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ON THE SYMMETRIC BLOCK DESIGN WITH PARAMETERS
(430,78,14)

MENDERES GASHI - REXHEP GJERGJI

In this paper we have proved that a Frobenius group of order 301
cannot operate on a symmetric block design with parameters (430,78,14).

1. Introduction

A 2−(v,k,λ ) design (P,B, I) is said to be symmetric if the relation |P|= |B|=
v holds and in that case we often speak of a symmetric design with parameters
(v,k,λ ). The collection of the parameter sets (v,k,λ ) for which a symmetric
2− (v,k,λ ) design exists is often called the ”spectrum”. The determination of
the spectrum for symmetric designs is a widely open problem. For example, a
finite projective plane of order n is a symmetric design with parameters (n2 +
n+ 1,n+ 1,1) and it is still unknown whether finite projective planes of non–
prime–power order may exist at all.

The existence/non-existence of a symmetric design has often required ”ad
hoc” treatments even for a single parameter set (v,k,λ ). The most famous in-
stance of this circumstance is perhaps the non-existence of the projective plane
of order 10, see [9].

It is of interest to study symmetric designs with additional properties, which
often involve the assumption that a non–trivial automorphism group acts on
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the design under consideration, see for instance [4]. The present paper is con-
cerned with a symmetric design D = (P,B, I) with parameters (430,78,14):
the existence/non–existence of such a design is still in doubt as far as we know.
We shall further assume that the given design admits a certain automorphism
group of order 301. This choice is motivated by the work of Z. Janko, see [7].
It is our purpose to prove that a symmetric design with these properties cannot
exist. We shall use the method of tactical decompositions, as developed in [7];
see also [4]. We assume the reader is familiar with the basic facts of design the-
ory, see for instance [2], [3] and [10]. If g is an automorphism of a symmetric
design D with parameters (v,k,λ ), then g fixes an equal number of points and
blocks, see [10, Theorem 3.1, p.78]. We denote the sets of these fixed elements
by FP(g) and FB(g) respectively, and their cardinality simply by |F(g)| . We
shall make use of the following upper bound for the number of fixed points, see
[10, Corollary 3.7, p. 82]:

|F(g)| ≤ k+
√

k−λ (1)

It is also known that an automorphism group G of a symmetric design has
the same number of orbits on the set of points P as on the set of lines B: [10,
Theorem 3.3, p.79]. Denote that number by t.

2. Point- and block-orbits

We adopt the notation and terminology of Section 1 in [4]: we repeat some
fundamental relations here for the reader’s sake. Let D be a symmetric design
with parameters (v,k,λ ) and let G be a subgroup of the automorphism group
AutD of D. Denote the point orbits of G on P by P1,P2, . . .Pt and the line
orbits of G on B by B1,B2, . . .Bt . Put |Pr|= ωr and |Bi|= Ωi. Obviously,

t

∑
r=1

ωr =
t

∑
i=1

Ωi = v. (2)

Let γir be the number of points from Pr, which lie on a line from Bi; clearly
this number does not depend on the chosen line. Similarly, let Γ js be the number
of lines from B j which pass through a point from Ps. Then, obviously,

t

∑
r=1

γir = k and
t

∑
j=1

Γ js = k. (3)

By [3, Lemma 5.3.1. p.221], the partition of the point set P and of the block
set B forms a tactical decomposition of the design D in the sense of [3, p.210].
Thus, the following equations hold:

Ωi · γir = ωr ·Γir (4)
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t

∑
r=1

γirΓ jr = λΩ j +δi j(k−λ ) (5)

t

∑
i=1

Γirγis = λωs +δrs(k−λ ) (6)

where δi j, δrs are the Kronecker symbols.
For a proof of these equations, the reader is referred to [3] and [4]. Equation

(5), together with (4) yields

t

∑
r=1

Ω j

ωr
γirγ jr = λΩ j +δi j(k−λ ); (7)

Definition 1. The (t× t)-matrix (γir) is called the orbit structure of the design
D.

The first step in the construction of a design is to find all possible orbit
structures. The second step of the construction is usually called indexing. In
fact for each coefficient γir of the orbit matrix one has to specify which γir points
of the point orbit Pr lie on the lines of the block orbit Bi. Of course, it is enough
to do this for a representative of each block orbit, as the other lines of that orbit
can be obtained by producing all G-images of the given representative.

3. Action of the Frobenius group of order 301

In our construction of symmetric 2− (430,78,14) designs we assume the exis-
tence of an automorphism group G = 〈ρ,σ |ρ43 = σ7 = 1,ρσ = ρ4〉, which is a
so called Frobenius group of order 301 with Frobenius kernel of order 43 (see
[6]).

Lemma 3.1. Let ρ be an element of G with o(ρ) = 43. Then 〈ρ〉 acts fixed–
point–free.

Proof. We know that the number of fixed points is the same as the number of
fixed blocks for the action of 〈ρ〉 on D. Denote this number by f . Obviously
f ≡ 430(mod 43), i.e. f ≡ 0(mod 43). The upper bound (1) for the number of
fixed points yields f ∈ {0,43,86}. As o(ρ)> λ , an application of a result of M.
Aschbacher [1, Lemma 2.6, p.274] forces the fixed structure to be a subdesign
of D. But there is no symmetric design with v = 43 or v = 86 and λ = 14.
Hence, f is equal to 0.

Our next task is to determine the lengths of the orbits of G on the sets of
points and blocks of the symmetric block design D. The possible orbit lengths
are 7,43,301.
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Lemma 3.2. There is no orbit of length 7.

Proof. If false, then ρ would have at least seven fixed points or seven fixed lines,
which is not possible.

Lemma 3.3. There is no orbit of length 301.

Proof. Up to reordering, there are precisely two possibilities for the arrays ex-
pressing the lengths of the G–orbits on points and blocks, namely:

O1 = [43,43,43,301],O2 = [43,43,43,43,43,43,43,43,43,43].

The case O1 does not occur, as then there is no orbit structure (there is no solu-
tions for equations (7) and (3)). Thus, we are in case O2.

Thus we have

Theorem 3.4. The action of the group G yields 10 orbits on points and 10 orbits
on blocks, each of length 43.

In what follows we assume |Pi|= |Bi|= 43, i = 1,2, . . . ,10. From the struc-
ture of G it follows that G acts faithfully on each line and point orbit. For
i = 1,2, . . . ,10, we put Pi = {pi

0, pi
1, . . . , pi

42}. Thus, G acts on each such point
orbit as a permutation group in a unique way, up to point–labelling. Hence, for
the two generators of G we may put:
ρ = (0,1,2,3,4,5,6,7,8,9,0,11,12,13,14,15,16,17,18,19,20,21,22,23,

24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)
and

σ = (0)(1,4,16,21,41,35,11)(2,8,32,42,39,27,22)(5,20,37,19,33,3,12)
(6,24,10,40,31,38,23)(7,28,26,18,29,30,34)(9,36,15,17,25,14,13).

where, it is clear that, the above indicated numbers refer to point–subscripts.
We immediately obtain the following

Corollary 3.5. The element σ of G of order 7 fixes precisely 10 points and 10
blocks of D . Each block orbit contains a unique line stabilized by σ .

The following definition is basic for our construction of designs.
Definition 2. The set of indices of the points of Pr, which lie on a fixed rep-
resentative of block orbit Bi, is called the index set for the position (i,r) of the
orbit structure.

In what follows, we are going to construct a representative for each block
orbit: namely, the line fixed by σ . Clearly σ acts on the intersection of Pr

with the representative of the block orbit Bi. Therefore, the numbers γir are all
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congruent to 0 or 1 modulo 7. This assumption together with the system (7)-(3)
gives a unique solution for the orbit structure of the design D:

OS 43 43 43 43 43 43 43 43 43 43
43 15 7 7 7 7 7 7 7 7 7
43 7 15 7 7 7 7 7 7 7 7
43 7 7 15 7 7 7 7 7 7 7
43 7 7 7 15 7 7 7 7 7 7
43 7 7 7 7 15 7 7 7 7 7
43 7 7 7 7 7 15 7 7 7 7
43 7 7 7 7 7 7 15 7 7 7
43 7 7 7 7 7 7 7 15 7 7
43 7 7 7 7 7 7 7 7 15 7
43 7 7 7 7 7 7 7 7 7 15

An automorphism of a matrix is a permutation of rows followed by a per-
mutation of columns leaving the matrix unchanged. It is clear that the set of all
such automorphisms is a group, which we call the automorphism group of that
matrix. The automorphism group of the above matrix is isomorphic to the full
symmetric group Σ10 of degree ten. We shall use this fact to eliminate isomor-
phic designs during the indexing process.

4. Indexing of the Representatives for Each Block Orbit

Denote the matrix of the orbit structure by A and its coefficients by ai j,1≤ i, j≤
10. Obviously, ai j ∈ {7,15}. We want to find all possibilities for the index sets
for all positions of the matrix A. We obtain these possibilities from the cycles
of the permutation representation of σ . In case ai j = 7 the index set is obtained
from a single cycle of σ , yielding precisely six possibilities; in case ai j = 15 the
index set is obtained from a pair of cycles of σ together with its fixed element
0, yielding precisely

(6
2

)
= 15 possibilities. Altogether, we obtain precisely 21

index sets. We write them down and denote them by the non-negative integers
from 0′ to 20′ :

0′ = {1,4,16,21,41,35,11},
1′ = {2,8,32,42,39,27,22},
2′ = {5,20,37,19,33,3,12},
3′ = {6,24,10,40,31,38,23},
4′ = {7,28,26,18,29,30,34},
5′ = {9,36,15,17,25,14,13},
6′ = {0,1,4,16,21,41,35,11,2,8,32,42,39,27,22},
7′ = {0,1,4,16,21,41,35,11,5,20,37,19,33,3,12},
8′ = {0,1,4,16,21,41,35,11,6,24,10,40,31,38,23},
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9′ = {0,1,4,16,21,41,35,11,7,28,26,18,29,30,34},
10′ = {0,1,4,16,21,41,35,11,9,36,15,17,25,14,13},
11′ = {0,2,8,32,42,39,27,22,5,20,37,19,33,3,12},
12′ = {0,2,8,32,42,39,27,22,6,24,10,40,31,38,23},
13′ = {0,2,8,32,42,39,27,22,7,28,26,18,29,30,34},
14′ = {0,2,8,32,42,39,27,22,9,36,15,17,25,14,13},
15′ = {0,5,20,37,19,33,3,12,6,24,10,40,31,38,23},
16′ = {0,5,20,37,19,33,3,12,7,28,26,18,29,30,34},
17′ = {0,5,20,37,19,33,3,12,9,36,15,17,25,14,13},
18′ = {0,6,24,10,40,31,38,23,7,28,26,18,29,30,34},
19′ = {0,6,24,10,40,31,38,23,9,36,15,17,25,14,13},
20′ = {0,7,28,26,18,29,30,34,9,36,15,17,25,14,13}.

For each of the block representatives corresponding to the rows of A we ob-
tain 15 ·69 = 151165440 possibilities for the index sets arising from the various
point–orbits.

Now, one constructs the possible orbits of length 43 one by one. To do
this, one considers the rows of A and replaces the numbers ai j by index sets of
appropriate size, using the integer name for these index sets. For example, let
us take the first row of A. By making use of the ordering of the index sets, the
first possibility for an orbit to check would be L1 : 6′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′.

One applies the group 〈ρ〉 of order 43 to the index sets occurring in L1
and checks whether two dierent ρ–images have the right intersection number,
namely 14. If the intersection condition is satisfied, then we retain L1; otherwise,
we discard it. The next possibility to check would be L1 : 6′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′

1′, and the last one for the first row of A would be L1 : 20′ 5′ 5′ 5′ 5′ 5′ 5′ 5′ 5′ 5′.
In this way, one obtains ten sets which exhaust all the possibilities for the

ten block orbits, respectively, and which then have to be checked against each
other for the intersection property.

To reduce the number of possibilities and to eliminate isomorphic designs
as soon as possible, we make use of the group generated by the mapping

α : x 7→ 3x (mod 43).

Clearly, α induces an automorphism of order 42 of 〈ρ〉 which commutes
with σ . It is well known that such a group produces isomorphic designs [4,
Lemma 1.8 p.54]. The cycle decomposition of α on the 21 index sets is

(0′,2′,5′,1′,3′,4′)(6′,15′,20′)(7′,17′,14′,12′,18′,9′)(8′,16′,10′,11′,19′,13′).

Hence, α acts as an element of order 6 on the set of index sets.
We have thus used three means for reducing the output of isomorphic sym-

metric designs, namely: the automorphism group of the orbit structure; the lex-
icographical ordering of the index sets to get an ordering of the orbit or block
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types and an ordering of designs (for a precise explanation of how one intro-
duces such an ordering the reader is referred to [4]); the group generated by α

(one only needs to consider one index set for each cycle of α).

5. Result

The computations outlined here have been carried out by a computer. Our main
result is contained in the following.

Theorem 5.1. There is no symmetric designs with parameters (430,78,14)
which is faithfully acted upon by G.

Proof. An exhaustive investigation carried out by computer shows that there is
no possibility for indexing the first representative block. We have implemented
the search by a C++ program, available from the authors, which ran 7 minutes
on a Personal Computer of the Department of Mathematics of the University of
Prishtina. The computer was equipped with a 32 bit PENTIUM IV processor
and a 1GB RAM under a Windows operating system. See the C++ program
given in the Appendix.

6. Appendix: the computation

/* indexing the first representative block L1 (430,78,14) with Frob 43x7 */
#include <stdio.h>
#define MOD 43
#define LAMBDA 14
int h[MOD]; int a[78]; int i,j,m; int a1,a2,a3,a4,a5,a6,a7,a8,a9,a10; double wz,
w2;

/* Index sets */
int i1[1]={{0}};
int i7[6][7]={{1,4,16,21,41,35,11},{2,8,32,42,39,27,22},{5,20,37,19,33,3,12},

{6,24,10,40,31,38,23},{7,28,26,18,29,30,34},{9,36,15,17,25,14,13}};
int i15[15][15]={{0,1,4,16,21,41,35,11,2,8,32,42,39,27,22},

{0,1,4,16,21,41,35,11,5,20,37,19,33,3,12},
{0,1,4,16,21,41,35,11,6,24,10,40,31,38,23},
{0,1,4,16,21,41,35,11,7,28,26,18,29,30,34},
{0,1,4,16,21,41,35,11,9,36,15,17,25,14,13},
{0,2,8,32,42,39,27,22,5,20,37,19,33,3,12},
{0,2,8,32,42,39,27,22,6,24,10,40,31,38,23},
{0,2,8,32,42,39,27,22,7,28,26,18,29,30,34},
{0,2,8,32,42,39,27,22,9,36,15,17,25,14,13},
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{0,5,20,37,19,33,3,12,6,24,10,40,31,38,23},
{0,5,20,37,19,33,3,12,7,28,26,18,29,30,34},
{0,5,20,37,19,33,3,12,9,36,15,17,25,14,13},
{0,6,24,10,40,31,38,23,7,28,26,18,29,30,34},
{0,6,24,10,40,31,38,23,9,36,15,17,25,14,13},
{0,7,28,26,18,29,30,34,9,36,15,17,25,14,13}};

FILE *fo;
int mod();
/* ————————— */
void main() {

if((fo=fopen(”I L1.TXT”,”w”))==NULL) { printf(”\a\a Can not open the
file \n ”,”I L1.TXT”); exit(0); }
/* 1 */
for (a1=0;a1<3 ;a1++) { for (i=0; i<15;i++) a[i]=i15[a1][i];
/* 2 */
for (a2=0;a2<6;a2++) { for (i=0; i<7;i++) a[15+i]=i7[a2][i];
/* 3 */
for (a3=0;a3<6;a3++) { for (i=0; i<7;i++) a[22+i]=i7[a3][i];
/* 4 */
for (a4=0;a4<6 ;a4++) { for (i=0; i<7;i++) a[29+i]=i7[a4][i];
/* 5 */
for (a5=0;a5<6;a5++) { for (i=0; i<7;i++) a[36+i]=i7[a5][i];
/* 6 */
for (a6=0;a6<6;a6++) { for (i=0; i<7;i++) a[43+i]=i7[a6][i];
/* 7 */
for (a7=0;a7<6;a7++) { for (i=0; i<7;i++) a[50+i]=i7[a7][i];
/* 8 */
for (a8=0;a8<6;a8++) { for (i=0; i<7;i++) a[57+i]=i7[a8][i];
/* 9 */
for (a9=0;a9<6;a9++) { for (i=0; i<7;i++) a[64+i]=i7[a9][i];
/* 10 */
for (a10=0;a10<6;a10++) { for (i=0; i<7;i++) a[71+i]=i7[a10][i];

w2++;
/* check for compatibility */
for (m=1;m<MOD;m++) h[m]=0;
for (i=0; i<15;i++) { for (j=0; j<15;j++)

{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (i=15; i<22;i++) { for (j=15; j<22;j++)

{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (i=22; i<29;i++) { for (j=22; j<29;j++)
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{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (i=29; i<36;i++) { for (j=29; j<36;j++)

{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (i=36; i<43;i++) { for (j=36; j<43;j++)

{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (i=43; i<50;i++) { for (j=43; j<50;j++)

{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (i=50; i<57;i++) { for (j=50; j<57;j++)

{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (i=57; i<64;i++) { for (j=57; j<64;j++)

{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (i=64; i<71;i++) { for (j=64; j<71;j++)

{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (i=71; i<78;i++) { for (j=71; j<78;j++)

{ if (i==j) continue; h[mod(a[i]-a[j],MOD)]++; } }
for (m=1;m < MOD;m++){ if (h[m]>LAMBDA) goto sta10 ; }
wz++;
/* Solution */
fprintf(fo,”%8.0f,%8.0f \n”,wz,w2);
fprintf(fo,”%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,”,
a[0], a[1], a[2], a[3], a[4], a[5], a[6],a[7], a[8], a[9]);
fprintf(fo,”%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,”,
a[10], a[11], a[12], a[13], a[14], a[15], a[16],a[17], a[18], a[19]);
fprintf(fo,”%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,”,
a[20], a[21], a[22], a[23], a[24], a[25], a[26],a[27], a[28], a[29]);
fprintf(fo,”%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,”,
a[30], a[31], a[32], a[33], a[34], a[35], a[36],a[37], a[38], a[39]);
fprintf(fo,”%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,”,
a[40], a[41], a[42], a[43], a[44], a[45], a[46],a[47], a[48], a[49]);
fprintf(fo,”%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,”,
a[50], a[51], a[52], a[53], a[54], a[55], a[56],a[57], a[58], a[59]);
fprintf(fo,”%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,”,
a[60], a[61], a[62], a[63], a[64], a[65], a[66],a[67], a[68], a[69]);
fprintf(fo,”%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d\n”,
a[70], a[71], a[72], a[73], a[74], a[75], a[76],a[77]);

sta10:;
} /* for a10 */
} /* for a9 */
} /* for a8 */
} /* for a7 */
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} /* for a6 */
} /* for a5 */
} /* for a4 */
} /* for a3 */
} /* for a2 */
} /* for a1 */
fclose(fo);
} /* end */

/* ——————————– */
/* modulo function */
mod(a,b)
int a,b;
{ int i,j; i=a/b; j=a - b*i; if(j<0) j=j+b; return(j); }
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