jxi j

∑i ∑ j li jxi j
(1)

subject to

n

∑
j=1

xi j ≤ si, i = 1,2, ...,m,

m

∑
i=1

xi j = d j, j = 1,2, ...,n,

xi j ≥ 0 ∀ i, j.

The first set of constraints stipulates that the sum of the shipments from
a source cannot exceed its supply; the second set requires that the sum of the
shipments to a destination must satisfy its demand. The above problem implies
that the total supply ∑i si must be greater than or equal to total demand ∑ j d j.

Suppose the value of supply si and the value of demand d j are varying, and
they can be represented by ŝi and d̂ j with the lower and upper bounds [Si,Si]
and [D j,D j], respectively. The fractional transportation problem with varying
supply and demand has the following mathematical form:

Min
∑i ∑ j ci jxi j

∑i ∑ j li jxi j
(2)

subject to

n

∑
j=1

xi j ≤ ŝi, i = 1,2, ...,m,

m

∑
i=1

xi j = d̂ j, j = 1,2, ...,n,

xi j ≥ 0 ∀ i, j,

where ŝi ∈ [Si,Si] and d̂ j ∈ [D j,D j] ∀i, j.
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Intuitively, if any of the parameters is varying, the objective value should be
varying as well. In next section, we shall develop the solution procedure for the
fractional transportation problem with varying supply and demand quantities.

3. Solution Procedure

Suppose we are interested in deriving the lower and upper bounds of the total
transportation cost. The major difficulty lies in how to deal with the varying
supply and demand quantities

Let G =
{
(ŝ, d̂) | Si ≤ ŝi ≤ Si,D j ≤ d̂ j ≤ D j, i = 1,2, ...,m, j = 1,2, ...,n

}
.

For each (ŝ, d̂)∈G, we denote Z(ŝ, d̂) to be the objective value of Model (2).
Let Z and Z represents respectively the minimum and the maximum of Z(ŝ, d̂)
on G. Then

Z = Min
{

Z(ŝ, d̂) | (ŝ, d̂) ∈ G
}

(3)

Z = Max
{

Z(ŝ, d̂) | (ŝ, d̂) ∈ G
}

(4)

From Eqs. (3) and (4), we obtain the equivalent pair of two-level mathemat-
ical programs:

Z = Min
(ŝ,d̂)∈G

Min
x

∑i ∑ j ci jxi j

∑i ∑ j li jxi j
(5a)

subject to
n

∑
j=1

xi j ≤ ŝi, i = 1,2, ...,m,

m

∑
i=1

xi j = d̂ j, j = 1,2, ...,n,

xi j ≥ 0 ∀ i, j.

Z = Max
(ŝ,d̂)∈G

Min
x

∑i ∑ j ci jxi j

∑i ∑ j li jxi j
(5b)

subject to
n

∑
j=1

xi j ≤ ŝi, i = 1,2, ...,m,

m

∑
i=1

xi j = d̂ j, j = 1,2, ...,n,

xi j ≥ 0 ∀ i, j.
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Model (5a and 5b) is feasible if and only if ∑
m
i=1 ŝi ≥ ∑

n
j=1 d̂ j. Since ŝi and

d̂ j are allowed to vary within the ranges of [Si,Si] and [D j,D j], respectively, it
is necessary that the constraint ∑

m
i=1 ŝi ≥ ∑

n
j=1 d̂ j be imposed in the first level

of Model (5a and 5b) to ensure the fractional transportation problem to be fea-
sible in the second level of Model (5a and 5b). Therefore, Model (5a and 5b)
becomes:

Z = Min
(ŝ,d̂)∈G

∑
m
i=1 ŝi≥∑

n
j=1 d̂ j

Min
x

∑i ∑ j ci jxi j

∑i ∑ j li jxi j
(6a)

subject to

n

∑
j=1

xi j ≤ ŝi, i = 1,2, ...,m,

m

∑
i=1

xi j = d̂ j, j = 1,2, ...,n,

xi j ≥ 0 ∀ i, j.

Z = Max
(ŝ,d̂)∈G

∑
m
i=1 ŝi≥∑

n
j=1 d̂ j

Min
x

∑i ∑ j ci jxi j

∑i ∑ j li jxi j
(6b)

subject to

n

∑
j=1

xi j ≤ ŝi, i = 1,2, ...,m,

m

∑
i=1

xi j = d̂ j, j = 1,2, ...,n,

xi j ≥ 0 ∀ i, j.

Since Model (6a) is to find the minimum value against the best possible
value on G, one can directly insert the constraints of level 1 into level 2 and sim-
plify the two-level mathematical program to the conventional one-level mathe-
matical program as follows:

Z = Min
x

∑i ∑ j ci jxi j

∑i ∑ j li jxi j
(7)
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subject to

n

∑
j=1

xi j ≤ ŝi, i = 1,2, ...,m,

m

∑
i=1

xi j = d̂ j, j = 1,2, ...,n,

xi j ≥ 0 ∀ i, j,
m

∑
i=1

ŝi ≥
n

∑
j=1

d̂ j

Si ≤ ŝi ≤ Si, D j ≤ d̂ j ≤ D j, ∀ i, j.

Model (7) is a linear fractional program that can be solved easily. If the
lower bound of the total supply is greater than or equal to the upper bound of
total demand, i.e., ∑

m
i=1 Si ≥ ∑

n
j=1 D j, the constraint ∑

m
i=1 ŝi ≥ ∑

n
j=1 d̂ j can be

deleted from Model (7). In this case the benefit of network structure would be
manifested.

Model (6b) is to find the maximum value among the best possible objec-
tive values over all decision variables. The well-known duality theorem of lin-
ear fractional programming indicates that the primal model and the dual model
have the same objective value [2]. Consequently, to derive the upper bound of
total transportation cost in Model (6b), the dual of the level 2 problem is formu-
lated to become a maximization problem to be consistent with the maximization
operation of the level 1. Hence Model (6b) is reformulated as

Max
(ŝ,d̂)∈G

∑
m
i=1 ŝi≥∑

n
j=1 d̂ j

Max y0 (8)

subject to

−
m

∑
i=1

ŝivi +
n

∑
j=1

d̂ jw j ≥ 0,

li jy0 + vi−w j ≥ ci j, i = 1,2, ...,m, j = 1,2, ...,n,

vi ≥ 0, i = 1,2, ...,m,w j is unrestricted in sign, j = 1,2, ...,n,

where y0 denotes a vector containing n+m−1 components

y0,v1,v2, ...,vm,w1,w2, ...,wn.

Since both levels 1 and 2 problems perform the same maximization opera-
tion, their constraints can be combined together to become the one-level mathe-
matical program as follows:
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Z = Max
y0

y0 (9)

subject to

−
m

∑
i=1

ŝivi +
n

∑
j=1

d̂ jw j ≥ 0,

li jy0 + vi−w j ≥ ci j, i = 1,2, ...,m, j = 1,2, ...,n,
m

∑
i=1

ŝi ≥
n

∑
j=1

d̂ j,

Si ≤ ŝi ≤ Si, D j ≤ d̂ j ≤ D j, ∀i, j,

vi ≥ 0, i = 1,2, ...,m, w j is unrestricted in sign, j = 1,2, ...,n.

Model (9) is a linear program.There are several effective and efficient
methods for solving this problem [2].

4. Numerical Example

To illustrate the proposed approach, consider a fractional transportation problem
with varying supply and demand quantities. The problem has the following
form:

Min
∑i ∑ j ci jxi j

∑i ∑ j li jxi j
=

35x11 +30x12 +10x13 +5x21 +25x22 +40x23

13x11 +25x12 +12x13 +7x21 +15x22 +26x23
(10)

subject to

x11 + x12 + x13 ≤ ŝ1,

x21 + x22 + x23 ≤ ŝ2,

x11 + x21 = d̂1,

x12 + x22 = d̂2,

x13 + x23 = d̂3,

x11,x12,x13,x21,x22,x23 ≥ 0,
m

∑
i=1

n

∑
j=1

li jxi j > 0,

where ŝ1 ∈ [60,120], ŝ2 ∈ [75,150], d̂1 ∈ [45,90], d̂2 ∈ [30,60] and d̂3 ∈ [60,120].
According to Models (7) and (9), the lower and upper bounds of the total

transportation cost [Z,Z] can be solved as
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Z = Min
x

∑i ∑ j ci jxi j

∑i ∑ j li jxi j
=

35x11 +30x12 +10x13 +5x21 +25x22 +40x23

13x11 +25x12 +12x13 +7x21 +15x22 +26x23
(11)

subject to

x11 + x12 + x13 ≤ ŝ1,

x21 + x22 + x23 ≤ ŝ2,

x11 + x21 = d̂1,

x12 + x22 = d̂2,

x13 + x23 = d̂3,

ŝ1 + ŝ2 ≥ d̂1 + d̂2 + d̂3,

x11,x12,x13,x21,x22,x23 ≥ 0,
m

∑
i=1

n

∑
j=1

li jxi j > 0,

60≤ ŝ1 ≤ 120, 75≤ ŝ2 ≤ 150,

45≤ d̂1 ≤ 90, 30≤ d̂2 ≤ 60 and 60≤ d̂3 ≤ 120,

x11,x12,x13,x21,x22,x23 ≥ 0,
m

∑
i=1

n

∑
j=1

li jxi j > 0.

Z = Max
y0

y0 (12)

subject to

−60v1−75v2 +45w1 +30w2 +60w3 ≤ 0,

13y0 + v1−w1 ≤ 35,

25y0 + v1−w2 ≤ 30,

12y0 + v1−w3 ≤ 10,

7y0 + v1−w1 ≤ 5,

15y0 + v2−w2 ≤ 25,

26y0 + v3−w3 ≤ 40,

60≤ ŝ1 ≤ 120, 75≤ ŝ2 ≤ 150,

45≤ d̂1 ≤ 90,30≤ d̂2 ≤ 60 and 60≤ d̂3 ≤ 120,

v1,v2 ≥ 0, w1,w2,w3 unrestricted in sign.

A fractional programming solver WinGULF [2] is used to solve the above
mathematical programs. The lower bound of Z∗= 1.06 occurs at x∗13 = 60,x∗21 =
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45,x∗22 = 30,x∗11 = x∗12 = x∗23 = 0 with ŝ1 = 60, ŝ2 = 75, d̂1 = 45, d̂2 = 30 and d̂3 =
60. At the other extreme end, the upper bound of Z∗ = 1.33 occurs at x∗13 =
60,x∗21 = 45,x∗22 = 45,x∗23 = 60,x∗11 = x∗12 = 0 with ŝ1 = 60, ŝ2 = 150, d̂1 =
45, d̂2 = 45 and d̂3 = 120. In solving the upper bound of the objective value
, the initial solution provided to WinGULF is their upper bounds of the sup-
ply and demand, i.e., s0 = [120 150]T and d0 = [90 60 120]T . With this initial
solution, the optimal solution Z∗ = 1.33 is derived. We can improve the routs
using more-for-less paradox. In more-for-less paradox, there is a possibility
of shipping more total goods for less or at least an equal total shipping cost,
when compared with the optimal cost of transportation from origin to destina-
tion, with all shipment costs being non-negative. In other words, it is possible to
reduce the total transportation cost by adjusting the warehouse stocking level or
changing manufacturing strategy in each supply without sacrificing the demand
quantities of customers.

5. Conclusion

In this paper, we described a method to calculate the lower and upper bounds
of the total fractional transportation cost when the supply and demand quanti-
ties are varying. A set of two-level transportation problems is transformed into
the one-level mathematical programs to find out objective value. The derived
result is also in range, where the total transportation cost would appear. This
paper allowing for simultaneous changes in supply and demand quantities, and
the bounds of the total transportation cost are calculated directly. Due to the
structure of the transportation problem, the largest total transportation cost may
not occur at the highest total quantity shipped. By fine-tuning the production
strategy or warehouse stocking level, the total transportation cost could be re-
duced.
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