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APPROXIMATING THE STIELTJES INTEGRAL
BY USING THE GENERALIZED TRAPEZOID RULE

AVYT ASANOV - M.HALUK CHELIK - ALI CHALISH

Accurate approximations for the Stieltjes integral by the generalized
trapezoid rule. The generalized trapezoid rule is established on the basis
of the derivative of function with respect to strictly increasing function,
defined in [9].

1. Introduction and the derivative of function with respect to the strictly
increasing function

Our aim is to describe the generalized trapezoid rule for the approximation of
the Stieltjes integral

I =
∫ b

a
f (x)du(x), a < b, a,b ∈ R, (1)

where f (x) is a given continuous function on [a,b] and u(x) is a given function
of the bounded variation on [a,b].

It is known [7, p.205] that the function u(x) presented in the form

u(x) = ϕ(x)−ψ(x), x ∈ [a,b] (2)
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where ϕ(x) and ψ(x) are the known increasing functions on [a,b].
Different methods of the approximate calculation of the Stieltjes integral in
works [1− 6] is suggested. Particularly, in 1998 Dragomir and Fedotov [2],
in order to approximate the Stieltjes integral (1) with the simpler expression

1
b−a

[u(b)−u(a)]
∫ b

a
f (x)dx,

they introduced the following error functional

D( f ,u;a,b) :=
∫ b

a
f (x)dx− 1

b−a
[u(b)−u(a)]

∫ b

a
f (x)dx.

In this work, for the approximate calculation of the Stieltjes interal (1), the gen-
eralized midpoint rule is suggested. This is based on the notion of the derivative
of function with respect to the strictly increasing function [9]. The generalized
midpoint rule summarizes the midpoint rule [8]. Then we need the concept of
the derivative defined in the work [9] and the theorems with proofs connected
with it. Apparently the first notion of the derivative, with respect to the strictly
increasing function, was introduced in [9].

Definition. The derivative of a function f (x) with respect to ϕ(x) is the
function f ′ϕ(x), whose value at x ∈ (a,b) is the number:

f ′ϕ(x) = lim
∆→0

f (x+∆)− f (x)
ϕ(x+∆)−ϕ(x)

, (3)

where ϕ(t) is a given strictly increasing continuous function in (a,b).
If the limit in equation (3) exists, we say that f (x) has a derivative (is differ-

entiable) with respect to ϕ(x). The first derivative f ′ϕ(x) may also be a differen-
tiable function with respect to ϕ(x) at every point x ∈ (a,b). If so, its derivative

f ′′ϕ (x) = ( f ′ϕ(x))
′
ϕ ,

is called the second derivative of f (x) with respect to ϕ(x). The names continue
as one can imagine they would, by

f (n)ϕ (x) = ( f (n−1)
ϕ (x))′ϕ

denoting the n− th derivative of f (x) with respect to ϕ(x).

Example 1.1. The function f (x) = |x| is nondifferentiable at point x = 0. If

ϕ(x) =

{
−|x| 13 , x < 0,
|x| 13 , x≥ 0,
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then the function ϕ(x) is the increasing continuous function in (−∞,∞) . We
shall show that the function f (x) = |x| has the continuous derivative by means
of ϕ(x) at every point x ∈ (−∞,∞) .

Let x < 0, then from definition,we obtain

f ′ϕ(x) = lim
∆x→0

|x+∆x|− |x|
ϕ(x+∆x)−ϕ(x)

= lim
∆x→0

(
|x+∆x| 13

)3
−
(
|x| 13
)3

−
(
|x+∆x| 13 −|x| 13

) =

=− lim
∆x→0

(
|x+∆x| 13 −|x| 13

)(
|x+∆x| 23 + |x+∆x| 13 |x| 13 + |x| 23

)3(
|x+∆x| 13 −|x| 13

) =−3|x|
2
3 .

If x > 0, then f ′ϕ(x) = 3|x| 23 .
Let x = 0 and ∆x > 0 . Then

lim
∆x→0

f (∆x)− f (0)
ϕ(∆x)−ϕ(0)

= lim
∆x→0

|∆x|
|∆x| 13

= 0.

If x = 0 and ∆x < 0 , then

lim
∆x→0

f (∆x)− f (0)
ϕ(∆x)−ϕ(0)

= lim
∆x→0

|∆x|
−|∆x| 13

= 0,

i.e.
f ′ϕ(0) = 0.

Then we obtain

f ′ϕ(x) =

{
−3|x| 23 , x < 0,
3|x| 23 , x≥ 0.

It is clear that the function f ′ϕ(x) is the continuous function in (−∞,∞).

Theorem 1.2. Let function f (x) be the continuous function in [a,b], ϕ(x) is
strictly increasing continuous function in [a,b] and

F(x) =
∫ x

a
f (t)dϕ(t), x ∈ [a,b].

Then

F ′ϕ(x) =
(∫ x

a
f (t)dϕ(t)

)′
ϕ

= f (x), x ∈ [a,b],

where

F ′ϕ(a) = lim
∆x→0+

F(a+∆x)− F(a)
ϕ(a+∆x)− ϕ(a)

, F ′ϕ(b) = lim
∆x→0−

F(b+∆x)− F(b)
ϕ(b+∆x)− ϕ(b)
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Proof. From the definition of F ′ϕ(x) , we obtain F ′ϕ(x) =

= lim
∆x→0

(
f (x)

∫ x+∆x

x
dϕ(t)−

∫ x+∆x

x
( f (x)− f (t))dϕ(t)

)
/[ϕ(x+∆x)−ϕ(x)]

= f (x)− lim
∆x→0

ψ(x,∆x),

where

ψ(x,∆x) =
(∫ x+∆x

x
( f (x)− f (t))dϕ(t)

)
/[ϕ(x+∆x)−ϕ(x)].

Then

|ψ(x,∆x)| ≤
[

ω f (∆x)
(∫ x+∆x

x
dϕ(t)

)]
/[ϕ(x+∆x)−ϕ(x)] = ω f (∆x),

where
ω f (δ ) = sup

|t−x|≤δ

| f (x)− f (t)|,

and limδ→0 ω f (δ ) = 0 . Therefore

lim
∆x→0
|ψ(x,∆x)| ≤ lim

∆x→0
ω f (|∆x|) = 0.

Hence, F ′ϕ(x) = f (x) . Analogously, the other cases will be proven. Theorem
1.2 is therefor proven.

Corollary 1.3. Let F0(x) = f (x) ∈C[a,b], ϕ(x) be the strictly increasing con-
tinuous function on [a,b] and

Fi(x) =
∫ x

a
Fi−1(t)dϕ(t),x ∈ [a,b], i = 1, ...,n.

Then Fn(x) ∈ C(n)
ϕ [a,b], where C(n)

ϕ [a,b] is the linear space of all continuous

functions v(x) defined in [a,b] such that v(n)ϕ (x) ∈C[a,b].

Theorem 1.4. Let ϕ(x) be the strictly increasing continuous function on [a,b]
and f ′ϕ(x),g

′
ϕ(x) ∈C[a,b]. Then∫ b

a
f (x)g′ϕ(x)dϕ(x) = [ f (x)(g(x)+ c)]|ba−

∫ b

a
f ′ϕ(x)(g(x)+ c)dϕ(x),

where c is the arbitrary constant.

Proof. Integrating the following formula

[ f (x)(g(x)+ c)]′ϕ = f ′ϕ(x)(g(x)+ c)+ f (x)g′ϕ(x),

we obtain the desired formula. Theorem 1.4 is therefor proven.
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2. The generalized trapezoid rule

Let
xi = a+ ih, i = 0,1, ...,n,h =

b−a
n

,

then with the approximate value of the integral (1) we can define the formula

An =
1
2

n

∑
i=1

[ f (xi)+ f (xi−1)][u(xi)−u(xi−1)] =
1
2

n

∑
i=1

[ f (xi)+

f (xi−1)][ϕ(xi)−ϕ(xi−1)]−
1
2

n

∑
i=1

[ f (xi + f (xi−1)][ψ(xi)−ψ(xi−1)]. (4)

Theorem 2.1. Let ϕ(x) and ψ(x) be the strictly increasing continuous functions
on [a,b], f ′′ϕ (x), f ′′ψ(x) ∈C[a,b]. Then

|I−An| ≤
M0

12
(ϕ(b)−ϕ(a))(ωϕ(h))2 +

M1

12
(ψ(b)−ψ(a))(ωψ(h))2, (5)

where 
M0 = sup

x∈[a,b]
| f ′′ϕ (x)|,M1 = sup

x∈[a,b]
| f ′′ψ(x)|,

ωϕ(h) = sup
|x−y|∈h

|ϕ(x)−ϕ(y)|,ωψ(h) = sup
|x−y|∈h

|ψ(x)−ψ(y)|.
(6)

Proof. Let us introduce the notations:

Pi =
xi∫

xi−1

f (x)dϕ(x), Qi =
xi∫

xi−1

f (x)dψ(x),

Mi =
1
2 [ f (xi)+ f (xi−1)][ϕ(xi)−ϕ(xi−1)],

Ni =
1
2 [ f (xi)+ f (xi−1)][ψ(xi)−ψ(xi−1)], i = 1,2, ...,n,

(7)

α =−1
2
(ϕ(xi)+ϕ(xi−1),β =−1

8
[ϕ(xi)−ϕ(xi−1)]

2, i = 1,2, ...,n. (8)

On the strength of Theorem 1.4 from (7) we obtain

Pi =
∫ xi

xi−1

f (x)dϕ(x) =
∫ h

0
f (t + xi−1)dϕ(t + xi−1) =

f (t +xi−1)[ϕ(t +xi−1)+α]|h0−
∫ h

0
f ′ϕ(t +xi−1)[ϕ(t +xi−1)+α]dϕ(t +xi−1) =
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f (t + xi−1)[ϕ(t + xi−1)+α]|h0− f ′ϕ(t + xi−1)

[
[ϕ(t + xi−1)+α]2

2
+β

]
|h0+

∫ h

0
f ′′ϕ (t + xi−1)

[
[ϕ(t + xi−1)+α]2

2
+β

]
dϕ(t + xi−1). (9)

Taking into account (8), we obtain

f (t+xi−1)[ϕ(t+xi−1)+α]|h0 = f (xi)
ϕ(xi)−ϕ(xi−1)

2
− f (xi−1)

ϕ(xi−1)−ϕ(xi)

2

=
1
2
[ f (xi)+ f (xi−1)][ϕ(xi)−ϕ(xi−1)], i = 1,2, ...,n, (10)

f ′ϕ(t + xi−1)

[
(ϕ(t + xi−1)+α)2

2
+β

]
|h0 = f ′ϕ(xi)

[
(ϕ(xi)−ϕ(xi−1))

2

8
+β

]
−

f ′ϕ(xi−1)

[
(ϕ(xi−1)−ϕ(xi))

2

8
+β

]
= 0, i = 1,2, ...,n. (11)

Then on the strength of (10) and (11) from (9) we obtain

Pi = Mi +
∫ h

0
f ′′ϕ (t + xi−1)qi1(t)dϕ(t + xi−1), i = 1,2, ...,n, (12)

where

qi1(t) =
1
2
[ϕ(t + xi−1)−

1
2
(ϕ(xi)+ϕ(xi−1))]

2− 1
8
(ϕ(xi)−ϕ(xi−1))

2. (13)

Analogously, we obtain the following formula

Qi = Ni +
∫ h

0
f ′′ψ(t + xi−1)qi2(t)dψ(t + xi−1), i = 1,2, ...,n, (14)

where

qi2(t) =
1
2
[ψ(t + xi−1)−

1
2
(ψ(xi)+ψ(xi−1))]

2− 1
8
(ψ(xi)−ψ(xi−1))

2. (15)

On the strength of (13) and (15) we obtain

qi j(0) = 0, qi j(h) = 0, qi j(t)< 0, (16)

for all t ∈ (0,h), i = 1,2, ...,n, j = 1,2. From (16) we have

|qi j(t)|=−qi j(t), t ∈ [0,h], i = 1,2, ...,n, j = 1,2. (17)
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Taking into account (6), (13) and (17) from (12) we obtain

|Pi−Mi| ≤
∫ h

0
| f ′′ϕ (t + xi−1)||qi1(t)|dϕ(t + xi−1)

≤M0

∫ h

0

{
1
8
(ϕ(xi)−ϕ(xi−1))

2

−1
2
[ϕ(t + xi−1)−

1
2
(ϕ(xi)+ϕ(xi−1))]

2
}

dϕ(t + xi−1)

=
M0

8
(ϕ(xi)−ϕ(xi−1))

2(ϕ(xi)−ϕ(xi−1))−
M0

6
[ϕ(t + xi−1)−

1
2
(ϕ(xi)

+(ϕ(xi−1))]
3|h0 =

M0

8
(ϕ(xi)−ϕ(xi−1))

3−M0

24
(ϕ(xi)−ϕ(xi−1))

3

=
M0

12
(ϕ(xi)−ϕ(xi−1))

3, i = 1,2, ...,n (18)

Analogously taking into account (6), (15) and (17) from (14) we have

|Qi−Ni| ≤
M1

12
(ψ(xi)−ψ(xi−1))

3, i = 1,2, ...,n. (19)

Taking into account the notations (2) and (7) from (1) and (4) we obtain
I =

b∫
a

f (x)du(x) =
n
∑

i=1
(Pi−Qi),

An =
n
∑

i=1
(Mi−Ni)

(20)

Then taking into account (18) and (19), from (20) we have

|I−An| ≤
n

∑
i=1

[|Pi−Mi|+ |Qi−Ni|]≤
M0

12

n

∑
i=1

(ωϕ(h))2(ϕ(xi)−ϕ(xi−1)+

+
M0

12

n

∑
i=1

(ωψ(h))2(ψ(xi)−ψ(xi−1)) =

M0

12
(ϕ(b)−ϕ(a))(ωϕ(h))2 +

M1

12
(ψ(b)−ψ(a))(ωψ(h))2.

Theorem 2.1 is therefor proven.

Corollary 2.2. Let ϕ(x) be the strictly increasing continuous function on
[a,b],ψ(x) = 0 for all x ∈ [a,b] and f ′′ϕ (x) ∈C[a,b]. Then

|I−A′n| ≤
M0

12
(ϕ(b)−ϕ(a))(ωϕ(h))2, (21)
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where

A′n =
1
2

n

∑
i=1

[ f (xi)+ f (xi−1)][ϕ(xi)−ϕ(xi−1)]. (22)

Corollary 2.3. Let ϕ(x) and ψ(x) be the strictly increasing continuous func-
tions on [a,b], f ′′ϕ (x), f ′′ψ(x) ∈ C[a,b], ϕ(x) ∈ Cα [a,b],0 < α ≤ 1,ψ(x) ∈
Cβ [a,b], 0 < β ≤ 1, i.e. for all x,y ∈ [a,b]

|ϕ(x)−ϕ(y)| ≤ c0|x− y|α , |ψ(x)−ψ(y)| ≤ c1|x− y|β ,c0 > 0,c1 > 0.

Then

|I−An| ≤
M0c2

0
12

(ϕ(b)−ϕ(a))h2α +
M1c2

1
12

(ψ(b)−ψ(a))h2β .

Corollary 2.4. Let ϕ(x) be the strictly increasing continuous function on
[a,b],ψ(x) = 0 for all x ∈ [a,b], f ′′ϕ (x) ∈C[a,b] and ϕ(x) ∈Cα [a,b],0 < α ≤ 1.
Then

|I−A′n| ≤
M0c2

0
12

(ϕ(b)−ϕ(a))h2α .

Theorem 2.5. Let u(x) be the function of the bounded variation in [a,b] and
f (x) ∈Cα [a,b],0 < α ≤ 1, i.e. for all x,y ∈ [a,b]

| f (x)− f (y)| ≤ c2|x− y|α .

Then
|I−An| ≤ c2hα [ϕ(b)−ϕ(a)+ψ(b)−ψ(a)],

where An is defined by the formula (4).

Proof. Taking into account (2) and (7) from (1) and (4) we can obtain

|I−An|= |
n

∑
i=1

[(Pi−Mi)− (Qi−Ni)]|

≤
n

∑
i=1

∫ xi

xi−1

|[ f (x)− 1
2
( f (xi)+ f (xi−1))]|dϕ(x)

+
∫ xi

xi−1

|[ f (x)− 1
2
( f (xi)+ f (xi−1))]|dψ(x)|

≤ c2hα [ϕ(b)−ϕ(a)+ψ(b)−ψ(a)].

Theorem 2.5 is therefore proven.
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